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Abstract We prove that, for operator spaces V and W , the operator space V ∗∗ ⊗h W ∗∗ can be com-
pletely isometrically embedded into (V ⊗h W )∗∗, ⊗h being the Haagerup tensor product. We also show
that, for exact operator spaces V and W , a jointly completely bounded bilinear form on V × W can be
extended uniquely to a separately w∗-continuous jointly completely bounded bilinear form on V ∗∗×W ∗∗.
This paves the way to obtaining a canonical embedding of V ∗∗ ⊗̂ W ∗∗ into (V ⊗̂ W )∗∗ with a continuous
inverse, where ⊗̂ is the operator space projective tensor product. Further, for C∗-algebras A and B, we
study the (closed) ideal structure of A ⊗̂ B, which, in particular, determines the lattice of closed ideals
of B(H) ⊗̂ B(H) completely.
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1. Introduction

The operator space projective tensor product serves as an analogue to the Banach space
projective tensor product in the category of operator spaces. It is used to linearize the
jointly (matricially) completely bounded bilinear maps in the same way as the Banach
space projective tensor product linearizes the bounded bilinear maps. If E and F are
operator spaces, then their operator space projective tensor product, denoted by E ⊗̂ F ,
is the completion of the algebraic tensor product E ⊗ F under the norm

‖u‖∧ = inf{‖α‖ ‖v‖ ‖w‖ ‖β‖ : u = α(v ⊗ w)β}, u ∈ Mn(E ⊗ F ),

where the infimum runs over arbitrary decompositions with v ∈ Mp(E), w ∈ Mq(F ),
α ∈ Mn,pq, β ∈ Mpq,n and p, q ∈ N arbitrary, Mk,l being the space of k × l matrices
over C. The theory of operator space tensor products was developed independently by
Blecher and Paulsen [5] and Effros and Ruan [8,9].

For C∗-algebras A and B, it is known that A∗∗ ⊗h B∗∗ can be completely isometrically
embedded into the bidual (A⊗h B)∗∗ [18, Theorem 4.1]. In § 2, we prove that the same is

c© 2013 The Edinburgh Mathematical Society 505

https://doi.org/10.1017/S001309151300045X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151300045X


506 R. Jain and A. Kumar

true, in general, for operator spaces. Haagerup [12] proved that a bounded bilinear form
on A×B has a unique norm-preserving extension to a separately normal bounded bilinear
form on A∗∗×B∗∗. We prove an analogous result for a jointly completely bounded bilinear
form on exact operator spaces and for arbitrary C∗-algebras. Kumar and Sinclair [18]
proved, by using the above extension result of Haagerup, that for C∗-algebras A and B

there is a canonical bi-continuous embedding of A∗∗ ⊗γ B∗∗ into (A ⊗γ B)∗∗, where ⊗γ

denotes the Banach space projective tensor product. Its analogue for the operator space
projective tensor product was left open. In this paper, we present an affirmative answer
in the cases of exact operator spaces and arbitrary C∗-algebras. As an application of
this result, we re-establish the fact that for C∗-algebras A and B the Haagerup norm
and the operator space projective norm are equivalent on A ⊗ B if and only if A and
B are subhomogeneous, which was proved in [18]. Note that Sanchez and Garcia [21]
also studied the relationship between the tensor product of the biduals and the bidual
of the tensor product for the Banach space projective tensor norm. In particular, they
proved that, for a Banach space X of type 2 such that X∗ is of cotype 2, the embedding
X∗∗ ⊗γ X∗∗ ↪→ (X ⊗γ X)∗∗ is bi-continuous.

The closed ideal structures of A ⊗h B, A ⊗min B and A ⊗max B, A and B being C∗-
algebras, have been investigated by Allen et al . [1], Archbold et al . [2], Takesaki [23] and
Wassermann [24], respectively. For the commutative case, the closed ideals of A ⊗γ B

have been discussed in [11]. However, the analysis of the (closed) ideal structure of
the Banach ∗-algebra A ⊗̂ B requires further attention. We present some results in this
direction in § 3. We prove that the sum of two product ideals in A ⊗̂ B is closed and
the same technique leads to a shorter proof of [1, Theorem 3.8]. We further show that
the minimal and maximal ideals in A and B generate their counterparts in A ⊗̂ B. As a
consequence, we obtain the lattice of closed ideals of B(H) ⊗̂ B(H).

2. Embedding operator space projective tensor product into second duals

For operator spaces V and W , a jointly completely bounded bilinear map (j.c.b.) is a
bilinear map φ : V × W → C such that the maps φn : Mn(V ) × Mn(W ) → Mn2 given by

φn((aij), (bkl)) = (φ(aij , bkl)), n ∈ N,

are uniformly bounded, and in this case we write ‖φ‖jcb := sup{‖φn‖ : n ∈ N} [5]. Also,
a map φ : V × W → C is said to be completely bounded (c.b.) if the maps φn : Mn(V ) ×
Mn(W ) → Mn given by

φn((aij), (bkl)) =
( n∑

k=1

φ(aik, bkj)
)

, n ∈ N,

are uniformly bounded, and then we write ‖φ‖cb := sup{‖φn‖ : n ∈ N}. It is well known
that (V ⊗̂ W )∗ and (V ⊗hW )∗ are completely isometrically isomorphic to J CB(V ×W, C)
and CB(V × W, C), respectively, where J CB(V × W, C) (respectively, CB(V × W, C))
denotes the space of j.c.b. (respectively, c.b.) bilinear maps [5, 10]. Every completely
bounded map φ is jointly completely bounded with ‖φ‖jcb � ‖φ‖cb.
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Recall that, for operator spaces V and W , the Haagerup norm of an element u ∈
Mn(V ⊗ W ), n ∈ N, is defined by

‖u‖h = inf{‖v‖ ‖w‖ : u = v � w, v ∈ Mn,p(V ), w ∈ Mp,n(W ), p ∈ N},

where

v � w =
( p∑

k=1

vik ⊗ wkj

)
ij

.

The norms ‖ · ‖h, ‖ · ‖∧ and ‖ · ‖γ on the tensor product A ⊗ B of two C∗-algebras A and
B satisfy

‖ · ‖h � ‖ · ‖∧ � ‖ · ‖γ .

We first state an important result, whose proof can be found in [4, § 1.6.7].

Proposition 2.1. Let V and W be operator spaces, let E be a dual operator space
and let u : V × W → E be a completely bounded bilinear map. Then u admits a unique
separately w∗-continuous extension ũ : V ∗∗ × W ∗∗ → E, which is completely bounded
with ‖u‖cb = ‖ũ‖cb.

We now prove an embedding result for the Haagerup tensor product of operator spaces.
It turns out that the operator space version is much easier than the C∗-algebra case [18,
Theorem 4.1], as observed below. Note that if either V or W is finite dimensional, then
V ∗∗ ⊗h W ∗∗ is completely isometrically isomorphic to (V ⊗h W )∗∗ [10, Corollary 9.4.8].

Theorem 2.2. For operator spaces V and W , there is a canonical embedding of
V ∗∗ ⊗h W ∗∗ into (V ⊗h W )∗∗ that is a complete isometry.

Proof. For the operator spaces V ∗∗ and W ∗∗, recall that (V ∗∗ ⊗h W ∗∗)∗
σ denotes

the subspace of (V ∗∗ ⊗h W ∗∗)∗ containing all the separately w∗-continuous completely
bounded bilinear forms on V ∗∗ × W ∗∗. By Proposition 2.1, taking the map u → ũ,
and E as Mn, one easily sees that (V ⊗h W )∗ is completely isometrically isomorphic
to (V ∗∗ ⊗h W ∗∗)∗

σ. In particular, the normal Haagerup tensor product V ∗∗ ⊗σh W ∗∗,
which is defined as the operator space dual of (V ∗∗ ⊗h W ∗∗)∗

σ, is completely isometrically
isomorphic to (V ⊗hW )∗∗. Recall that there also exists a completely isometric embedding
[4, § 1.6.8] V ∗∗⊗hW ∗∗ ↪→ V ∗∗⊗σhW ∗∗. Hence, there is a completely isometric embedding
of V ∗∗ ⊗h W ∗∗ into (V ⊗h W )∗∗. �

We now move on to analyse the embedding of biduals for operator space projective
tensor product. This will need some preparation. Recall that an operator space V is said
to be exact if there exists a constant K such that for any finite-dimensional subspace
G ⊂ V there exist an integer n, a subspace G̃ ⊂ Mn and an isomorphism u : G → G̃

such that ‖u‖cb‖u−1‖cb � K. The smallest such constant is the exactness constant and
is denoted by ex(V ). The matrix algebra Mn and, in general, all nuclear C∗-algebras are
simple examples of exact operator spaces with exactness constant 1.

Proposition 2.3. Let V and W be exact operator spaces. Then every j.c.b. bilinear
map u : V ×W → C can be extended uniquely to a separately w∗-continuous j.c.b. bilinear
map ũ : V ∗∗ × W ∗∗ → C such that ‖ũ‖jcb � 2K‖u‖jcb, where K = 2

√
2 ex(V ) ex(W ).
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Proof. Since V and W are both exact, by [19, Theorem 0.4] there exist completely
bounded bilinear forms u1 and ut

2 on V ×W and W×V , respectively, such that u = u1+u2

with ‖u1‖cb +‖ut
2‖cb � 2K‖u‖jcb, where K = 2

√
2 ex(V ) ex(W ) and ut

2(w, v) = u2(v, w).
Using Proposition 2.1, there exist unique separately w∗-continuous extensions ũ1 : V ∗∗ ×
W ∗∗ → C and ũt

2 : W ∗∗ × V ∗∗ → C of u1 and ut
2, which are completely bounded with

‖u1‖cb = ‖ũ1‖cb and ‖ut
2‖cb = ‖ũt

2‖cb. Note that ũt
2 is j.c.b, being c.b., so ũ2 is also a

j.c.b. bilinear form with

‖ũ2‖jcb = ‖ũt
2‖jcb � ‖ũt

2‖cb = ‖ut
2‖cb.

Also, it can be easily seen that ũ2 is separately w∗-continuous, ũt
2 being separately w∗-

continuous. Set ũ = ũ1 + ũ2. Then ũ is a separately w∗-continuous j.c.b. bilinear form
on V ∗∗ × W ∗∗ with ‖ũ‖jcb � 2K‖u‖jcb. Finally, some routine calculations show that ũ is
the unique extension of u. �

In the case of C∗-algebras A and B, using the same techniques as in Proposition 2.3 and
[13, Lemma 3.1], one can easily prove that every j.c.b. bilinear map u : A×B → C can be
extended uniquely to a separately normal j.c.b. bilinear map ũ : A∗∗ ×B∗∗ → C such that
‖ũ‖jcb � 2‖u‖jcb. A priori, it is not clear why this extension should be norm preserving.
However, using a completely different approach, we establish that for C∗-algebras there
exists a unique norm-preserving separately normal extension.

Lemma 2.4. Let A and B be von Neumann algebras and let T : A × B → C be a
separately normal bilinear form. Then, for each n, the map Tn : Mn(A)×Mn(B) → Mn2

defined by
Tn((aij), (bkl)) = (T (aij , bkl))

is separately normal.

Proof. For any a = (aij) ∈ Mn(A) and for a fixed b = (bij) ∈ Mn(B) we can write

Tn((aij), (bkl)) =

⎛
⎜⎜⎜⎜⎝

T11(a) T12(a) · · · T1n(a)
T21(a) T22(a) · · · T2n(a)

...
...

. . .
...

Tn1(a) Tn2(a) · · · Tnn(a)

⎞
⎟⎟⎟⎟⎠ ,

where Tkl : Mn(A) → Mn maps (aij) → (T (aij , bkl)). In order to show that the map Tn

is separately normal, we can equivalently show that the map

a →
n∑

i,j=1

eij ⊗ Tij(a)

from Mn(A) into Mn ⊗ Mn is normal. Let (aλ) be an increasing net of positive elements
in Mn(A) such that aλ

w∗
−−→ a. Clearly, each Tij is normal, so Tij(a) is a weak limit of

the net (Tij(aλ)) and thus
∑

eij ⊗ Tij(a) is a weak limit of
∑

eij ⊗ Tij(aλ). Hence, the
result follows. �
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Proposition 2.5. Let A and B be C∗-algebras and let φ : A×B → C be a j.c.b. bilinear
form. Then φ admits a unique separately normal j.c.b. bilinear extension φ̃ : A∗∗ ×B∗∗ →
C such that ‖φ̃‖jcb = ‖φ‖jcb.

Proof. Since φ : A × B → C is a continuous bilinear form, there exists a unique
separately normal bilinear form φ̃ : A∗∗ × B∗∗ → C with ‖φ̃‖ = ‖φ‖ [12, Corollary 2.4].
Let n be a positive integer. Consider the map φ̃n : Mn(A∗∗) × Mn(B∗∗) → Mn2 defined
by

φ̃n((aij), (bkl)) = (φ̃(aij , bkl)).

We claim that ‖φ̃n‖ � ‖φ‖jcb. Consider any a ∈ Mn(A∗∗), b ∈ Mn(B∗∗) with ‖a‖ =
‖b‖ = 1. Using the fact that the unit ball of Mn(A) is w∗-dense in the unit ball of
Mn(A∗∗), we obtain a net (aλ) ∈ Mn(A) that is w∗-convergent to a with ‖aλ‖ � 1 and
a net (bµ) ∈ Mn(B) that is w∗-convergent to b with ‖bµ‖ � 1. By Lemma 2.4, φ̃n is
separately normal, so, for a fixed k ∈ N,

‖φ̃n(a, b)‖ � (1 + 1/k)2‖φ̃n(aλ, bµ)‖,

for some λ and µ. This further gives

‖φ̃n(a, b)‖ � (1 + 1/k)2‖φn‖, ∀k ∈ N.

Thus, ‖φ̃n‖ � ‖φn‖ � ‖φ‖jcb, and this is true for all n ∈ N, giving that φ̃ is j.c.b. with
‖φ̃‖jcb � ‖φ‖jcb. Also ‖φ‖jcb � ‖φ̃‖jcb, φ being the restriction of φ̃, and hence the result
follows. �

We next prove a result that is an operator space version of [18, Lemma 5.3], and whose
proof is largely inspired by the same lemma.

Lemma 2.6. Let V and W be operator spaces with V ⊂ B(H) and W ⊂ B(K). Then
the unit ball of CBσ(V × W, C) is w∗-dense in the unit ball of CB(V × W, C), where
CBσ(V × W, C) denotes the space of all separately w∗-continuous c.b. bilinear forms on
V × W .

Proof. Let B1 and B2 denote the unit balls of CBσ(V × W, C) and CB(V × W, C),
respectively. Suppose that there exists a φ in B2 such that φ /∈ B̄w∗

1 , where B̄w∗

1 denotes
the w∗-closure of B1 in B2. By a corollary of the Hahn–Banach separation theorem [20,
Theorem 3.7], we obtain a w∗-continuous linear functional Φ : CB(V × W, C) → C such
that |Φ(ψ)| � 1 for all ψ ∈ B1 and Φ(φ) > 1. Now Φ can be identified with an element
u of V ⊗h W , being a w∗-continuous functional on (V ⊗h W )∗. Therefore, there exists
u ∈ V ⊗h W , ‖u‖h > 1, such that |ψ(u)| � 1 for all ψ ∈ B1, and φ(u) > 1.

It is well known that there is an isometric embedding of B(H) ⊗h B(K) into
CB(B(K, H)) [22, Theorem 4.3]. Using the injectivity of the Haagerup tensor prod-
uct, we obtain an isometric embedding (that need not be algebraic), say θ, of V ⊗h W

into CB(B(K, H)), given by θ(v ⊗ w)(T ) = vTw. Since ‖θ(u)‖cb > 1, for some n ∈ N,
‖(θ(u))n‖ > 1. So there exists (xij) ∈ Mn(B(K, H)) with ‖(xij)‖ = 1 such that

‖(θ(u)xij)‖ = ‖(θ(u))n(xij)‖ > 1.
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Now, we can choose unit vectors ξ ∈ Kn and η ∈ Hn such that

|〈(θ(u)xij)ξ, η〉| > 1.

Define ψ : V × W → C as

ψ(v, w) = 〈(θ(v ⊗ w)xij)ξ, η〉.

Clearly, ψ belongs to B1, which, together with the relation

|ψ(u)| = |〈(θ(u)xij)ξ, η〉| > 1,

gives a contradiction. Hence, B1 is w∗-dense in B2. �

Now, with all the necessary ingredients at our disposal, we are ready to prove the main
result of this section, an operator space analogue of [18, Theorem 5.1], and the proof
presented here borrows ideas from the same theorem. Let us first define the required
embedding. For exact operator spaces V and W , by Proposition 2.3, we have a map

χ : (V ⊗̂ W )∗ → (V ∗∗ ⊗̂ W ∗∗)∗

with ‖χ‖ � 2K. Define

µ := χ∗ ◦ i : V ∗∗ ⊗̂ W ∗∗ → (V ⊗̂ W )∗∗,

where i : V ∗∗ ⊗̂ W ∗∗ → (V ∗∗ ⊗̂ W ∗∗)∗∗ is the canonical completely isometric embedding.
Then we have the following.

Theorem 2.7. For exact operator spaces V and W , the embedding µ of V ∗∗ ⊗̂ W ∗∗

into (V ⊗̂ W )∗∗ satisfies

1
2K

‖u‖ � ‖µ(u)‖ � 2K‖u‖, ∀u ∈ V ∗∗ ⊗̂ W ∗∗,

where K = 2
√

2 ex(V ) ex(W ). In particular, µ has a continuous inverse.

Proof. By the definition of µ, the inequality on the right-hand side is obvious. For
the other inequality, consider any u ∈ V ∗∗ ⊗ W ∗∗ with ‖u‖∧ = 1. By the Hahn–Banach
theorem, there exists a j.c.b. bilinear map φ : V ∗∗ × W ∗∗ → C such that ‖φ‖jcb = 1 and
φ(u) = 1. By [19, Theorem 0.4], φ can be decomposed as φ = φ1 + φ2, where φ1 and φ2

are bounded bilinear forms with ‖φ1‖cb � K and ‖φt
2‖cb � K, where φt

2(b, a) = φ2(a, b).
Now consider any ε > 0. For the w∗-open sets

{θ ∈ B1(CB(V ∗∗ × W ∗∗, C)) : |(θ − φ1/K)(u)| < ε}

and

{ζ ∈ B1(CB(W ∗∗ × V ∗∗, C)) : |(ζ − φt
2/K)(ut)| < ε},
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using Lemma 2.6 we get Φ1 ∈ CBσ(V ∗∗ × W ∗∗, C) and Φ2 ∈ CBσ(W ∗∗ × V ∗∗, C) with
‖Φj‖cb � 1, j = 1, 2, such that

|φ1(u) − KΦ1(u)| < Kε, |φt
2(u

t) − KΦ2(ut)| < Kε, (2.1)

which further give

|φ1(u) − KΦ1(u)| < Kε, |φ2(u) − KΦt
2(u)| < Kε. (2.2)

Now Φ1 and Φ2 both are j.c.b., being c.b.. Also Φt
2 is a separately w∗-continuous j.c.b.

form on V ∗∗ × W ∗∗ with ‖Φt
2‖jcb = ‖Φ2‖jcb, so Φ = Φ1 + Φt

2 is a j.c.b. map. Let ψ1, ψ2

be the restrictions of Φ1 and Φt
2 to V × W , then these are j.c.b. bilinear maps. Thus, by

the definition of χ, Φ1 = χ(ψ1), Φt
2 = χ(ψ2). Set ψ = ψ1 + ψ2. Then ψ is a j.c.b. bilinear

map and thus it is a continuous linear functional on V ⊗̂ W with ‖ψ‖ � 2. Further,

µ(u)(ψ) = χ∗i(u)(ψ) = i(u)(χψ) = (χψ)(u) = Φ(u)

which, along with (2.2), give ‖µ(u)‖ � 1/2K. �

Remark 2.8. If the extension of [19, Conjecture 0.2′] is true for Mn-valued bilinear
functions, which is not known to us, then we can prove that µ is completely bounded.
Indeed, if the conjecture were true, then, using the same argument as that in the proof
of Proposition 2.3, one can prove that for exact operator spaces V and W every j.c.b.
bilinear map u : V × W → Mn can be extended uniquely to a separately w∗-continuous
j.c.b. bilinear map ũ : V ∗∗ × W ∗∗ → Mn such that ‖ũ‖jcb � 2K‖u‖jcb, for some constant
K independent of n. Now, to show that µ is completely bounded, it is sufficient to show
that χ is completely bounded, and in that case ‖µ‖cb � ‖χ‖cb. Note that, for n ∈ N, we
have the following commutative diagram:

Mn(J CB(V × W, C))
χn ��

i

��

Mn(J CB(V ∗∗ × W ∗∗, C))

i′

��
J CB(V × W, Mn)

χ′
�� J CB(V ∗∗ × W ∗∗, Mn)

In the above diagram, ‖χ′‖ � 2K, K being independent of n, and both i and i′ are
complete isometric isomorphisms. So ‖χn‖ � 2K, and this is true for all n ∈ N. Thus, χ

is completely bounded with ‖χ‖cb � 2K.

For C∗-algebras A and B, using Proposition 2.5 and the techniques of Theorem 2.7,
one can prove the following.

Theorem 2.9. For C∗-algebras A and B, there is a canonical bi-continuous embedding
µ of A∗∗ ⊗̂ B∗∗ into (A ⊗̂ B)∗∗ that satisfies

1
2‖u‖ � ‖µ(u)‖ � ‖u‖, ∀u ∈ A∗∗ ⊗̂ B∗∗.
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As an application of the above result, we prove an equivalence between the Haagerup
norm and the operator space projective norm for tensor product of C∗-algebras. This
result has already been proved by Kumar and Sinclair [18, Theorem 7.4]. However, we
use a different and rather simple technique to prove the same result. We first need the
following easy result dealing with the injectivity of the projective norm.

Lemma 2.10. If A0 and B0 are both finite-dimensional C∗-subalgebras of the
C∗-algebras A and B, then A0 ⊗̂ B0 is a closed ∗-subalgebra of A ⊗̂ B.

Proof. Since A0 and B0 are both finite-dimensional C∗-subalgebras of A and B, there
are conditional expectations P1 and P2 from A and B onto A0 and B0, respectively, with
‖P1‖cb = ‖P2‖cb = 1 (see [3, Example II.6.10.4]). It can be easily seen that ‖P1 ⊗̂ P2‖ � 1
and for the inclusion map i : A0 ⊗̂ B0 → A ⊗̂ B, the composition (P1 ⊗̂ P2)◦ i agrees with
the identity map on A0 ⊗ B0. So for any element x ∈ A0 ⊗ B0,

‖x‖A0 ⊗̂ B0
= ‖((P1 ⊗̂ P2) ◦ i)(x)‖A0 ⊗̂ B0

� ‖i(x)‖A ⊗̂ B

� ‖x‖A0 ⊗̂ B0
.

Hence, i is an isometry, giving A0 ⊗̂ B0 as a closed subalgebra of A ⊗̂ B. �

Recall that a C∗-algebra A is said to be n-subhomogeneous if each irreducible repre-
sentation of A has dimension less than or equal to n, and subhomogeneous if it is n-sub-
homogeneous for some n ∈ N. It is known that a C∗-algebra A is n-subhomogeneous if
and only if A∗∗ does not contain a C∗-subalgebra isomorphic to Mn+1.

Theorem 2.11. For C∗-algebras A and B, the Haagerup norm ‖ · ‖h is equivalent to
the operator space projective tensor norm ‖ · ‖∧ on A ⊗ B if and only if either A or B is
finite dimensional, or A and B both are infinite-dimensional and subhomogeneous.

Proof. Let us assume that A and B are both infinite dimensional, and

‖x‖∧ � c‖x‖h, ∀x ∈ A ⊗ B,

for some constant c, that is, the canonical map j : A ⊗h B → A ⊗̂ B is continuous with
‖j‖ � c. We first claim that

‖x∗∗‖∧ � 2c‖x∗∗‖h, ∀x∗∗ ∈ A∗∗ ⊗ B∗∗.

In other words, the identity map J : A∗∗ ⊗ B∗∗ → A∗∗ ⊗̂ B∗∗ is continuous with respect
to the Haagerup norm. Using Theorems 2.9 and 2.2, we have a bi-continuous canonical
embedding µ : A∗∗ ⊗̂ B∗∗ → (A ⊗̂ B)∗∗ and a canonical completely isometric embedding
ζ : A∗∗ ⊗h B∗∗ → (A ⊗h B)∗∗, respectively. For any a∗∗ ⊗ b∗∗ ∈ A∗∗ ⊗ B∗∗ and f ∈
(A ⊗̂ B)∗, we have

µJ(a∗∗ ⊗ b∗∗)(f) = (χf)(a∗∗ ⊗ b∗∗) = f̃(a∗∗ ⊗ b∗∗),
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where f̃ : A∗∗×B∗∗ → C is the unique separately normal j.c.b. extension of f : A×B → C.
Also

j∗∗ζ(a∗∗ ⊗ b∗∗)(f) = ζ(a∗∗ ⊗ b∗∗)(j∗(f)) = j̃∗(f)(a∗∗ ⊗ b∗∗),

where j̃∗(f) : A∗∗ × B∗∗ → C is the unique separately normal c.b. extension of j∗(f) : A×
B → C. Note that j̃∗(f) is also a j.c.b. extension of f , so, by uniqueness, j̃∗(f) = f̃ , which
gives µJ = j∗∗ζ on A∗∗ ⊗ B∗∗. Using the bi-continuity of µ we get J = µ−1j∗∗ζ, with

‖J‖ � ‖µ−1‖ ‖j∗∗‖ ‖ζ‖ � 2c, (2.3)

which proves our first claim.
Let A∗∗ contain an isomorphic copy (not necessarily unital) of Mn, for some n ∈ N

and let B∗∗ contain a copy of l∞n , both being infinite dimensional. Using the injectivity
of the Haagerup norm and Lemma 2.10, Mn ⊗h l∞n and Mn ⊗̂ l∞n embed isometrically
in A∗∗ ⊗h B∗∗ and A∗∗ ⊗̂ B∗∗, respectively. Let {eij} denote the standard matrix units.
Then, using [18, Lemma 3.1] and (2.3), we have

n1/2 =
∥∥∥∥

n∑
j=1

e1j ⊗ ejj

∥∥∥∥
h

�
∥∥∥∥∑

j

e1j ⊗ ejj

∥∥∥∥
∧

=
∥∥∥∥∑

j

ej1 ⊗ ejj

∥∥∥∥
∧

� 2c

∥∥∥∥∑
j

ej1 ⊗ ejj

∥∥∥∥
h

= 2c.

So A∗∗ cannot contain an isomorphic copy of Mn for n > 4c2, which shows that A is
4c2-subhomogeneous. A similar argument gives that B is also 4c2-subhomogeneous.

The other implication is easy to prove. �

3. Ideal structure of A ⊗̂ B

The operator space projective tensor norm is symmetric, associative and projective but
not injective [10]. For C∗-algebras A and B, A ⊗̂ B is a Banach ∗-algebra with the natural
isometric involution given by ∗ : a ⊗ b → a∗ ⊗ b∗ [16]. This property is in contrast to the
Haagerup norm, where the natural involution on A ⊗h B is an isometry if and only if A

and B are commutative [17]. This section is devoted to a systematic study of the ideal
structure of this Banach ∗-algebra. If K and L are closed ideals of A and B, where A

and B are C∗-algebras, then K ⊗̂ L is a closed ∗-ideal of A ⊗̂ B [16, Theorem 5], which
is termed a product ideal. Allen, Sinclair and Smith [1] proved that sum of two product
ideals in the Haagerup tensor product is again a closed ideal. In this section we discuss
its analogue for the operator space projective tensor product, whose techniques also give
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a shorter proof of [1, Theorem 3.8]. Note that all the results in this section also hold true
for closed ∗-ideals of A ⊗̂ B. Throughout this section A and B denote the C∗-algebras,
unless otherwise stated. We first state an elementary result, a proof of which for the
Banach space projective norm can be found in [15].

Lemma 3.1. If Banach algebras A and B both possess bounded approximate identi-
ties, then for any subcross norm α, A ⊗α B possesses a bounded approximate identity,
where A ⊗α B is the completion of the algebraic tensor product A ⊗ B with respect to
the α norm.

Proposition 3.2. Let I1, I2 and J1, J2 be closed ideals of A and B respectively. Then
I1 ⊗̂ J1 + I2 ⊗̂ J2 is a closed ∗-ideal of A ⊗̂ B.

Proof. By Lemma 3.1 and [16, Theorem 5], it follows that I1 ⊗̂ J1 and I2 ⊗̂ J2 are
closed ∗-ideals, both having bounded approximate identities. Using the fact that sum of
two closed ideals is closed if at least one of them has a bounded approximate identity [7,
Proposition 2.4], we obtain the required result. �

Remark 3.3. The above proposition is also true for the Haagerup norm and Banach
space projective norm. In particular, this gives a shorter proof of [1, Theorem 3.8].

As a direct consequence of Proposition 3.2, we next show that the operator space
projective tensor product is distributive over finite sums of closed ideals.

Corollary 3.4. If Mi and Ni, i = 1, 2, . . . , n, are closed ideals in A and B, respectively,
then

(i) A ⊗̂(
∑n

i=1 Ni) =
∑n

i=1(A ⊗̂ Ni),

(ii) (
∑n

i=1 Mi) ⊗̂ B =
∑n

i=1(Mi ⊗̂ B).

Proof. We shall only prove the first part, and the proof for (ii) follows the same lines.
Using [16, Theorem 5], each A ⊗̂ Ni is a closed ideal of A ⊗̂(

∑
i Ni), so it is easy to see

that

A ⊗̂
( ∑

i

Ni

)
⊇

∑
i

(A ⊗̂ Ni).

For the other containment, note that A⊗(
∑

i Ni) ⊆
∑

i(A ⊗̂ Ni). By [16, Theorem 5] and
Proposition 3.2, A ⊗̂(

∑
i Ni) and

∑
i(A ⊗̂ Ni) are both closed in A ⊗̂ B. So A ⊗̂(

∑
i Ni) ⊆∑

i A ⊗̂ Ni, proving the result. �

We note that Allen et al . proved the analogue of the above result for Haagerup
tensor product [1, Proposition 2.9]. However, their method was more technical. Using
Remark 3.3 and the same argument as in the proof of the above result, a much shorter
and simpler proof can be provided for the same result.

In the case of C∗-algebras, again using Proposition 3.2, we have the following modified
version of [10, Proposition 7.1.7].
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Proposition 3.5. Let A, A1, B and B1 be C∗-algebras. Given the (complete) quotient
mappings φ : A → A1 and ψ : B → B1, the corresponding mapping φ ⊗ ψ : A ⊗ B →
A1 ⊗ B1 extends to a (complete) quotient mapping φ ⊗̂ ψ : A ⊗̂ B → A1 ⊗̂ B1. Further,

ker(φ ⊗̂ ψ) = kerφ ⊗̂ B + A ⊗̂ ker ψ.

Proof. From [10, Proposition 7.1.7], we know that

ker(φ ⊗̂ ψ) = (kerφ ⊗ B + A ⊗ ker ψ)−,

so it is enough to check that

(ker φ ⊗ B + A ⊗ ker ψ)− = ker φ ⊗̂ B + A ⊗̂ ker ψ.

Note that ker φ ⊗̂ B and A ⊗̂ ker ψ are closed ideals of A ⊗̂ B [16, Theorem 5] and they
can be realized as the closure of ker φ⊗B and A⊗ker ψ in A ⊗̂ B. The result now follows
easily using the fact that kerφ ⊗̂ B + A ⊗̂ ker ψ is closed. �

In [14], we proved that the canonical map i : A ⊗̂ B → A ⊗min B is injective. Making
repeated use of this result along with some techniques of Allen et al . [1], we will now
study the ideal structure of A ⊗̂ B in terms of the ideal structures of A and B.

Proposition 3.6. Let I be a non-zero closed ideal of A ⊗̂ B. Then I contains a non-
zero elementary tensor and a non-zero product ideal.

Proof. Let Imin denote the min-closure of I in A ⊗min B, i.e. Imin is the closure of
i(J) in A ⊗min B. Then Imin is a non-zero ideal of A⊗minB [14, Corollary 1], and thus
contains a non-zero elementary tensor [1, Proposition 4.5], say a ⊗ b, which also lies in
I [16, Theorem 6]. Let K and L be the non-zero closed ideals in A and B generated by
a and b. Then clearly I contains the product ideal K ⊗̂ L. �

Theorem 3.7. The Banach ∗-algebra A ⊗̂ B is simple if and only if A and B are
simple.

Proof. Let I be a non-zero closed ideal of A ⊗̂ B. Then, by Proposition 3.6, I con-
tains a non-zero product ideal K ⊗̂ L, where K and L are non-zero ideals of A and B

respectively. But A and B are simple so K = A and L = B. Thus, A ⊗̂ B is simple.
For the reverse implication, assume that A is not simple. Then it contains a non-

trivial closed ideal, say I, which gives rise to a non-zero closed ideal I ⊗̂ B of A ⊗̂ B.
Now Proposition 3.5 gives an isomorphism between the spaces (A ⊗̂ B)/(I ⊗̂ B) and
(A/I) ⊗̂ B, which implies I ⊗̂ B is proper in A ⊗̂ B. Thus, I ⊗̂ B is a non-trivial closed
ideal of A ⊗̂ B, which contradicts the fact that A ⊗̂ B is simple. Similarly, one can prove
that B is simple. �

Theorem 3.8. Let A and B be C∗-algebras with A simple. Then every closed ideal
in A ⊗̂ B has the form A ⊗̂ L for some closed ideal L in B.
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Proof. Let K be a non-zero closed ideal in A ⊗̂ B. By Proposition 3.6, since A is
simple, K contains a non-zero product ideal of the form A ⊗̂ L1, L1 being a non-zero
closed ideal of B. Consider the non-empty family F of closed ideals L of B such that
A ⊗̂ L ⊆ K. Let P = {Li : i ∈ Λ} be a chain in F . Note that, by Corollary 3.4, F is
closed under finite sums. So

J =
{ ∑

finite

xi : xj ∈ Lj , j ∈ Λ

}

is an upper bound of P in F . Thus, by Zorn’s lemma, there is a largest closed ideal
L ⊆ B such that A ⊗̂ L ⊆ K.

Consider the quotient map 1 ⊗ π : A ⊗̂ B → A ⊗̂(B/L) with kernel A ⊗̂ L. Then K̃ =
(1⊗π)(K) is a closed ideal of A ⊗̂(B/L). It is sufficient to show that K̃ is the zero ideal,
as in that case K ⊆ ker(1 ⊗ π) = A ⊗̂ L. If K̃ were non-zero, then it would contain a
non-zero elementary tensor say a ⊗ (b + L) = (1 ⊗ π)(a ⊗ b), where a ⊗ b ∈ K. Let N

be the closed ideal in B generated by b. Since A is simple, K contains the closed ideal
A ⊗̂ N . But A ⊗̂ N is not contained in A ⊗̂ L, which contradicts the maximality of L.
Thus, K̃ is zero ideal and hence yields the result. �

Proposition 3.9. A closed ideal J in A ⊗̂ B is minimal if and only if there exist
minimal closed ideals K ⊆ A and L ⊆ B such that J = K ⊗̂ L.

Proof. Let J be minimal in A ⊗̂ B. By Proposition 3.6, there is a non-zero product
ideal K ⊗̂ L contained in J . Since J is minimal, J = K ⊗̂ L, and it is clear that K and L

must be minimal in A and B, respectively.
Conversely, let K and L be minimal closed ideals. Then they are both simple C∗-

algebras. By Theorem 3.7, K ⊗̂ L is simple and thus contains no proper non-zero closed
ideal of A ⊗̂ B. Hence, it is minimal. �

Theorem 3.10. A closed ideal J is maximal in A ⊗̂ B if and only if there exist maximal
closed ideals M in A and N in B such that

J = A ⊗̂ N + M ⊗̂ B.

Proof. Let M and N be maximal ideals of A and B respectively. Note that, by
Proposition 3.2, J = A ⊗̂ N + M ⊗̂ B is a closed ideal of A ⊗̂ B. Also if π1 : A → A/M

and π2 : B → B/N are quotient maps, then by Proposition 3.5 J is equal to ker(π1 ⊗π2),
and there is an isomorphism between (A ⊗̂ B)/J and (A/M) ⊗̂(B/N). By Theorem 3.7,
(A ⊗̂ B)/J is a simple Banach*-algebra. Thus, J is maximal in A ⊗̂ B.

Conversely, let J be a maximal ideal of A ⊗̂ B. Let Jmin be the min-closure of J in
A ⊗min B. Then Jmin is a non-zero closed ideal of A ⊗min B [14] and it is proper since
Jmin = A⊗minB would imply J = A ⊗̂ B [16]. Let π : A⊗minB → B(H) be an irreducible
representation annihilating Jmin. Since the canonical map i : A ⊗̂ B → A ⊗min B is a
bounded ∗-homomorphism, we get a ∗-representation π̃ = π ◦ i of A ⊗̂ B on H such that
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π̃(J) = {0}. By [23, Lemma IV.4.1], there exist commuting representations π1 and π2 of
A and B on H, respectively, such that π̃(a ⊗ b) = π1(a)π2(b) for all a ∈ A, b ∈ B. Let
M = ker π1, N = ker π2 and I = A ⊗̂ N +M ⊗̂ B. Clearly, π̃(M ⊗̂ B) = {0} = π̃(A ⊗̂ N),
which gives π̃(J + I) = {0}. So J + I is a proper ideal of A ⊗̂ B, which by maximality of
J gives I ⊆ J . For the reverse inclusion, using Proposition 3.5, there is a quotient map
q : A ⊗̂ B → (A/M) ⊗̂(B/N) with kernel I. It is sufficient to show that q(J) = {0}. Now,
the representations π1 and π2 induce faithful commuting representations π̃1 of A/M

and π̃2 of B/N on H. Using [23, Proposition IV.4.7] and the fact that the canonical
map i : A ⊗̂ B → A ⊗max B is a bounded ∗-homomorphism, there exists a representation
π0 of (A/M) ⊗̂(B/N) on H such that π0(x ⊗ y) = π̃1(x)π̃2(y) for all x ∈ A/M , y ∈
B/N . It is easy to verify that π̃ and π0 ◦ q agree on A ⊗ B, which by continuity gives
π0(q(J)) = 0. Now, π is an irreducible representation, so π̃1 and π̃2 are both faithful
factor representations with commuting ranges. Using [23, Proposition IV.4.20], π0 is
faithful on (A/M) ⊗ (B/N), so it is faithful on (A/M) ⊗̂(B/N) [14, Theorem 2]. Thus,
q(J) = 0. Finally, since (A ⊗̂ B)/J is isomorphic to (A/M) ⊗̂(B/N), using Theorem 3.7,
it is easy to see that M and N are maximal in A and B, respectively. �

Finally, we obtain a complete picture of the lattice of closed ideals of B(H) ⊗̂ B(H).

Theorem 3.11. The only non-trivial closed ideals of B(H) ⊗̂ B(H) are

K(H) ⊗̂ K(H), B(H) ⊗̂ K(H), K(H) ⊗̂ B(H) and B(H) ⊗̂ K(H) + K(H) ⊗̂ B(H),

H being an infinite-dimensional separable Hilbert space.

Proof. It is known that K(H) is the only non-trivial closed ideal of B(H), so, using
Proposition 3.9 and Theorem 3.10, we have

K(H) ⊗̂ K(H) and B(H) ⊗̂ K(H) + K(H) ⊗̂ B(H)

as the unique minimal and maximal closed ideals of B(H) ⊗̂ B(H), respectively. Now,
consider any non-trivial closed ideal K of B(H) ⊗̂ B(H). Using Proposition 3.6 and the
fact that any proper closed ideal in a ring with unity must be contained in some maximal
ideal, we note that

K(H) ⊗̂ K(H) ⊆ K ⊆ B(H) ⊗̂ K(H) + K(H) ⊗̂ B(H). (3.1)

Let us write I = B(H) ⊗̂ K(H) and J = K(H) ⊗̂ B(H). We first claim that

K ∩ (I + J) = K ∩ I + K ∩ J. (3.2)

Consider any x ∈ K ∩ (I + J). By Lemma 3.1, [15, Lemma 1.4.9] and Proposition 3.2,
I + J has a bounded approximate identity. So, using Cohen’s factorization theorem [6],
there exist y, z ∈ (I+J) such that x = yz, and z belongs to the closed left ideal generated
by x. Thus, z ∈ K, which further gives x ∈ K ∩ I + K ∩ J . The other inclusion is easy
to prove.
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Now K ∩ I and K ∩ J are (non-zero) closed ideals of I and J respectively, so, using
Theorem 3.8, we can write

K ∩ I = L ⊗̂ K(H) and K ∩ J = K(H) ⊗̂ M, (3.3)

where L and M are either B(H) or K(H). Using (3.1)–(3.3), we have

K = L ⊗̂ K(H) + K(H) ⊗̂ M,

which proves the result. �
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