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1. Introduction. The algebra of bounded analytic functions on the open 
unit disk D, usually written Hco

i is a commutative Banach algebra under the 
supremum norm. Since its compact maximal ideal space M (space of complex 
homomorphisms) is an extension space of the unit disk, there must be a 
continuous mapping form (3D, the Stone-Cech compactification of D, onto M. 
R. C. Buck has remarked (4), that this mapping fails to be one-one, in the 
light of a classical theorem of Pick. If the points of /3D are represented by 
filters of subsets of J9, we can identify those filters which are sufficiently close 
in terms of the hyperbolic metric on D in an attempt to get a one-one corres­
pondence between filters and points of M. This attempt is successful in certain 
instances. In §3, it is shown that any homomorphism in the closure of an 
interpolating sequence corresponds to only one such filter. In §§4 and 5, 
respectively, two subsets of M are defined which can be approached in a natural 
fashion by two different types of non-Euclidean rigid motions on D. The 
correspondence is one-one on each of these. In §7 examples are constructed of 
homomorphisms for which this correspondence fails to be one-one. These 
include all Silov boundary homomorphisms, as well as an example off the 
boundary. In §6 we construct analytic mappings T/> from D into the maximal 
ideal space, generalizing the discussion of I. J. Schark (13). Professor Kenneth 
Hoffman has kindly shown us some of his recent work with similar mappings, 
and has related this work to the mappings \j/y giving a result quoted at the end 
of §6. This result applies to earlier sections, showing that it is exactly the 
homomorphisms in the closure of an interpolating sequence which correspond 
to a unique filter of the type mentioned above. 

This paper is a portion of a doctoral thesis, submitted to McMaster 
University. The author is happy to express his gratitude for the generous 
assistance of his supervisor, Professor B. Banaschewski, in the preparation 
of this thesis. 

2. Star filters. Because the evaluation mappings, z-+f(z) fo r / G H"0, give 
complex homomorphisms for each z Ç D, we have a copy of D inside M. 
This is called A, and is topologically equivalent to D. For a discussion of this 
and of other properties of i^°°, the reader is referred to the last chapter of 
Hoffman (10). Carleson (7) has shown that A is dense in M. Hence there must 
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A FILTER DESCRIPTION 735 

be a continuous mapping 6 from fiD onto M, which is a homeomorphism onto 
A when restricted to D : 

The points of PD are in 1-1 correspondence with maximal closed filters on D. 
By maximal closed filters we mean filters that are closed (generated by closed 
sets) and are maximal among such filters. We see this correspondence by 
comparison with (8), where Gillman and Jerison demonstrate, for completely 
regular X, a 1-1 correspondence between points of /3X and maximal filters of 
zero sets on X. In the metric space D, every closed set is a zero set, so Gillman's 
filters are just the restrictions of maximal closed filters to the lattice of closed 
subsets of D. 

Hœ is a closed subalgebra of C(D), the algebra of all bounded continuous 
functions on D with supremum norm. The maximal ideal space of C(D) is 
(3D, and each complex homomorphism <j> in /3D is an evaluation <j>\ f —> Hm/(U) 
for / Ç C(D), where U is the maximal closed filter corresponding to </>. 6 is the 
mapping between the two maximal ideal spaces induced by the injection of Hœ 

in C(D), and is just the restriction of Hœ of homomorphisms of the larger 
algebra. Hence every homomorphism of Hœ has the form 

(1) / - > l i m / ( U ) , f£H°>, 

where U is some maximal closed filter on D. 
The hyperbolic distance h(z, w) and the pseudo-hyperbolic distance ip{z, w) 

between points z and w of D are defined by 

\P(z, w) = 
z — w \ , /7 / NN r = tanh(Ms, w)); 
1 — zw I 

see (5) for a discussion of the hyperbolic metric, and (9) for the following 
classical result. 

THEOREM OF PICK. Suppose f is a holomorphic function mapping the unit 
disk D into itself. Then for arbitrary z and w in D. 

h(f(z),f(w)) <h(z,w). 

This means that 6 will not be 1-1, for any two maximal closed filters whose 
sets are arbitrarily close in the hyperbolic metric must give the same homo­
morphism of Hœ. 

The following identification suggests itself. For any maximal closed filter 
U on D, we define a *-filter U* by taking as basis all hyperbolic e-neighbour-
hoods of the sets in U. If we define for any subset A of D 

N(A, e) = {z Ç D\\p(z, w) < É for some w £ A], 

then U* is the filter generated by the collection 

\N(A,e)\A € U , 6 > 0 } . 
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PROPOSITION 1. For each maximal closed filter U on D, and each J G Hœ, 

l im / (U*) exists. 

Proof. We can restrict the proof to functions / with | | / | | < 1, since every 
function in IT0 is a scalar multiple of such a function. Le t l i m / ( U ) = a, and 
take any positive number e. Choose a set A G U with \f(z) — a\ < e/2 for 
z G A. For any point w G N(A, e/2), there exists a point z £ A with 
A(w, z) < e/2. Now 

|/(«>) - a\< \f{w) - f(z)\ + \f(z) -a\<e 

since, by Pick's theorem applied t o / , 

\f(w) ~ /(*)l < A ( / W , / (*)) < h(w, z) < e/2. 

I t therefore follows t h a t l i m / ( U * ) exists and equals l i m / ( U ) . 

COROLLARY. The filter U* determines a homomorphism of Hœ given by 
f —»/(U*) for f G Hœ. Every homomorphism of Hœ can be represented in this way. 

W e exhibit in later sections subsets of M on which each homomorphism is 

determined by exactly one of these ^-filters. 

PROPOSITION 2. Each maximal closed filter U contains one and only one 
*-filter U*. / / U* and V* are distinct *-filters, then there exist a positive constant e 
and sets A Ç U and B Ç V with \p (a, b) > e whenever a G A, b G B. 

Proof. T h e proof is given in a series of s teps; it depends largely on the 
simple proper ty (i) of ^-filters. We write CI(^4) for the closure of a set A. T h e 
filters U and V are always assumed to be maximal closed. 

(i) For any A G U, and a rb i t ra ry e, N(A, e/2) and C1(7V(^, e/2)) belong 
t o U * . 

(ii) U* C U. This holds because U* is generated by sets N(A, e) where 
i Ç U , and A C N(A, e) always holds. 

(iii) If U* C V, then U* C V*. Any set B in U* contains a basic set N(A, e) 
from U with A G U. By (i), C = N(A, e/2) also belongs to U* and mus t by 
hypothesis belong to V. This means t h a t N(C, e/2) G V*. Bu t 

N(C, e/2) CN(A,t) CB, 

and therefore B G V*, as required. 
(iv) If U* C V, then V* C U*. W e show, by indirect proof, t h a t V* C U, 

and then the result is obtained by repeat ing the proof of (iii). Suppose V* Çf U, 
and choose a set B G V* — U. W e can take a basic set N(A, e) with A G V, 
having the same property . Indeed the smaller closed set Cl[iV(^4, e/2)] is also 
in V* — U. Using the fact t h a t U is a maximal closed filter, we can find a set 
C G U, with Cl[N(A, e/2)] r\ C = 0. T h e disjointness of these last sets 
easily implies N(A, e/8) H N(C, e/8) = 0. T h e first of these is in V*, and the 
second is in U*, a contradiction. 
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T h e first assertion of Proposition 2 follows from (ii) and from the combina­
tion of (iii) and (iv). The second follows from (v) and (vi). 

(v) If U* ^ V*, then U* and V* are incompatible. Suppose this is false; 
t ha t is, suppose distinct filters U* and V* exist, bu t t ha t any two sets from these 
have a non-empty intersection. I t will then be possible to choose an ultrafilter 
F i above both U* and V*. If we form the closed filter F 2 by taking as basis 
the closures of all the sets in F i , then this filter will still contain both ^-filters. 
This follows from (i), which says t ha t every set in a *-filter contains a closed 
member of the filter. Take now any maximal closed filter F above F 2 . We have 
U* C F , and by (iii) and (iv) this means t ha t U* - F*. Likewise V* = F*, 
and this gives the contradiction U* = V*. 

(vi) If U* and V* are incompatible, then we can find sets A G U and B G V, 
and positive e, such t h a t \f/(a, b) > e whenever a G A and b G B. We can let 
the disjoint sets from U* and V*, guaranteed by imcompatibil i ty, be basic 
sets of the form N(A, e) and N(B, e) for sufficiently small e, where A G U 
and B G V. 

I t is clear t h a t we can choose the sets A and B of Proposition 2 to lie in U* 
and V* respectively for some e > 0. 

We make a few remarks on terminology. For any maximal closed filter U, 
we say t ha t the homomorphism 

«urZ-lim/CU), /G #œ, 

is determined by U, or corresponds to U. We frequently use the fact t h a t </>(/) 
mus t be in the closure of f(A) if A is a set in U. We say t h a t we can separate 
two *-filters U* and V* if we can find / G Hœ with <ftj(/) ^ <£v(/)> which is 
possible if and only if the two filters determine different homomorphisms. 

The set M can be divided into fibres 

Ma = {0 G M : 0 ( z ) = a} 

of homomorphisms "above" any point a in the closed uni t disk D. Each 
maximal closed filter U on D mus t converge to some point a in D, and this 
means t h a t $u G M a . Since M a has jus t one point for \a\ < 1, interest centers 
on the homeomorphic space M« for \a\ = 1 . 

Let M* be the set of all *-filters in the quot ient topology of (3D. This can 
be characterized as the largest compact Hausdorff extension space of D in 
which the embedding D —• M * is uniformly continuous in the hyperbolic 
metr ic ; for a discussion of such mat ters , see (1 and 12). 

3. I n t e r p o l a t i n g h o m o m o r p h i s m s . A sequence (zn) of dist inct points in D 
is called an interpolating sequence if there is a function in Hœ to interpolate 
the value wn at znj n = 1, 2, 3, . . . , for an arbi t rary bounded sequence (wn). 
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The condition 

(O 
CXD 

n 
71=1 

%n Zm 

The condition 

(O 
CXD 

n 
71=1 

1 Zn Zm 
> 8> 0, m = 1,2,3, . . . , 

where 8 is a constant independent of w, is necessary and sufficient for (zn) 
to be an interpolating sequence. 

We say that a filter is interpolating if the set of points in some interpolating 
sequence belongs to it. If a homomorphism is determined by an interpolating 
maximal closed filter, it is said to be an interpolating homomorphism. 

Any sequence (zn) of points in D satisfying the condition 

£ (1 - \zn\) < » 

determines a bounded analytic function B, called a Blaschke product: 

B(Z) = n -h-fz^ 
Ti—1 \^n\ J- %n 

These notions are discussed fully in (10), 

zn — z_ 
z ' 

LEMMA 1. / / B(z) is the Blaschke product of a sequence (zn) satisfying the 
condition (C), and if e > 0 is given, there exists a constant <50 depending only on 
8 and e such that \B(z)\ > 80 whenever \j/(z, zn) > efor all n. 

Proof. We first prove the following property of D, where all distances 
\[/(z, zf) referred to are pseudo-hyperbolic. An integer N exists, depending only 
on e, such that from any infinite sequence of points of D distant at least e 
from the origin, one can extract a finite subset with at most N members, such 
that every other point of the sequence is at least as close to one of these as to 
the origin. To do this it is sufficient to find an absolute constant 60 > 0 such 
that for any point A in D with modulus a, we have ^ (P , (A) < ^ (P , 0) for 
any point P lying outside the circle 

(1) x2 + y2 = a2 

and satisfying |arg(P) — arg(^4)| < 60. 
To show the existence of 0O, we assume A is the point (a, 0) and draw the 

neighbourhood {P' £ D: ip(P', A) < a}, a circle with centre (a / ( l + a2), 0) 
and radius a / ( l + a2). We intersect this circle, whose equation is 

/o\ 2 2ax 2 n 

(2) x - Y^T^ + y = °> 
with (1) to obtain points R and Q. The co-ordinates (x0, ^0) of R satisfy 

yo _ V[(5 + a 2 ) ( 3 - a 2 ) ] 
xo Vl(l+a2)(l+a2)]' 

which is bounded away from zero when a is allowed to range. Hence the angle 
ROQ > 2#o for some constant 60. 
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To prove that 0O has the required property, take any point P outside (1) 
and within the angle 20o about OA. The circle through P , centred at the origin 
has the equation x2 + y2 = b2. Let B be the point (6, 0) and let C be a point 
where the circle x2 + y2 = b2 meets the circle {P' G D: \p{P'y B) = b}. To 
show that i*(P,A) < ^ (P , 0) , it is sufficient to show that yp(C, A) < ^(C, 0) . 
However, 

b = MC,0) =HC,B) >MC,A), 

where the concluding inequality is evident when we draw the neighbourhood 
[P' e D] \P(P\ C) < b] and observe that A lies inside it. 

We next take any point z0 g D with ^(s0, zn) > e, n = 1, 2, 3, . . . , and by 
a suitable non-Euclidean rigid motion T move z0 to the origin. Denote by 
zn

f the point Tzn for w = 1 , 2 , . . . and let P ' be the Blaschke product on the 
points zn'. Since B(z) = Bf (Tz) holds in general, we must show that 
|P'(0)| > ôo. Because T is a rigid motion, we have that zn' is ^-distant from the 
origin by at least e for each n, and also that (C) is satisfied by the sequence 
(zn

f). Thus 
i Zn 

n 1 2W, S m 

If the sequence is rearranged so that every member is as close to one of 
Zi,Z2, . . . , zN' as to the origin, then we can make a partition of the set of 
integers {N + 1, N + 2, N + 3, . . .} into sets Alf A2, . . . , AN satisfying the 
condition: n Ç At implies ^ (z / , z/) < ^ (2 / , 0). We obtain 

l-B'(0)| >eNU t(Zn', z,') . . . FI ^(«.'. **') 
neAi neAn 

> (ed)N = ôo. 

Note that 5o does not depend on the sequence (zn) of points given, but only on 
the value of 6 used in (C). 

THEOREM 1. Each interpolating homomorphism of Hœ is determined by a 
unique *-filter. 

Proof. Suppose the maximal closed filter U contains the set A = {si, z2, z$,...}, 
where (zn) is an interpolating sequence. We construct the Blaschke product 
F Ç Hœ with zeros zn, n = 1 ,2 , . . . . Take any e > 0 and construct hyperbolic 
€-neighbourhoods iVi, N2l iV3, . . . about the points Zi, %2, By Lemma 1, 
F is bounded away from zero on the set 

D- \J Nt. 

This will be sufficient to prove the theorem, for if V* is a *-filter different from 
U*, we can, for some t, find sets A' 6 U and B Ç V with \p(z, b) > e whenever 
a £ A' and b G B. We can, by intersection with A if necessary, have A' C A. 
The function P will separate the filters; we know that <t*\j(F) = 0 and we have 
(t>y(F) 5* 0 because F is bounded away from zero on the set B Ç V. 
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4. N o n - t a n g e n t i a l h o m o m o r p h i s m s . A hypercycle is the restriction to D 
of some circle which meets the uni t circle Y in exactly two points a and fi. 
In the hyperbolic geometry, any two hypercycles through a and /3 are curves 
a t a cons tant distance from each other. 

We say t h a t a filter on D converging to a G r is non-tangential if and only 
if two hypercycles through a and —a can be chosen, along with a set from the 
filter which lies between them. Any </> £ M a is called a non-tangential homo-
morphism if and only if <£ = </>u for some non-tangential maximal closed filter 
U converging to a. 

Let N a be the subset of M a consisting of all these non-tangent ia l homo­
morphisms, and let N = W a e r N t t. T h e results in this section lead 
to the following theorem about N . 

T H E O R E M 2. Each non-tangential homomorphism is determined by a unique 

*-filter. 

I t is sufficient to prove results for a part icular value of a, say a = 1. Let C 
be the family of hypercycles through —1 and 1. T h e te rms " a b o v e " and 
' 'below" are used in the obvious geometric sense. 

PROPOSITION 3. If the filter U* is non-tangential and converges to a = 1, 
there exists Co € C with the following property: For completely arbitrary C\ 6 C 
above C0, and C2 £ C below Co, some set from U* lies between C\ and C2. 

Proof. U is a maximal closed filter. T a k e F £ U and C £ C. Let Fi be the 
closed set of those points of F which lie above or on C, and F2 the closed set 
of those points below or on C. F = Fi \J F2, and by the maximali ty of the 
filter, either F\ £ U or F2 G U. In the former case, we say the filter lies above, 
in the la t ter case below, the circle C. One of these mus t hold. If a filter lies 
above [below] any member of C, then it is in the same relation to any lower 
[higher] member of C. Since U* is non-tangential , it and therefore U will lie 
below some member of C and above some member of C. From these propert ies 
we infer the existence of some C0 G C such t h a t U lies below any circle which 
is above Co, and above any circle which lies below C0. Because of the relation 
between the family C and the hyperbolic metric, we can make the same 
assertion abou t U*. 

We see in the above proof t h a t a filter U is non-tangential if and only if U* 
is non-tangential . Wi th each circle C G C, we associate the positive angle k 
between the upward vertical and the inward-directed tangent to C, both 
taken a t a = 1. We have 0 < k < ir. For each non-tangential U* converging 
to a = 1, we let the angle of approach to a = 1 be the k of its circle C0. T h e 
remaining ^-filters converging to a = 1 mus t either lie above every member 
of C, or below every member of C; we assign the values k = 0 and k = w to 
the two cases respectively. 

PROPOSITION 4. If U* and V* have different angles of approach to a = 1, then 

0U ^ 0V-

https://doi.org/10.4153/CJM-1965-075-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-075-3


A FILTER DESCRIPTION 741 

Proof. I t is sufficient to construct a function h £ Hœ such that \4>u(h)\ = ek, 
if the filter U* has angle of approach k to a = 1. Take the harmonic function 
(TT/2) — arg w in the right half ^-plane, and map conformally onto D with 
z = (w — l)/(w + 1). The image function u is constant on each member 
of C; the value on any circle C is the k associated with the circle. Let v be the 
harmonic conjugate of u, and set h = exp(u + iv). Then h £ Hœ, and on the 
circle C, \h\ = ek. If U* is non-tangential and is associated with the circle C 
in the manner of Proposition 3, then it is easily seen that |$uWI = #*» since 
the sets of U can be made to lie between circles arbitrarily close to C. For 
filters U* with k = 0 , we can for each e > 0 choose A G U above a high 
enough circle of C to make u < e on A, which means that <j>\j(h) has modulus 1. 
A similar argument holds for k = T. 

From this proposition, it is obvious that non-tangential homomorphisms 
are determined only by maximal closed filters which are non-tangential. We 
also have 

COROLLARY. N« is an open subset of Ma. 

Proof. For the function h used in the proposition, 

N« = {0 6 M«: l < \h{4>)\ <e«} 

must be an open subset of Ma. Here h is the image of h under the Gelfand 
representation, with h(<j>) = <t>(h)\ it is just the extension of h to all of M, if 
we identify D and A. 

We consider now the case of two different *-filters, U* and V*, both of which 
are non-tangential and approach a = 1 along the same hypercycle C0. There 
exist sets A G U*, B 6 V*, along with a positive constant which we take to be 

FIGURE 1 

https://doi.org/10.4153/CJM-1965-075-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-075-3


742 A. KERR-LAWSON 

8e, such that ^(a, b) > 8e whenever a G A, b G B. Take two circles C\ and C2 

from the family C which are equal pseudo-hyperbolic distances above and 
below Co; this distance is assumed to be less than 2e. A and B can be made to 
lie between C\ and C2. We also restrict A and B to the right half of D. 

I t is next shown that the points of A and B can be separated into a sequence 
of blocks, which consist alternately of points of A and B, tending to a = 1; 
see Figure 1, in which this is illustrated for the special case where Co is the real 
axis. Take the family B of circles orthogonal to the circles of C. In other words 
B is the family of circles with centre on the real axis, and orthogonal to the 
unit circle V. The restrictions of these circles to D are straight lines in the hyper­
bolic geometry, and are orthogonal to the members of C. Each point of A lies 
on a circle from B which determines some point of intersection on Co. The set 
Ao of these points of intersection is called the trace of A on Co. A similar set 
Bo is defined, and we readily see that the two sets are separated in the pseudo-
hyperbolic metric. Thus 

lKa,0) > 4 e fora G AQ, £ G B0. 

We introduce an order relation on Co: a is greater than b if it is closer to 
a = 1. In the diagram, this is the natural ordering of the reals. We use the 
appropriate notation: [a, /3] denotes the closed subarc of C0 joining a and £, 
and we take infima and suprema of subsets of Co using the given ordering. 
Start from the left and move towards a = 1. Suppose without loss of generality 
that b± = inf{/3 : 0 G B0} is smaller than any a £ A0. If b2 is the supremum 
of the set of points in B0 which are less than each point of A0, then b± < b2. 
Let a2 = inf{a : a G A0}. Then b2 < a2. In fact we can choose points ($ Ç B0 

and a G A0 arbitrarily close to b2 and a2, which means that \p(b2, a2) > 4e and 
b2 < «2- Define a% to be the supremum of those points of A 0 less than each point 
in Bo, excluding those in [ôi, b2]. We continue in this way; b$ is the infimum of 
Bo after [bu b2] has been removed, and b± is the supremum of those fi Ç B0 

which are less than any a G A0 with a > b%. We obtain the following: 

bi < b2 < a2 < a3 < 63 < b± < a± . . . , 

^ (a», &n) > 4e for » = 2, 3, 4, . . . , 

£0 C [61, i2] U [bif h] U [i6, W U • • • , 

4̂o C [a2, az] U [a4, a5] W [a6, a7] W . . . . 

We shall make use of this decomposition to find a function in Hœ which separ­
ates the filters U* and V*. 

We assume first of all that U* and V* have angle of approach k = TT/2 to 
the point a = 1. Define a sequence (xn), where xn bisects the gap between 
an and bn. Thus 

Xn > 0, iKo», Xn) = iKô», Xn), fl = 2, 3, 4, 
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We have the inequalities 

\l/(xn, an) > 2e, 4,(xn, bn) > 2e, n = 2, 3, 4, . . . , 

Since 

4e < x//(an, bn) < \[/(an, xn) + \p(bn, xn) = 2\f/(an, xn) = 2\{/(bn, xn). 

Define, in addition, Xi < bi with 

xP(xu h) = 2e. 

We start with circles Ci and C2, and sets A £ U*, i? G V* lying between the 
two circles. At various stages, restrictions will be placed on C\ and C2 which 
bring them closer to C0. When this happens, we restrict the initial A and B 
to the region between the new circles. The restrictions, which we still denote 
by A and B, must also belong to the filters U* and V* respectively. Finally 
sets A and B are obtained which are separated by the function F Ç Hœ: 

F(Z) = n ~^-. 
n=l J- ^n % 

This function takes on real values on the real axis, and is positive on A0, 
negative on B0. It will be shown that F is separated away from zero on these 
sets, and indeed that it separates the larger sets A and B. From this, we obtain 

PROPOSITION 5. Two different ^-filters with angle of approach k = w/2 to the 
point a = 1 give different homomorphisms. 

The proof follows from a sequence of lemmas. 
Take an individual block enclosed by G, C2, and the circles of B through 

an-i and an (n odd) ; see Figure 1. We draw a circle centred at the origin and 
passing through the right-hand corner points of this block. Let an

+ be the point 
where this circle meets the real line. In like fashion we obtain bn

+ for n even. 

FIGURE 2 
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LEMMA 2. Circles d and C2 can be chosen such that 

\P(an,an
+) < e, n = 3, 5, 7, . . . , 

lK6n> 6n+) < €> n = 2 , 4 , 6 , . . . . 

Proof. See Figure 2. Suppose Ci and C2 are given. Corresponding to each 
X, 0 < X < 1, is a point X+ > X obtained as an

+ is obtained from an. We show 
that for suitable d and C2, ^(X, X+) can be made less than an arbitrary positive 
number 5 independent of X. 

The tangent to C\ at a = 1 intersects the circle through X at a point from 
which a perpendicular is dropped to the real axis. Let the distance from the 
foot of the perpendicular to X and t o a = 1 be p and q respectively, and let 6 
be the angle between the real line and the tangent at a = 1. 

As X—* 1, the radius of the circle through X+ approaches 0. At the point 
where the two radii are equal, it is clear that p > (X+ — X)/2; and this 
inequality holds for all larger values of X. Thus there exists X0 such that 

X+ - X < 2p for X > X0. 

Since the angle at the top vertex of the large triangle is always less than 7r/2, 
the angle <t> (marked on the diagram) must be less than 6. Thus 

p = r tan <j> = q tan 6 tan 4> < q tan20, 

X+ - X < 2q tan20 for X > X0. 

Hence 

*(X, X+) = ~=rh < ^ P ^ r < 2 tan20 for X > X„. 
1 — AA 1 — X 

This means that, by choosing d and C2 to give sufficiently small 6, we can 
make ^(X, X+) < ô for X > X0. On the remaining segment, 0 < X < X0, the 
ratio of pseudo-hyperbolic to Euclidean metric is bounded, and since X+ — X 
can obviously be made uniformly small on the interval, we can obtain here 
also the inequality ^(X, X+) < 8. 

The lemma follows for the value ô = e, and we assume henceforth this 
restriction on d and C2. 

In Figure 1, we have enclosed certain points of A in a closed block bounded 
by two circles of C, one circle of B, and one circle centred at the origin. We 
denote by A the union of all such blocks. In addition we define a set 

Ai = [a2, a3+] U [a4, a5+] U [a6, a7
+] U 

Similar sets B and Bi are defined. We easily obtain 

COROLLARY 1. For each z € l U B} ^(z, xn) > e, n = 1, 2, 3, . . . . 

COROLLARY 2. Given rj > 0, circles C\ and C2 can be chosen such that to any 
z G Â [z G B] corresponds c G Ai [c G Bi] with \z\ = c and \{/(z, c) < r]. 
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LEMMA 3. The sequence (xn) is an interpolating sequence. 

Proof. For each n,\f/(xn, xn+i) > e > 0. We show in general that any increas­
ing sequence of reals with this property approaches the boundary exponentially: 

\p{Xn, Xn+i) = T~— — > €, 
-*- Xn-\-i Xn 

1 _ x ( l - e ) ( l - x „ ) 

Hence (1 — #n + i ) / ( l — xn) < 1 — e for all n, and the sequence (xn) is said 
to approach the boundary exponentially. Such a sequence is necessarily an 
interpolating sequence (10, p. 203). This guarantees that F is a convergent 
Blaschke product, and hence defines a function in Hœ. 

In addition, if we combine Lemma 1 with Corollary 1 of Lemma 2, we find 
that there must exist a positive constant p such that 

\F(z)\ > p f o r s U U i 

On the real axis, this gives 

LEMMA 4. F(x) > pfor x G Aly F(x) < —pforx 6 Bi. 

The next lemma is sufficient to give Proposition 5 since it shows, in combina­
tion with Lemma 4, that F separates the sets A and B. 

LEMMA 5. Circles C\ and C2 in C can be so chosen that to every z in A [in B] 
there corresponds c in Ax [in Bi] such that 

\F(z) - F(c)\ < p/2. 

Proof. Set 7] = p/16. We give the proof for A. Circles G and C2 corresponding 
to this value of rj can be selected, according to Lemma 2, Corollary 2, to give 
for each z £ A, a point c G Ai with 

\f/(z, c) < rj and \z\ = c. 

We integrate along the straight line L from c to z, obtaining 

F(z) - F(c) =JLF'(ï)dï. 

We can apply the following inequality to F', since any Blaschke product has 
modulus less than one inside D (5, p. 18): 

for points £ on the line segment L. 
Because we have 

t(?,c) = <V, 
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it is sufficient to show t h a t 

(1) |1 - cz\ < 8(1 - c), 

for then 

\F{z)-F{c)\<T^c-r)-\l-cz\<£. 

We see (1) from Figure 3. T a k e the base P of the perpendicular from the 
point cz to the real axis, and the intersection Q with the real axis of the circle, 

/ 
FIGURE 3 

centred a t 0, which passes through cz. T h e angle <f> is less than 0, and as long 
as 6 < 7T/3, we have sec 0 < sec 6 < 2. PR < 2QR a lways holds, and in fact 
as z - » 1, PR/QR -> 1. Hence 

|1 - zc\ = PR sect < 2 - s e c 0 < 2(1 - c2) 2 < 8 (1 - c). 

W e mus t now extend Proposition 5 to an arb i t ra ry non-tangential approach, 
in order to complete the proof of Theorem 2. 

PROPOSITION 6. Two different ^-filters approaching a = 1 along the same circle 
of approach C0 give different homomorphisms. 

Proof. T w o different non-tangential *-filters, U* and V*, are taken. Sets 
A G U* and B £ V* are obtained, and traces on C0 of these sets, which give a 
sequence 

bi < b2 < a2 < az < bz . . . 

of points on C0 satisfying \p(an, bn) > 4e, for n = 2, 3, . . . , for some e. Recall 
t h a t the sets A and B can be cu t down to lie between a rb i t ra ry members of C 
above and below C0. 

Consider the conformai m a p L: 

(2) z' = L(z) = —%^- , - 1 < c < 1, 
ciz — 1 
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where ci is the intercept of C0 on the imaginary axis. L leaves —1 and + 1 
invariant, and maps C0 to the line segment between these points. Furthermore, 
individual points move along a circle of the family B, and this means that the 
sets A and B map into sets A' and B' similar to the sets which are separated 
in Proposition 5. We have a sequence of points 

bx' < b2' < a2
f < a/ < bz

r . . . , 

the images of the points in the previously mentioned sequence. We are able 
to use the argument of Proposition 5, defining a sequence (xn) of points and 
a function F that separates A' and Bf. The argument requires that A' and Br 

be restricted to the region between twro circles of C above and below the real 
axis; but this means only an appropriate selection of C\ and C2 around Co, 
because every circle through — 1 and + 1 is carried into another with the same 
property. 

To make this method of proof valid, two points must be verified. The 
function F cannot properly be defined unless the points of the sequence satisfy 

*(<**', *»') > e', n = 2 , 3 , 4 , . . . , 

for some positive number e'. This is shown in Lemma 6, and gives a Blaschke 
product F which separates the sets A' and B'. However, we are using the com­
posite function F o L to separate A and B, and we show in Lemma 7 that F is 
bounded and analytic on the set L(D), which is the interior of a finite circle 
passing through —1 and + 1 . 

LEMMA 6. Let C0 be the portion within the open unit disk of some circle passing 
through z = — 1 and z = 1. If L is the bilinear function leaving these two points 
fixed, and mapping Co to the real axis, then 

\f/(L(zi), L(z2)) > k\f/(zi, z2) for arbitrary zu z2 G Co, 

where k is a constant depending on Co. 

Proof. We have only to substitute in the formulae. If ci is the intersection 
of Co with the imaginary axis, we have (2). For Zi, z2 G C0, the numbers 
W\ = L(zi) and w2 = L(z2) are real and 

„ _ W* + Ci „ _ 1 O. 
Zr> — . i -. » n — J. . £ < 

CtWn+11 

1 I 2 // \ 1 + C 

y(zh z2) = -g-
W2 — Wi 

< l - c 2 

1 — wiw2 + [2ci/(l — c~)](wi — w2) 

W2 — Wi 

1 — W\W2 
= T iKWl, W2) 

where k = (1 - c2)/(l + c2). 
In particular, for the given sequences, we have on Co that 

^(flm bn) > 4e when n = 2, 3, 4, . . . . 
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Sett ing t = 4e&, we obtain 

iKo»', W) > e' when n = 2, 3, 4, 

L E M M A 7. G w n a Blaschke product 

oo _ 

*« = n frf-z 
whose zeros form an increasing sequence of reals which is an interpolating sequence, 

then F is bounded and analytic in the interior of any circle passing through — 1 and 

+ 1. 
Proof. T h e function F is defined and analyt ic everywhere in the whole plane 

except for poles a t points l/xn, n = 1, 2, 3, . . . , and for an essential singulari ty 
a t the limit point of these poles, namely a t a = 1. This follows from the Schwarz 
reflection principle, since F is analyt ic with \F\ = 1 everywhere on the unit 
circle except a t a = 1. 

Given a circle C through —1 and + 1 , the function is clearly bounded inside 
C except possibly in the neighbourhood of a = 1. We draw some neighbour­
hood N of this point. T h e boundedness of F is in doubt only in t h a t pa r t of the 
interior of C which lies outside D U T, which we call R. Let R' be the reflection 
of this region, and C the reflection of C in the circle V. T h e values of \F\ 
inside R are jus t the values of \l/F\ in Rr, and hence we mus t prove t h a t F 
is bounded away from zero on the set R'. However, this is an immediate 
consequence of Lemma 1. T h e pseudo-hyperbolic distances from points in 
Rr to points of the sequence (xn) are certainly bounded away from zero. 
If we draw the hypercycle H through —1 and + 1 which is t angent to C and 
a = 1, then the above distances are a t least as great as the cons tant pseudo-
hyperbolic distance between H and the real axis. 

5. Oricycle h o m o m o r p h i s m s . A second subset of M a is here considered, 
consisting of those homomorphisms whose filters approach the point a in a 
fashion similar to the oricycles a t a. A circle inside the uni t disk is called an 
oricycle if it touches the uni t circle a t one point a. T h e family of oricycles 
through a given a, considered in the non-Euclidean geometry, is a family 
of curves equidis tant from each other, like C in the previous section. 

A filter on D converging to some a with \a\ = 1 is called an oricycle filter if 
some member of it lies between two oricycles a t a. A homomorphism 0 G M«, 
\a\ = 1, is called an oricycle homomorphism if there exists a maximal closed 
filter U on D, which is an oricycle filter, such t h a t 0 = 0u. Such homomor­
phisms form a subset of Ma which we call Oa. Le t O = Uaer O a . We prove 
for O the analogue of Theorem 2. T h e a rguments are very similar, with 
oricycles replacing hypercycles. 

T H E O R E M 3. Any oricycle homomorphism of H00 is determined by a unique 
*-filter. 
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The proof follows from Propositions 7 and 8 of this section. We restrict 
our a t tent ion to the fibre a t a = 1. Any maximal closed oricycle filter mus t have 
either a set in the upper half of D or a set in the lower half of D ; this follows 
from the maximali ty of the filter. W e say t h a t U approaches the point a = 1 
from above or from below respectively. In either case, we can argue with the 
family E of oricycles a t a = 1 exactly as we did with the family C. A part icular 
circle C0 of E mus t exist, such t h a t for arbi t rary G and C2 of E inside and 
outside Co, some set of U will lie between G and G . Because the circles of E 
are separated by constant hyperbolic distance, we can argue, as before, t h a t 
the filter U* mus t also have this property. If we assume t h a t U approaches 
a = 1 from above, this set can be assumed to lie in the upper half of D. T h e 
filter is said to approach a = 1 along C0. 

PROPOSITION 7. IfXJisa maximum closed filter approaching a = 1 from above 
along any oricycle Co, then any maximal closed filter V with <£v = <j>\Ta^so has 
this property. The same holds if U approaches a = 1 from below. 

Proof. T h e function g in H"° defined by g(z) = exp((s + l)/(z — 1)) is 
constant in modulus on the circles of E. Following the argument of Proposition 
4, we use this function to separate U* from any *-filter approaching a = 1 
along a different oricycle, or from any non-oricycle *-filter. Also the function h 
of Proposition 4 can be used to separate U* from any *-filter approaching 
a = 1 along the same oricycle, bu t from below. As before, we have : 

COROLLARY. O a is an open subset of M a . 

The remaining problem is to separate different ^-filters U* and V* approach­
ing a = 1 from above along the same oricycle C0. We can proceed as in the 
previous section, this t ime using the family E of oricycles through a = 1 and 
the family F of circles through a = 1 orthogonal to the oricycles. These are 
related to the hyperbolic metric jus t as were C and B, and we construct similar 
sets A and B, lying between two oricycles about C0, which must be separated 
by an Hœ function. 

T o find a separating function, we map D onto the right half of the w plane 
with z = (w — l)/(w + 1). By the argument of Proposition 4, it is sufficient 
to construct a bounded harmonic function on Re(V) > 0, which is positive 
and bounded away from zero on the image of A, and is negative on the image 
of B. Because circles from E and F map into vertical and horizontal lines 
respectively, the sets which must be separated are as follows, where 

bi < b2 < a2 < a3 < 63 • • • 

and where u0 is positive, and rj > 0 is arbitrari ly small: 

Af = {u + iv\ \u — tt0| < y, v G [a2t a3] KJ [a4, ab] \J [a6, a7] U . . . } , 

B' = {u + iv\ \u - u0\ < r],v e [61, 62] W [63,64] W . . . } . 

On any one oricycle, equal hyperbolic distances become equal Euclidean 
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distances on the vertical line which is its image. This means that for all n > 2, 
we have \an — bn\ greater than some positive constant. If we let xn bisect the 
interval between an and bn, we obtain 

\xn — 0»| > Ku0\xn - in | > Kuo, n = 2, 3, 4 , . . . , 

for suitable K. Define Xi = bi — Ku0. 
We use the Poisson formula 

1 f°° u 
h(u + iv) = - H(t) 2 , /, -72 ^ 

7T J _ œ W + (/ — V) 

to obtain the separating function, and to establish 

PROPOSITION 8. If U and V are maximal closed filters approaching a = 1 
/ram afo^e along the same oricycle, and if U* ^ V*, £/^n <£u ^ 0 v 

Proof. We first assume that the sequence (\xn+i — xn\), n — 1, 2, 3, . . . , 
is bounded. Then the function H defined on the F-axis by 

Hit) = ( — l)n for xn < t < xn + Ku0j n even, 

= ( — l)n for xw — Ku0 < t < xnj n odd, 

= 0 otherwise 

will give a harmonic h with the required properties. 
To prove this statement, take a point u0 -{- iv £ A', and let P be the point 

on the F-axis at the same height v. Then P is above iixn + Ku0) and below 
i(xn+i — i£w0) for some even value of n. Suppose the points ixn+i and ixn+2 

are at a distance Lu0 and Li ^0 from P respectively. We consider the contri­
bution to h due to the values of H around these two points. If 

T(x) = (l/7r)arc tan(x), 

this is 

[2T(Lu0/u) - T(iL - K)u0/u) - T((L + K)uQ/u)) 
+ pTiLiUo/u) - r ( ( L i - K)u0/u) - T{{LX + K)u0/u)] 

= 2r - 2ri. 

The quantity 2r — 2rx is positive since L± > L. This follows from the behaviour 
of the second derivative r ; / (x ) , which is negative, and which increases with x. 
Note also that 2r — 2ri is a continuous function of u for u > 0, when the other 
quantities are left fixed. 

All the points of the sequence (ixn) can be paired just as these two have 
been, including the even number lying below P. The contribution due to each 
pair is positive and so h(u + iv) > 0. (In the case of B', a similar pairing into 
negative terms is obtained; there is one term left over at ix\, but the contri­
bution from this single term is also negative.) 

Our hypothesis says that the distance between P and ixn+1 is bounded; 
there exists an absolute constant M such that L < M. We also have 
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Li — L > 2K, and these two conditions give a minimum positive value for 
2r — 2rx for any fixed value of u. For u = u0, let p be any positive number 
that is smaller than this minimum value. This gives us, for any point in A ' of 
the form u0 + iv, the inequality 

h(u0 + iv) > 2r — 2rx > p > 0. 

Because 2r — 2r\ is a continuous function of u at u0, this yields a positive TJ 
such that h(u + iy) > p whenever |w — u0\ < rj and p is as above. Since A' 
can be restricted to lie between the lines u = u0 — 77 and w = ^o + ??, this 
proves that h is bounded away from zero on A'. I t is likewise negative and 
bounded away from zero on B'. 

If we discard the restriction that there is an upper bound for the numbers 
\xn+\ — xn\, n = 1, 2, 3, . . . , the function H which we have defined must be 
supplemented by inserting values at places where the distances between 
ixn+i and ixn become too large. This must be done without disturbing the 
inequalities already proved. 

We continue in the previous setting. Take P between ixn and ixn+i. For 
arbitrary M, we can deal with all points P which are below ixn+i by an amount 
at most Mu0. Similarly, the previous arguments will give the required con­
clusion for any points P at most Mu0 above ixn. Choose M such that 
T(M/2) > 3/8. It is possible to find a neighbourhood of u0 with 
T(Mu0/2u) > 3/8 by the continuity of T at u = u0. Corresponding to this 
value of Mj there will exist p > 0, as in the first part of the proof. For any 
pair ixn and ixn+i separated by more than 2Mu0y we introduce an additional 
amount ( — l)np into the function H between i(xn + Mu0/2) and 
i(xn+1 - Muo/2). 

For P in the interval between ixn and ixn+i for n even, the total additional 
contribution of negative values must come from points outside the interval, 
and is not more in absolute value than 

- r (/l f\ ds = 2?ti - T{Mu,/2)\ < p/4. 
A" •'Muo/2 \U ~\- S ) 

HP lies within a distance Mu0 of ixn or ixn+i, this means h must still be more 
than 3p/4. For the remaining points P between ixn and ixn+i, if any exist, the 
additional values extend at least a distance of Mu0/2 in either direction. This 
gives at least 

cy nMuo/2 o 

- T-2B^ds==2PT(Muo/2)>'f. 
TT Jo (U + S ) 4 

Thus the values on this part for h are at least 3p/4 — p/4 = p/2, and in all 
cases h is at least p/2 on the set A'. 

6. Analytic mappings into the fibres. In the paper of I. J. Schark (13) 
the existence of a non-trivial analytic mapping from the unit disk D into 
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M — D is shown. By analytic mapping, we mean a continuous function 
x// : D —» M, such that / o \p is analytic for each / Ç Hœ (where / is the Gelfand 
extension of/ to M). In Theorem 4 we generalize Schark's example, and give 
an explicit construction for the mapping \p. 

Fix any a on the unit circle T; and for a Ç D, let Sa be the conformai map 
of D onto itself which keeps a fixed and sends the origin to a. The function 

(1) F.:a^>Stt(z) 

is a homeomorphism of D, by inspection of the explicit formula. It need not be 
analytic, but Fz has the property that each point is mapped an equal hyper­
bolic distance h(z, 0). Thus 

h(Fz(a)ya) = h(Sa(z),Sa(0)) = A(*,0), 

because Sa is a non-Euclidean rigid motion on D ; and in fact 

h(Fz(a), Fw(a)) = h(z,w) 

where a, z, w are arbitrary points in D. 
For any i C ^ , and for any filter A of subsets of D, we define 

Az = FZ{A), A2= {AZ:A e A}. 

If A is a maximal closed filter on D, then for each z £ D, Az will also be maxi­
mal closed, and will determine a homomorphism of Hœ 

* , : / - > l i m / ( A , ) , feH-. 

THEOREM 4. Take a homomorphism <£0 in the fibre Ma /or \a\ = 1, and a 
maximal closed filter A which determines </>0. 77^ mapping \p, defined by 
yp(z) = 0Z, is an analytic mapping of D into Ma which carries the origin to </>0. 

Proof. We first show that ^ is continuous at z £ 29. Let 

{tf>eM:|/(tf>z)-/(0)| <«} 

be an arbitrary sub-basic neighbourhood of #2, where / in i7°° can satisfy 
11/11 < 1. Since /(</>2) = l im/(A z) , there exists A Ç A with 

(2) |/(02) - j f (6) | < e/4 for all 6 6 4 , . 

Take the hyperbolic neighbourhood N of s 

iV = {w £ D: h(z, w) < e/4}. 

For any w £ N and c £ Aw, there must exist b (i Az with &(6, c) < e/4. By 
Pick's Theorem 

1/(6) - / ( c ) | < h(f(b),f(c)) < h(b, c) < e /4 . 

Thus we have |f(0z) — /(c) | < t /2 for all c € .4W, which yields 

(3) I/(4>2) - / ( 0 „ ) | < e for all w Ç iV. 
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Because N is also a neighbourhood of z in the ordinary topology, (3) shows 
that \[/ is continuous. 

To show t h a t / o \j/ is analytic, we approximate it uniformly on an arbitrary 
compact subset K of D. By the first part of the proof (again assuming 
11/11 < 1), each z £ K has a neighbourhood N such that w £ N implies that 
\3(<t>w) — f(c)\ < e for all c £ Aw, where A £ A. Taking a finite cover 
Ni, N2, . . . , Nk of K, we obtain sets ^4i, ^42, . • . , Ak in the filter A, and 
defining A = A\ C\ . . . C\ Ak, we have for all w £ K that 

(4) |/(*w) - / ( c ) | < e for all c £ 4„ . 

We now let a be an arbitrary point in A, and restate (4) in the form 

(5) |/(*(«0) - / (S a («0)| < e for all w G # , 

which approximates / o \p by the analytic function / o Sa. 

In the setting of this theorem, the example of I. J. Schark is the following. 
Take any limiting rotation L on the unit disk with fixed point a. This maps 
points of D along oricycles touching Y at the point a. Define the sequence 

(6) Az= {*, L(z), U(z), L*(z), . . . , L*n(z), . . .} , 

and, with a single ultrafilter on the integers, induce a corresponding ultrafilter 
Az on the sequence Az for each z. In this special case, there exists h G Hœ with 
the property that h o \[/ is the identity on D. Using this function, Schark 
deduces that ^ is a homeomorphism, and that its extension to M is an embed­
ding of M in Ma. 

I t is possible to repeat Schark's entire argument using a non-Euclidean 
translation L, which translates points along circles from — a towards a. How­
ever, one must take alternate members of the set Az defined in (6), because 
it is not true this time that both Lm(z) and Lrmiz) tend to a as m tends to 
infinity. This case gives analytic disks in the set of non-tangential homo-
morphisms, just as Schark's analytic disks are in the set of oricycle homo-
morphisms. 

The mapping \p of Theorem 4 is non-trivial whenever </>0 is a non-tangential 
(oricycle) homomorphism, because the filters Az which approach a along 
different hypercycles (oricycles) must give rise to different homomorphisms. 
Similarly yp is non-trivial if $0 is in the closure of an interpolating sequence A. 
If b is the Blaschke product on A, then î(^(0)) = î(0o) = 0; but î(i(z)) ^ 0 
for non-zero z close to the origin (cf. Lemma 1). 

Professor Kenneth Hoffman has shown me some results on i7°° which treat 
mappings similar to \p. These settle many questions about \[/ and shed con­
siderable light on the problems raised in earlier sections. 

Define an equivalence relation between any two homomorphisms <£i and 
02 of M : 

0i ~ 02 if and only if ||0i — 02|| < 2, where the norm ||0i — <f>2\\ is taken 
in the dual space of if00; the equivalence classes are called the Gleason parts 
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of M. Hoffman (11) has shown that the Gleason part P(<t>)f for </> G M, either 
is a single point or there exists a continuous one-one map -K of D onto P (</>), 
with 7r(0) = $, such that / o TT is analytic for each / G i7°°. In other words, 
every non-trivial part is an analytic disk. 

Hoffman has shown me that this recent unpublished work proves the follow­
ing: The mapping \p is a homeomorphism onto the analytic disk P(4>) whenever 
4> is in the closure of an interpolating sequence, and is a constant function 
otherwise. 

Because yp is non-trivial in the non-tangential and oricycle cases, as we 
remarked above, this means that every non-tangential and every oricycle 
homomorphism lies in the closure of an interpolating sequence. Thus Theorem 1 
implies Theorems 2 and 3, if we assume this powerful result. 

Moreover, the converse of Theorem 1 holds. A homomorphism of Hœ is 
determined by a unique *-filter if and only if it lies in the closure of an inter­
polating sequence. To prove this, suppose 0O G M is determined by a maximal 
closed filter A on D. Take an arbitrary neighbourhood N of <£0, which can be 
written 

N = {<£G M:[?,fo)| < e,i = 1,2, . . . , » } , 

where ft G Hœ and fii^o) = 0 for i = 1, 2, . . . , n. If </>0 is not in the closure 
of an interpolating sequence, the mapping \p defined in Theorem 4 will map 
all of D to the single point <£0. We take the compact set 

K = {z: \z\ <r < 1} 

and can choose A G A, which gives an approximation (5) simultaneously 
for the n functions. Thus 

\fi(Sa(w)) -fi&(w))\ < e for w G K and a G A. 

Hence \ft\ < eon the set Sa(K) ; in other words, every neighbourhood N of </>0 

contains an entire disk whose hyperbolic radius can be made arbitrarily large. 
This will allow the construction of different *-filters which determine the same 
homomorphism <£0. 

It is a conjecture, so far unsettled, that every homomorphism of Hœ which 
is not in the closure of an interpolating sequence has a one-point part, which 
would mean that \p(D) = P(<t>) in all cases. 

7. Silov boundary filters. The Silov boundary of Hœ was identified in (13). 
By the classical Fatou Theorem, each / G Hœ has a radial limit 

f(ete) = lim f(rete) 
7->l 

for almost all 0 in 0 < 6 < 2ir. This defines a function in L°° of the unit circle, 
and the injection of Hœ into L°° induces a homeomorphism r of the maximal 
ideal space X of L°° onto the Silov boundary of Hœ. X is a Stone space, and the 
Gelfand representation/—>/is an isometric isomorphism of U° onto C(X). 
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The open-closed sets in X which generate the topology are of the form 

(1) XE= {xtX:XE(x) = 1}, 

where E is any measurable subset of T, and XE is its characteristic function. 
Because the lattice of all open-closed subsets of X is isomorphic to the 

lattice L of measurable sets in T-modulo sets of zero measure, we can set up 
a 1-1 correspondence between points x of X and maximal filters Fz on L. 
The mapping sends x to its neighbourhood filter of basic open-closed sets. 
We note that every set £ in a filter F^ has positive measure, and that if E\ 
differs from E only on a set of zero measure, then E\ also belongs to Fx. 

LEMMA 8. For each y e X, 

g (y) =limg(Fy) forgeL". 

Proof. We show first that the essential values of any g in L°° on a measurable 
subset E of r are precisely the values of g on the basic open-closed set 

XB= {x£ X: XE(X) = 1} = {x e X: XT-E (X) = 0}. 

I t suffices to prove this for the value zero. If k is the essential supremum of g, 
the function 

h = 2kxv-E + g 

agrees with g on the set E, and h has an essential zero on V if and only if g 
has an essential zero on E. This can happen if and only if h is invertible in L°°, 
which is equivalent to saying that % has a zero on X. This zero must be on XE, 
and must be a zero of g also. 

Take g and y in the statement of the lemma; we can assume g(y) — 0. 
For e > 0, we choose an open-closed neighbourhood U oî y with \g\ < e on U: 

U = {x Ç X: XE(X) = 1} = {x G X: E Ç F*} 

for some measurable set E C T. Hence for each x G E, where E G FXJ we have 
\g(x)\ < e, and the essential values of g on E are all of modulus less than e. 
Removing a set of measure zero from E, we obtain \g(a)\ < e for all a G E\, 
where Ei G F^, which proves that lim g(Fx) = 0. 

Using the co-ordinate function z, the space X can be partitioned into fibres 

(2) X?= {xe X: z(x) =0}, |/3| = 1. 

If we take any x G X, the filter Fx on T must converge to some point 13 on T 
by its maximality, and the above lemma tells us that z(x) = lim z(Fx) = p. 
Hence x e Xp if and only if F^ converges to fi. 

We agree to identify X and its homeomorphic image r(X), considering X 
itself as the Silov boundary of Hœ. Noting that the fibres M^ of M are defined 
in the same manner as X$ in (2), we see that 

x& = M ô n x , |/3| = l. 
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We now define a filter Gx on the open disk which determines any given 
homomorphism x in X. Choose a set E in F^, and for each a G E choose a 
completely arbitrary radial line segment {ra : da < r < 1}, where da is strictly 
between 0 and 1. Take the union of these segments and let Ë be its closure in D. 
We now generate a closed filter G* by taking all possible Ë for a given E, and 
then letting E range over Fx. 

THEOREM 5. For each function fin Hœ, and each point x in the Silov boundary X, 

f(x) = lim/(G,). 

Proof. We can assume that f(x) = 0. Let e > 0, and choose a set E in F^ 
such that / (a) is defined and satisfies \f(a)\ < e for a £ E. By Fatou's Theorem, 
there must be a segment {ra : ôa < r < 1} on which |/| < e. Hence there is a 
set E in Gx on which |/| < e. 

It is clear that G*, considered as a filter on the closed disk, must converge 
to (3 if x £ Xp. We next show that many *-filters lie above each Gx. 

THEOREM 6. The set of distinct ^-filters which determine any Silov boundary 
homomorphism has at least the cardinality of f3N, the Cech compactification of the 
integers. 

Proof. Let x £ Xp, and pick a sequence Oi, 02, . . . of oricycles touching Y 
at the point /3. Suppose On+\ is larger than On} and the fixed hyperbolic distance 
between them is independent of n, for n = 1, 2, 3, . . . . Take any ultrafilter 
U on the set N of positive integers, and the filter Gx which determines x. 
For U G U and G a basic closed set in G^, we use the closed sets 6(U) O G to 
generate a filter on D, where 6 is the natural correspondence between integer n 
and oricycle On. If V is any maximal closed filter above this filter, then V* 
will be a *-filter which determines x. Any different ultrafilter on N must give 
a different *-filter, because the points on different oricycles of the sequence 
are bounded away from each other in the hyperbolic metric. 

Hence there is a distinct *-filter for each ultrafilter on the integers, which 
gives the stated cardinality. This cardinal number is actually 

0 2 ^ 0 

as is shown in (1). 
A second example of a homomorphism </> £ M not having a unique *-filter 

is now constructed. This is not in X, but is in the Silov boundary of the homeo-
morphic copy ^(M) of M of the type embedded in M a by I. J. Schark in (13). 
As mentioned after the proof of Theorem 4, this mapping yp sends points of D 
along oricycles into the fibre Ma, and using \p to co-ordinatize the embedded 
disk, we obtain a sequence \l/(On), n = 1, 2, . . . , of oricycles in \p(D). Let <j> 
be any Silov boundary homomorphism of ^(M) which is in the fibre at the 
point where the oricycles \l/(On) meet the boundary of yp(D). By the method of 
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Theorem 6, we can construct different filters V, this time of subsets of the em­
bedded oricycles, which determine <j>. From each filter V, we can construct a 
filter on D which also determines <j> as follows. For each point v — ̂ {z) in V> 
where F G V, we choose an arbitrary set B in the filter Az (discussed in 
Theorem 4). The union of all such B, where v is allowed to range over V, gives 
a set C. A new filter G is generated by taking all sets V £ V, and for each V all 
possible sets C constructed from it. For each filter C, we have lim/(C) = / ($) , 
and two sets from any two different filters C lie on different oricycles of the 
family 0n, which guarantees that they give rise to different *-filters. 
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