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SPECTRAL INTEGRATION 
OF MARCINKIEWICZ MULTIPLIERS 

NAKHLÉ ASMAR, EARL BERKSON AND T. A. GILLESPIE 

ABSTRACT. Let X be a closed subspace of LP(fi), where ^ is an arbitrary measure 
and 1 < p < oo. By extending the scope of spectral integration, we show that every 
invertible power-bounded linear mapping of X into X has a functional calculus imple­
mented by the algebra of complex-valued functions on the unit circle satisfying the 
hypotheses of the Strong Marcinkiewicz Multiplier Theorem. This result expands the 
framework of the Strong Marcinkiewicz Multiplier Theorem to the setting of abstract 
measure spaces. 

1. Introduction. Harmonic analysis can be broadly described as the study of the 
ways that spaces decompose under the actions of groups. Multiplier theory often serves 
this purpose by its ability to treat weakened forms of orthogonality. For example, the 
boundedness of the Hilbert transform on ZZ-spaces of the unit circle T, 1 < p < oo, 
sets up the convergence in LP(J) of Fourier series (a convergence which is unconditional 
only when/? = 2 [7, p. 12]), and thereby leads to the M. Riesz decomposition and its 
ramifications in Macaev's results for the von Neumann-Schatten /?-classes [10]. As this 
conditional convergence and similar examples suggest, an operator-theoretic approach 
to the weakened forms of orthogonality in general analysis must take account of the 
delicacy involved by forgoing reliance on strongly countably additive spectral measures 
in formulating the spectral decomposability of operators. The following weakening of 
the notion of spectral measure has been useful in this regard (see, e.g. [1], [3], [4], [5]), 
and, in Theorem 1.4 below, we shall take up the link it provides between operator theory 
and the Strong Marcinkiewicz Multiplier Theorem ([7, Theorem 8.4.2]). 

DEFINITION. Let 23(F) denote the Banach algebra of all bounded linear mappings of 
a Banach space Y into itself, and let I be the identity operator on Y. A spectral family in 
F is a projection-valued function F(-) mapping the real line R into K(F), and having the 
following properties: 

(i) sup{||F(A)|| : A G R} < oo; 
(ii) F(X)F(T) = F(T)F(X) = F(X) whenever A < r; 

(iii) F(-) is right-continuous on R with respect to the strong operator topology of K(F); 
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(iv) at each À G R, F(-) has a left-hand limit F(X ) in the strong operator topology of 

»(i0; 
(v) with respect to the strong operator topology of 93(30, F(X) —> / as A —> +00, and 

F(A) -> 0 as A —• -00 . 
If there is a compact interval [a, b] such that F(A) = 0 for A < a and F(X) = / for A >b, 
then we say that F(-) is concentrated on [a, &]. 

Corresponding to any spectral family F() of projections in Y, a Riemann-Stieltjes 
notion of spectral integration with respect to F(-) can be defined as follows. Given a 
bounded complex-valued function/ on a compact interval J — [a,/3] of R, for each 
partition P̂ = (Ao, Ai, . . . , An) of / we put 

S(?\f,F) = £f(Xk){F(Xk) - F(A*_i)}. 

If the net {S(JP\f, F)} converges in the strong operator topology of 33(30 as (P increases 
through the partitions of J directed by inclusion, then we denote the strong limit by 
JfaflfdF, and we further define S^^fdF by writing 

/ e fdF=f(a)F(a)+ f fdF r 
Until now, the only general class of functions known to be integrable with respect to 
F() over / has been the algebra BV(7) consisting of all complex-valued functions/ on 
/ whose total variation var(/,7) is finite (see [6, Chapter 17] or the abbreviated account 
of spectral integration in [3]). In fact, the mapping/ G BV(7) —» Jj® ̂ fdF is an algebra 
homomorphism of BV(7) into 23(F) such that 

f •e 
JdF\ 

a,p] 
<|[/"| |ysup{||F(A)| |:Ae/}, 

where || • ||y denotes the Banach algebra norm on BV(7) specified by 

\\f\\j = sup{\f(\)\:\eJ} + var(f,J). 

Having attended to the basic facts of spectral integration, we now pass to the setting 
wherein our main result (Theorem 1.4) expands the scope of spectral integration to a 
broader class of integrands. The notation established here will be in effect henceforth. 
Let X be a closed subspace of LP(p), where (M, fi) is an arbitrary measure space, and 
1 < p < 00. Denote the set of all integers by Z, and suppose that U G K(X) is an 
invertible operator such that 

(1.1) c = sup{\\Un\\ :nel} < 00. 

Under these circumstances, it is known [3, (2.17), (2.18), and Theorem (4.8)(ii)] that 
there is a unique spectral family E(-) of projections in X such that E(-) is concentrated on 
[0,27r],£((27r)-) = / , and 

U= fe eiXdE(X). 
J[0,2ir] 
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This unique spectral family £(•) is called the spectral decomposition of U. It has the 
further property [3, Theorem (4.8)(iii)] that: 

(1.2) sup{||£(A)|| :\eR}<c2Cp, 

where, here and henceforth, Cp denotes a positive real constant depending only on p 
which may change in value from one occurrence to another. 

REMARKS. By virtue of [8, Theorem 2(ii)], the operator U can easily fail to be a 
spectral operator in the sense of Dunford. Consequently its spectral decomposition £(•) 
is, in general, not induced by a countably additive spectral measure on the Borel sets 
ofR. 

Our main result in Theorem 1.4 establishes integrability with respect to £(•) for the 
complex-valued functions on T satisfying the hypotheses of the Strong Marcinkiewicz 
Multiplier Theorem [7, Theorem 8.4.2]. Such functions are characterized in terms of the 
dyadic decomposition of T, which is described in the following manner. For y G Z, let t} 

be the j-th dyadic point of (0,27r) specified by 

= i 2j~1^ if/ < 0, 
j \2ir-2-h if y > 0; 

and put 
Uj = & for j G Z. 

Also, for y G Z, let T) be the arc specified by 

rj = {eit:tj<t<tj+l}, 

and denote the closure in T of I") by Ay. With this notation, the functions <j> mapping T 
into the complex numbers C which satisfy the hypotheses of the Strong Marcinkiewicz 
Multiplier Theorem can be characterized by the condition 

(1.3) II^IOT = sup{|(/>(z)| : z G T} + sup{var(</>, A,) :jeZ}<oo. 

We shall call the functions satisfying (1.3) Marcinkiewicz multipliers, and shall denote 
the set of all Marcinkiewicz multipliers by 3W. Notice that with pointwise operations and 
the norm || • ||v^ in (1.3), 3K is a Banach algebra. Our main result can now be stated as 
follows. 

THEOREM 1.4. Let /i,X, U G B(X), and £(•) be as described above. Then for each 
Marcinkiewicz multiplier <j> defined on T, the integral J[o,2?r] 4>(elX) dE(X) exists in the 
strong operator topology of'5B(X). Furthermore, the mapping from Wl to*J&(X) specified 
by 

*/[0,27r] 

is an identity-preserving algebra homomorphism such that 

(1.5) I r éie^dEixi < c6CPU\\^forall<^ G SW, 
||jll),Z7rj II 
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where Cp is a positive real constant depending only on p, and c is the constant defined 
in (LI). 

After a preliminary review of some needed tools in §2, the demonstration of Theo­
rem 1.4 will be carried out in §3. In §4 we consider circumstances under which the bound 
in (1.5) can be improved. 

REMARKS. The proof of Theorem 1.4 in §3 will rely on a certain "dyadic spec­
tral measure" associated with U (described in Theorem 2.1 below). Since the existence 
and properties of this dyadic spectral measure are established in [2] with the aid of the 
Strong Marcinkiewicz Multiplier Theorem, the latter is an ingredient in the proof of 
Theorem 1.4. Nevertheless, it should be noted that Theorem 1.4 reflects and general­
izes its classical antecedents by including the Strong Marcinkiewicz Multiplier Theorem 
as a special case. Specifically, when U is the left shift on £P(Z), the spectral decompo­
sition £"(•) of U is determined as follows (see [8, proof of Theorem 1] or [3, Proposi­
tion (4.23)(ii)]): for each A G [0,2ir), E(\) is the Fourier multiplier transform on £P(Z) 
corresponding to the characteristic function of the arc {els : 0 < s < À}. Consequently, 
it is easy to see that in this special case Theorem 1.4 states that each <j> G 3W is an £P(Z)-
Fourier multiplier, with corresponding multiplier transform J]S 2 , <f>(elX) dE(\). 

2. Background items. In this section we assemble a few required facts from [2] 
regarding estimates for square functions. We continue with the notation established in 
§ 1. Let Hd denote the sigma-algebra of subsets of T generated by the class CDj consisting 
of the sets Tj (j G Z) together with the singleton sets {ujj} (j G Z) and {1}. This dyadic 
sigma-algebra Xj has the following obvious description. 

For each a G Zj, there is a unique subclass J^ of (Dj such that 

a = [j{a: a G X}. 

We next indicate how the spectral decomposition E(-) of Uproduces a strongly countably 
additive spectral measure on lLd. The preliminary step is to define the projection-valued 
function %){•) on (Dj as follows. 

DEFINITION. For each j G Z, define *Eo(Tj) by putting 

loiTj) = E(t]-+l) - E(tj)', 

and let 

!£)({1}) = £(0); 2b({^-}) = E{tj) - E(tJ\ for/ G Z. 

The dyadic spectral measure *£(•) is now described as follows. 

THEOREM 2.1 ([2, THEOREM (2.12)]). For each a G ld, we can define 

£ ( a ) E ^ { 5 ) ( a ) : a G ^ } , 
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where the sum on the right represents a series which is unconditionally convergent in the 

strong operator topology of'K(X). The projection-valued function *£(•) thereby obtained 

on Z^ is a strongly countably additive spectral measure in X such that 

(2.2) sup{||E((7)|| :aeld}<c2Cp. 

By applying Khintchine's inequality [9, Theorem 2.b.3] in a standard way to Theo­

rem 2.1, one obtains the following analogue for X of the Littlewood-Paley theorem for 

Z [7, Theorem 7.2.1]. 

COROLLARY 2.3 ([2, COROLLARY (2.14)]). There is a positive real constant Cp, 

depending only on p, such that whenever f E X and {(Jj}j>\ is a sequence of mutually 

disjoint elements ofJLj satisfying I = |Jp>i 0> then 

~2c-x\ WW < EI2Wf 
7>1 

1/2 
<czC„ 

ifip) 
imp)-

The following transferred version of the Vector-valued M. Riesz theorem [7, The­

orem 6.5.2] is the last item of the preliminary machinery for §3 below. It is a special 

case of the methods in [2, §3] for transferring the bounds of square functions defined by 

sequences of multiplier transforms on tp{T). 

THEOREM 2.4 ([2, THEOREM (3.15)]). There is a positive real constant Cp, depending 

only on p, such that 

E \E(aj)gj\-
7=1 

1/2 

W(li) 
<c2Cr, 

OO x 

EI&-I2 

7=1 J 

1/2 

LP{v) 

for all sequences {fl/lj^j Q [0,27r) and all sequences {g/}2i Ç X. 

3. Proof of Theorem 1.4. The proof of Theorem 1.4 will rest on the following 

two lemmas. Given a bounded function </>: Ï —> C, we shall take the liberty of writing 

S(JP\ <j>, E) for the Riemann-Stieltjes approximating sum corresponding to the function 

A G [0, 2TT] —> (f)(eiX) and a partition (P of [0, 2TT]. Recall from §1 that {tj}JZ-oo denotes 

the sequence of dyadic points in (0,2ir). 

LEMMA 3.1. Let </>: T —> C be a Marcinkiewicz multiplier, and let f G X. Then, in 

the notation of§l, we have: 

( 3 . 2 ) » ' — ^ • — ^ \Y:\[E(tj+l)-E(tj)]S((P',<t>,E)f\: 

Ufa) 
<c4CPU\\m\\f\\m^ 

for all partitions Œ* of[0,2ir]. 

PROOF. Let 0 = A0 < Ai < • • • < An+i = 27r, where n > 0, be a partition & of 

[0, 2TT]. If n — 0, then the Marcinkiewicz-Zygmund inequality [7, p. 203], together with 
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(1.2) and Corollary 2.3, easily gives (3.2) in this case. So we can assume without loss of 
generality that n is a positive integer. Temporarily fix y G Z, and observe that if 

(3.3) A* £ (tj9 tj+i] for 1 < k < n, 

then, 

[E(tj+i)-E(tj)]S(!P;<l>,E) = <j>(eiX*j)[E(tj+i) - E(tj)], for some x7 G {1,2, . . . , / i+ 1}. 

Suppose, on the other hand, that y is such that 

(3.4) {k : 1 < k < n and À* G (tj, f/+i]} is a non-empty set 

having minimum element k\ and maximum element £2. 

Then, upon putting gj = [£(//+1 ) — E(tj)]f, we easily find after a summation by parts that: 

[E(tj+l) - £^)]5(2>; </>,£)/=£ WXk) ~ <t>(eiX^)}E(\k)gj 
k=kx 

( 3 ' 5 ) + Wx>2)- <t>(eiX^)}E(\k2)gj 

+ </>(^'V%. 

It follows by applying the Cauchy-Schwarz inequality to the sum constituting the first 
member on the right of (3.5) that /i-a.e. on 94., we have: 
(3.6) 

\[E(tj+l)-E(tj)]S(^^E)f\ 

< {*E WXk) ~ HelX^)\\i/2\ E1 1^*) - ^(^+,)| |£(A,)&|2)1/2 

+ ||^||s«{2|£(At2)&| + |ft-|} 

* ^ ' , . . a.. ,. a _. . . „ l ' / 2 

+ ||0||a»{2|£(Aik2)&| + | a | } . 

< 
11 T 11 VJC , 

Let 7 denote the set of y G Z such that {fc : 1 < /: < n and Â  G (f/,f/+i]} is non-
void. As in (3.4), for y G 7, let fcjj and kij be, respectively, the minimum and maximum 
elements of the set {k : 1 < k <n and Â  G (/), f/+i]}. Also, for & G {1 , . . . ,n}, lety^ be 
the uniquey G Z such that A* G (tj, tj+\]. In particular^ G 7, and7 is a finite, non-empty 
set. By (3.6) we see with the aid of the triangle inequality for finite-dimensional I2 that 
/i-a.e. on 94: 

{E I[£(';+I) - £(';)]5(!P; </>,£)/|2}V2 

Vfc/ 

k2i-\ . 1/2 

(3.7) < U\\x£(E E | 0 ( ^ ) - ^ ' A - ) | |£(A*)aJ
2} 

J /2 f _ , l 9 ) l / 2 
+ II<AIÎ [2{EÎ (A.2,)̂ I2} + {Ebl2} 

y'G-/ 7"G^ 
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Hence by the triangle inequality in Lp{ji) and an application of Theorem 2.4, we see from 
the outer terms in (3.7) that 
(3.8) 

fe\[E(tj+i) -E(tj)]S(<P;<f>,E)f\: 
1/2 

K2j 

I 
Kj£j k=k 

WW 

<ll</>ltf JE E W^)-<i>{é^)\\E{\k)gk 
1/2 

wiv) 

+ c2C} •PW9WWI {El*l2} 
1/2 

LP(ti 

Let hk — \<p(elXk) — <f)(elXk+l )| l/2gjk for & = 1, . . . , w. Again using Theorem 2.4, we find 
that: 
(3.9) 

j£J k=k 
E E WXk)-4>(eiXM)\\E(\k)gh\

2\ 
id 1 V— /, > 

1/2 

lf{li) 

<c2a 

E E l̂ (A Î2 

jeJ k=k{J
 } 

( k2j-l 1/2; 

E E N 2 
(j£j k=klJ 

Lf(p) 

m») 

czCn 

hj-i 

E E l^'Ao-^'A-)ll^l2) 
1/2 

= clCv £ E |^'A4)-0(^')||&-|2 
Ve./ * = * u 

<^ii^ii[2|(Ei»i 

1/2 

LP(v) 

LP(ti) 

^ l U I l l / î l l / ^ . ^ l 1 / 2 

7 € / ZAM) 

Employing (3.9) on the right of (3.8) and recalling the definition of gj, we infer that: 

jeJ 

S(¥;4,E)f\2} 

<c2cPu\y 

= c2CP\\(i>ht 

1/2 

WW 

(Elrff 

(I :i[£(o+i)-

\W(H) 

-£(';)]/f} 
f ( / i ) 

An application of Corollary 2.3 to the majorant in this inequality shows that: 

(3.10) 
1/2 

( £ | [ £ ( f ; + I ) - £ ( f , 0 ] 5 ( ^ , £ ) / | 2 ) <c4Cp\\4>\\vi\\f\\ww-
(jeJ I \\Lr(,i) 
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Taking account of (3.3) for j G Z \ / , we readily observe with the aid of Corollary 2.3 
that 

(3.11) 
jei\J 

Since it is elementary that 

£ \[E(tj+l)-E(tj)]S(V;^E)f\: 
1/2 

win) 
< ^Cplnyl/lllw-

1/2 

{ £ \lE(tj+l) - E(tj)]SVP\ <t>,E)f\2\ < te I [£(';+i) - £($)]##; </>>£)/! 
,1/2 

+ £ | [ ^ + 1 ) - ^ ) ] 5 ( i P ; ( / > , £ ) / | 2 ) 
1/2 

the conclusion of Lemma 3.1 now follows immediately from recourse to the triangle 
inequality in LP(n), (3.10), and (3.11). • 

Lemma 3.1 has the following lemma as a consequence. 

LEMMA 3.12. Under the hypotheses of Theorem 1.4 we have 

for every Marcinkiewicz multiplier cj>: T —> C, and every partition (P of[0,2ix]. 

PROOF. Let / e X, and let T be a partition of [0, 2TT]. Since E(0)S(&; </>,£) = 0, it 
follows from the first inequality of Corollary 2.3 and Lemma 3.1 that 

II5CP; </>,£)/! ^(/*) -<czCn Y:\[E(tj+])-E(tj)]S(V;<t>,E)f\2} 
jel J 

1/2 

Ufa) 

<c6CPU\\m\\f\ w(nh 

as required. • 

PROOF OF THEOREM 1.4. We first establish the existence of J"[0j27r] <f>(eiX) dE(X) for 
an arbitrary Marcinkiewicz multiplier <j>. F ix / G X, and suppose that e > 0. By virtue 
of properties (iii) and (iv) in the definition of spectral family, coupled with the fact that 
£((2TT)-) = /, the series 

YXE(tj+\) ~ E(tjW 
yez 

converges in the norm topology of X to / — E(0)f. (This also follows from the strong 
countable additivity of the dyadic spectral measure £(•) of Theorem 2.1.) Hence there is 
a positive integer K such that ||/^||Z^(/J) < £, where 

hK= ^[E(tJ+l)-E(tj)]f. 
\}\>K 

Putting gk = J2mK[E(tj+l ) - E(tj)]f = {E(tK+l) - £(*_*)}/, we have 
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Consequently for an arbitrary partition P̂ of [0,27r], 

(3.13) 5(2>; (/>, E)f = S(?\ </>, E)gK + 5(#; </>, £)A*. 

Applying Lemma 3.12 to HK, we see that: 

\\S(^^E)hK\\m,)<c6cp i^fc 

From this and (3.13) we infer that for any two partitions !P\9 fy of [0, 2TT], 
(3.14) 
\\S(Vu^E)f-S(V2\^E)f\\m,) < ||5W;0,^^-5(^2;0,^g^||^)+c6Cp||c/)||^£. 

As a function of A, <j>(elX) is obviously of bounded variation on every compact inter­
val contained in (0,27r). In particular, S[t-K,tK+i] <t>{elX) dE(X) exists in the strong operator 
topology of 23(X). Moreover, if a partition P̂ of [0, 2TT] contains the dyadic points t-K 

and tK+i, then S((P', <j>, £)#A: is the Riemann-Stieltjes approximating sum for 

( <j>(eiX)dE{\)f 

corresponding to the partition of [t-K, tK+\ ] given by P̂ f| [t-K, tK+\ ]. In view of (3.14) and 
the last observation, we can apply the Cauchy Criterion to deduce that the net 
{S(^P', (f>,E)f} converges in the norm topology of X, as (P runs through the partitions 
of [0, 2TT] directed by inclusion. This fact together with Lemma 3.12 establishes the exis­
tence, in the strong operator topology, of J[O,2TT] 4>(elX) dE(X), and also gives the estimate 

[ é(eiX)dE(X)\\<c6CPU\y-
-M0,27T II 

It is obvious from this and (1.2) that the desired conclusion in (1.5) holds. 
To complete the proof of Theorem 1.4, notice that for each partition (P of [0, 2i\\ the 

mapping 
<\> e SM -+ <l>(l)E(0) + 5(2>; </>, E) 

is an identity-preserving algebra homomorphism. Taking limits in the strong operator 
topology as Œ* varies, we immediately conclude, with the aid of Lemma 3.12 for multi-
plicativity, that 

<£eaK-> r (f>(eiX) dE(\) 
7[0,2TT] 

is also an identity-preserving algebra homomorphism. • 

4. Spectral integrals bounded by mutliplier norms. The Strong Marcinkiewicz 
Multiplier Theorem states that if <\> E 3W,then ||</>||M„(T)> the norm of <j> as an £/?(Z)-Fourier 
multiplier, satisfies: 

IM|Af„(T) < C^II^H^. 

It is a well-known elementary fact that the roles of the two norms in this inequality cannot 
be reversed, and so, in a sense, on 2ft the norm || • ||M/;(T) has a lower order of magnitude 
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than 11 • 11 SJK . As a concrete illustration, for each n G Z we can use the dyadic points to = \ 

and tx = Y t 0 d e f i n e <£« £ BV(T) Ç m by: 

JX)_ \einX f o r f 0 < A < f i ; 

It is obvious that 

whereas 

k(e \0, f o rÀG[0 ,2^ r ] \ [ ^ i ] . 

sup{||<A/i||̂ (T) '-ne Z} <oo , 

H^nlla»—>+oo, as|n| -^+00. 

Since the spectral integrals of functions in 3W, as treated in Theorem 1.4, can be viewed as 
transferring the actions of multipliers to the space X, we shall now seek conditions under 
which the bounds for such integrals can be estimated by the "smaller" norm || • \\MP(T) 

rather than by || • | |^. 
Similar comments can be made in regard to BV(T) in place of 3W. The corresponding 

state of affairs for BV(T) has the following outcome [3, Theorems (3.10)(ii) and (4.14)], 
which we shall generalize to the framework of 33Î. 

THEOREM 4.1. For each ip G BV(T), let *¥: [0, 2TT] —» C be defined by 

¥(A) = 2~x\ lim i)(eis) + lim xl>(e>s)}. 

Then *F G BV([0, 2TT]), and 

r [0,2TT] 
<c2 

MP(J)-

Our extension of Theorem 4.1 will require some consequences of Theorem 1.4, and 
these will be discussed first in order to avoid digressions later on. Given a function (/> G 
39?, and an interval [a, b], where 0 < a < b < 2IT, it is easy to see from Theorem 1.4 and 
definitions that S\aM <K^/A) dE(\) exists and can be expressed by 

(4.2) / J>(elX)dE(\) = if' 6(eiX)dE(X)}{E(b)-E(a)}. 
J[a,b] U[0,2ir] J 

It follows from (4.2), the strong right-continuity of £(•), and the property £((27r)~) = 
E(2TT) — I that, in the strong operator topology of 23(X), we have: 

(4.3) lim / 4>(eiX)dE(\) = 0, 
a-^0+ J[0,a] 

and 

(4.4) lim / </>(eiX)dE(\) = 0. 

The next lemma follows immediately from (4.3) and (4.4). 
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LEMMA 4.5. Let <j> G 2W, and suppose that {an}™={ and {bn}%Ll are two sequences 
of real numbers such that 0 < an < bn < 27r, for all n, and an —• 0, bn —> 2ix. Then 

f 4>(eiX)dE(\) - > £ , , , 4>(eiX) dE(X), 
J[an,bn] J[0,2ir] 

in the strong operator topology 6>/K(X). In particular, the value o/Jjo,27r] (j>(elX) dE{\) is 
completely determined by the restriction of<j>tol\{\}. 

Given </> G 2W, let O: (0,2i\) —• C be defined by putting 

(4.6) O(A) = 2'x{lim 4>{eis) + lim <Keis)\, for 0 < A < 2n. 
L J—>A + 5—>A~ J 

Simple examples show that the expression on the right in (4.6) need not make sense for 
A = 0 or A = 27T. However, if we extend <3> to [0, 2TT] by taking O(0) = 0 ( 2 0 = 
a, where a is an unspecified complex number, then it is clear that there is a corre­
sponding function $ G 2W such that O(A) = #(e/A), for all A G [0,27r]. In particular, 
J[0,2TT] ^(A) d£(A) exists, and, by Lemma 4.5, has value independent of a. With this un­
derstanding, we can now state our analogue for Wl of Theorem 4.1. 

THEOREM 4.7. Suppose that <j> G Wl, and let O be as above. Then 

(4.8) 1 ^ <H\)dE(\)\ < c2CPU\Wm-

PROOF. For each positive integer n, put an = £, bn — 2ir — £. Let O and # be as 
above. With # playing an intermediary role, we see from Lemma 4.5 that, in the strong 
operator topology of K(X), 

(4.9) ( O(A) dE(X) -> [ O(A) </£(A), as n -+ oo. 

Let Xn be the characteristic function, defined on I , of the arc {elX : an < A < /?„}, and 
define ^n G BV(T) to be the pointwise product xn<\>- Let *F„ correspond to ipn as in the 
statement of Theorem 4.1. It is easy to see by direct calculation that for each positive 
integer n we have: 

Vn(\)dE(\) = 2-l{\imt(eis)}{E(an)-E(a;)}+ *(A)dE(A) 

- 2"1 {lim <j>(eis)\{E{bn) - E(b~)}. 

Since, in the strong operator topology, E{an) and E(a~) separately converge to £(0), while 
E(bn) and E(b~) separately converge to /, an application of (4.9) on the right of (4.10) 
shows that as n —> oo 

(4.11) f *PB(A) dE(A) - / O(A) dE(A), 
^[0,Z7r] J[0,Z7T] 

in the strong operator topology. However, by Theorem 4.1 and a standard theorem of 
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M. Riesz [7, p. 104], 

^ ¥ n ( A ) < f f i ( A ) | < c2||W,|k(T) = C2 | |X^IIM,(Ï) < c2CPU\\MPny 

Using this in (4.11), we obtain (4.8), as required. 

COROLLARY 4.12. Let </>: T —> C be a continuous function as well as a Marcinkiewicz 
multiplier. Then 

r0 
Ljie-UEM <czC, p\m\Mp(J). 

PROOF. In this case we can take O(A) = (j)(eiX), for all A e [0,27r]. From Theo­
rem 4.7 we see that 

(4.13) f® 6(eix)dE(X)\\<\<P(l)\\\E(0)\\ \ + c2C p\\<P\\Mp(T)-

However, from the continuity of </> and a standard application of the M. Riesz Convexity 
Theorem [7, 1.2.2(ii)], we obviously have 

|0(D| < |M2(T) < llAfn(T). 

Using this together with (1.2) in (4.13) completes the proof of Corollary 4.12. 
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