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sing univariate sum scores in genetic studies of

twin data is common practice. This practice pre-
cludes an investigation of the measurement model
relating the individual items to an underlying factor.
Absence of measurement invariance across a
grouping variable such as gender or environmental
exposure refers to group differences with respect
to the measurement model. It is shown that a
decomposition of a sum score into genetic and
environmental variance components leads to path
coefficients of the additive genetic factor that are
biased differentially across groups if individual items
are non-invariant. The arising group differences in
path coefficients are identical to what is known as
"scalar sex limitation” when gender is the grouping
variable, or as “gene by environment interaction”
when environmental exposure is the grouping vari-
able. In both cases the interpretation would be in
terms of a group-specific effect size of the genetic
factor. This interpretation may be incorrect if individ-
ual items are non-invariant.

The individual items in most measurement instru-
ments are designed to measure an underlying factor
or latent trait. However, the items are rarely pure
indicators of the underlying factor. For example, an
item designed to measure attention deficit/hyper-
activity disorder (ADHD) may also be sensitive to a
learning disorder. If a test is administered to more
than one group and an individual item does not
measure the same factors in those groups, the item
is not measurement invariant over the groups.
Measurement invariance refers to the situation in
which a measurement instrument measures the same
underlying factor(s) or latent trait(s) in different
groups. The present article shows that absence of
measurement invariance can be confounded with sex
limitation or gene by environment interaction.
Measurement invariance holds with respect to a
grouping variable if the probability of an observed
item response is the same for members of different
groups with the same score on the factor that a given

measurement instrument is designed to measure. An
observed item is not measurement invariant with
respect to, say, gender, if one gender scores higher on
average on the item than the other gender without
actually scoring higher on the underlying factor. The
higher observed scores are because the non-invariant
items are sensitive to other variable(s) in addition to
the factor, and that these additional variables increase
the observed scores. Suppose that a questionnaire is
designed to measure ADHD and that one of the items
is also sensitive to a learning disorder in males but not
in females. The resulting observed average score on
this item is higher in males than in females because
the item measures an additional factor in males. If
relations between items and underlying factors are
represented in a measurement model, such as the
common factor model or an item response model for
categorical outcomes, then one or more of the para-
meter(s) concerning the non-invariant items are not
the same across groups.

Measurement invariance can only be investigated
if the measurement model relating observed item
scores to the underlying factor(s) is analyzed simulta-
neously in all groups. Simultaneous analysis of the
item scores allows a test of whether the measurement
model is the same across groups. If sum scores are
computed by adding individual item scores, all infor-
mation about the relationship between individual
items and the underlying factor(s) is lost. Absence of
measurement invariance can no longer be detected.
If factor scores are computed in more than one
group using group-invariant factor loadings, then the
same problem applies because factor scores are essen-
tially weighted sum scores.

In genetic analyses it is common practice to derive
sum scores by summing individual questionnaire
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item or symptom scores. The Eysenck Personality
Questionnaire scores of Extraversion, Neuroticism,
and Psychoticism are computed in this way (Eysenk
& Eysenk, 1975). Similarly, Diagnostic and Statistical
Manual (DSM) diagnoses, which are typically estab-
lished when a given subject displays at least # of a
given list of 7 symptoms, where 7 < m, are essentially
sum scores (American Psychological Association,
2000). Sum scores are often used to investigate the
genetic and environmental contributions to the total
sum score variance by applying ACE-type models.
The present paper focuses on genetic analyses that
are meant to compare heritabilities across gender or
environmental exposure groups. It is shown that a
decomposition of sum scores using ACE-type models
results in biased path coefficients when the individual
items from which the sum score is derived are not
measurement invariant. More specifically, if gender
differences are investigated, the arising pattern of
path coefficients of the genetic factor across same and
opposite sex zygosity groups is identical to what is
known as scalar sex limitation. Similarly, if individual
items are not measurement invariant with respect to a
variable representing environmental exposure, the
decomposition of sum scores can result in a pattern of
path coefficients that would lead to the conclusion
that the genetic factors have different effect sizes
across exposure groups.

Sum scores are usually regarded as an estimate for
the underlying factor score. Obviously, a decomposi-
tion of a sum score into genetic and environmental
variance components only makes sense if the items,
which form the sum score, measure the same factor in
all groups that are investigated. Fitting an ACE-type
model to a sum score is based on the implicit assump-
tion that the items from which the sum score is
derived measure the same underlying factor or latent
trait — in other words, that the items are measure-
ment invariant. However, measurement invariance
has to be established empirically. To detect non-
invariance with respect to a grouping variable, the
relationship between individual items and underlying
latent variables has to be modeled simultaneously in
all groups in a multivariate analysis.

After briefly introducing the concept of mea-
surement invariance, it is shown that a variance
decomposition of sum scores derived from non-invari-
ant items results in a pattern of path coefficients for
opposite sex twin pairs that is usually interpreted in
terms of different effect sizes of the genetic factor
across genders or in case of gene by environment
interactions, as different effect sizes of the genetic
factor across environmental exposure groups. Hence,
when analyzing sum scores, absence of measurement
invariance is easily confounded with this type of sex
limitation or gene by environment interaction. It is
shown that detection of absence of measurement
invariance can be carried out in a multivariate analysis
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where the relation between individual items and
underlying factor is modeled explicitly.

Measurement Invariance

Absence of measurement invariance, which is also
known as differential item functioning, has been
studied extensively both in the context of confir-
matory factor analysis and item response theory
(Bloxom, 1972; Byrne et al., 1989; Ellis, 1993;
Holland & Wainer, 1993; Lubke et al., 2003; Marsh,
1994; McArdle, 1998; Mellenbergh, 1989; Meredith,
1993). Measurement invariance is defined with
respect to a grouping variable, such as gender, and
concerns the measurement model relating observed
scores to underlying latent variables (Mellenbergh,
1989; Meredith, 1993). The measurement model has
to be the same for all groups in the sense that the
probability of observing a given item score is equal
for members of different groups who have the same
score on the underlying latent variable. More for-
mally, measurement invariance has been defined by
Mellenbergh (1989) as

F(Y[n,s) = f(YIn), (1)

where observed variables are denoted as Y, latent
variables as 1, and the grouping variable as S.
Equation 1 shows that, given the scores on the under-
lying latent variable(s) (i.e., the latent traits or factor
scores), the probability distribution of observed scores
does not depend on sub-population membership such
as gender, but depends only on the scores on the
underlying factor(s).

Consider a situation where measurement invari-
ance is absent: that is, f(Y| n,s) # f(Y| n). An
observed variable Y is non-invariant with respect to a
grouping variable S if the observed score depends not
only on the latent variables 17 but also on S, or vari-
able(s) related to S. There are three different types of
effects of S or variable(s) related to S, that may or
may not occur simultaneously. First, the effect can be
constant for all possible scores on 1. This results in a
group difference in the intercept of the regression of
Y on 1. The regression lines in the common factor
model or regression curves in item response models
are parallel. Second, the effect can vary independently
of 1, which results in a group difference with respect
to the precision with which the latent variables 1 are
measured. The regression lines (in case of linear
regression of Y on 1) or the regression curves (in case
of non-linear regression on n) are equal across
groups, but the residuals of the regression differs. In
the common factor model, this is modeled as group
differences in measurement residuals. Thirdly, the
effect can increase or decrease as a function of 7,
resulting in a group difference with respect to the
steepness of the regression. In the common factor
model this is manifest in group-specific factor
loadings, whereas in item response models the dis-
crimination parameters would be group-specific.
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The third type of effect is the primary focus of the
present article.

If factor loadings or discrimination parameters
differ across groups, the interpretation of the under-
lying factor or trait differs as a consequence.! Suppose
that in one group math items load strongly on a
general Intelligence Quotient (IQ)-test factor and
verbal items have weaker loadings. If the other group
shows the reverse pattern, then the test is not measure-
ment invariant. The math items have a larger weight
than the verbal items in the first group and the general
factor has to be interpreted accordingly, namely as a
predominantly math-related factor. The interpretation
is different in the second group, showing that the test
does not measure the same general factor in the two
groups. This difference in interpretation is lost when
sum scores are derived from the individual items,
because when adding the items usually the same
weights are used for all items in all groups. In other
words, sum scores are based on the implicit assump-
tion of measurement invariance and are, in case of
non-invariance, incorrectly interpreted as an estimate
of the same factor across groups.

The incorrect interpretation of a sum score is espe-
cially important if sum score variance is decomposed
into genetic and environmental variance components.
On a conceptual level it is questionable whether
it makes sense to decompose sum scores derived
from non-invariant items. However, the problem of
analyzing sum scores extends beyond the issue of a
conceptual interpretation. It is shown below that in
the case of non-invariance the path coefficients of
the genetic factor resulting from a decomposition of
sum scores are biased differentially across the groups
(e.g., gender groups in the case of sex limitation models
or environmental exposure groups in the case of G X E
interaction models). Hence, absence of measurement
invariance is confounded with sex limitation or gene by
environment interaction. Differences in factor loadings
or discrimination parameters can be detected only in a
multivariate analysis of the individual items that is
carried out simultaneously in all groups.

Biased Path Coefficients of the Genetic Factor
Univariate Case

For reasons of simplicity, the common factor model
with a single factor 1 and two continuous observed
variables Y, and Y, is chosen as a measurement model
to demonstrate how absence of measurement invari-
ance can be confounded with scalar sex limitation or
gene by environment interaction if sum scores are
analyzed instead of the individual items. It should be
noted that the argument is not restricted to this type
of measurement model. As shown above, the defini-
tion of measurement invariance only refers to the
distribution of observed variables given latent vari-
ables and hence is not restricted to a specific type of
measurement model. The argument presented here
can be extended easily to models with more factors,

or to models for ordered categorical data such as the
proportional odds model (Agresti, 1990), or a two-
parameter item response model. In the context of the
present paper, the differences between these models
are not essential.

The rationale is cast in the context of sex limita-
tion, but similarly applies to other grouping variables.
For G x E interaction the subscripts f and » indicat-
ing females and males could be changed to el and e2
indicating two environmental exposure groups.

The measurement model relating items to an
underlying factor in females is

Vip = Mgl + & (2)
Yo = Mgl + &

where A and € indicate factor loadings and regression
residuals, respectively. Corresponding equations for
the observed scores in males can be obtained by
changing the subscript f to m.

Sum sores for females are obtained by adding the
scores on the two items,

Sf = klfnf + 7L2fr[f +E, +E,. (3)

Figure 1 shows the ACE model for opposite sex
twins. Part A shows the common pathway model,
where the ACE decomposition is applied to a factor
underlying observed scores Y, and part B shows the
ACE model applied to a sum score S.

Absence of measurement invariance with respect to
factor loadings means that the matrix containing the
factor loadings in females does not equal the matrix of
factor loadings in males, A, # A,. The goal here is to
demonstrate that the estimate of the additive genetic
variance, @, is biased differentially across gender if the
ACE model is applied to the sum score and the factor
loadings A, # A,. For ease of presentation, and with-
out loss of generality, it is assumed that the parameter
¢ equals 0 in both genders such that the common envi-
ronment variance component is 0. Hence, we consider
an AE-model rather than an ACE-model.

Ignoring the measurement model relating individ-
ual items and the underlying factor, the covariance
between the sum scores of a twin pair, ¢, and ¢,,
according to the AE-model is given by

Cov($,, S,) = a,a,0, (4)

where, given the usual assumptions, o is fixed to
unity and 0.5 for monozygotic (MZ) and same sex
dizygotic (DZ) twins, respectively, and may be esti-
mated in opposite sex twin pairs.

If the measurement model for the individual items
is taken into account, the covariance between sum
scores of twin 1 and twin 2 can be derived using
equation 3,

COV(S”, Stz) = (7\‘ A’ltz + 7\'1tl7\"2t2 +

121

?“Ztlxltl + }\'Ztlkhl) X COV(ntl’ ntz)’ (5)
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Figure 1

Opposite sex ACE model for a latent factor (Part A) and for a sum score (Part B). The variances of the latent variables A, C, and E are fixed to unity,

whereas those of ¢, and ¢, are estimated as free parameters.

m! Zm' 1f'

where the term between brackets is basically a weight
for the covariance between the factor scores of a twin
pair. The weight depends on the measurement model
or, more specifically, on the factor loadings. Let k,,
k,, and k, denote the weights of same sex female
twins, same sex male twins, and opposite sex twins,
respectively, then

kp= R 20 My A2 = (A + ) (6)
km = 7\'lzm + 27\'1?}17\'21% + 7\'22m = (7\'lm + 7\’2;41)2
Ry=Ahy,, + Ay, + A A, + Ay A

2m?3

which shows that the weight &, is the geometric mean
of the weights k, and &,,.

The covariance between factor scores is decom-
posed according to the AE-model as

Cov(n,,, N,,) = a,a,,0. (7)

Combining equations 5 through 7, the covariances of
MZ and DZ same sex and DZ opposite sex twins are

Cov(S, pizs Sopuz) = Ry X @ X 0y,
Cov(S,pz Sypz) = k X a*, X O,
Cov(S,, iz Sommz) = k ><a2 X,

Cov(S,,ns Sypz) =k, X @, xo

COV(SlfDZ’ SZmDZ) kn X ao X (xoDZ’

Where a, = a, x a,. In case of no sex limitation, the
parameter a is equal for males and females, and o, =
o, =land o, =a,,, =0, =0.5 (ie, no sex limi-
tation). If the two items Y, and Y, are measurement

invariant with respect to gender, then A, = A, and k=
k, = k. If factor loadings are not equal for males and
females, for instance if item 1 is non-invariant with
respect to gender, A, > A, , then k, > k >k,

In a simple decomposition of the sum score the
measurement model relating items to the factor is
ignored, which means that the ks are implicitly fixed to
unity (see Equation 4). Differences in these weights due
to differences in the factor loadings are absorbed by
the path coefficients a, resulting in a; > a, > a’,. Since &,
is the geometric mean of k, and k,, fixing the ks to
unity results in a, being the geometric mean of a*, and
a* . This pattern of differences in additive genetic vari-
ance components is identical to scalar sex limitation
(Neale & Cardon, 1992). Since the sum score is
regarded as an estimate of the factor score 1 underly-
ing the individual items, the results would usually be
interpreted as gender-specific effect sizes of the genetic
factor that is derived from the decomposition of the
factor 1. In the case of G x E interaction, the results
would be interpreted in terms of different heritabilities
across environmental exposure groups. However, such
an interpretation would be incorrect if the group differ-
ences are due to absence of measurement invariance.

The correct interpretation would be not that the
heritabilities differ across groups, but that factor 1
is not the same factor in the different groups. The
factor differs because the importance of individual
items differs across groups. The correct interpretation
can only be obtained if the differences in factor load-
ings are detected. Analyzing sum scores precludes
this possibility.
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Multivariate Case

An alternative to fitting an ACE-type model to the
univariate sum score is a multivariate analysis where
the measurement model is included in the decomposi-
tion into genetic and environmental variance. Instead
of deriving the parameters of the ACE model from the
variance and the single covariance of the sum score in
the twin pairs, the covariance matrix of individual
items is considered. This covariance matrix is a parti-
tioned matrix with across twin covariances in the
lower left (upper right) block. Denote the block with

the covariances of twin 1 and twin 2 as X, ,, then for
opposite sex twins we have
— t
z"tl,zz - Af(afamaa)A m + 639 (8)

where ©, denotes the residual covariance matrix. In
the multivariate model, all factor loadings are esti-
mated. If some elements of A, differ from the
corresponding elements in A, and if, as is often done
in practice, factor loadings are initially fixed to be
equal across genders, there is no simple way in which
the parameter a can compensate for the resulting
misfit. Given sufficient sample size, fitting a model
with factor loadings restricted to be equal across
gender will result in rejection of the model due to lack
of fit if the population factor loadings differ. In a mul-
tivariate analysis equality of factor loadings across
gender is clearly a hypothesis that can be tested by
comparing models with and without the equality
restrictions using a likelihood ratio test.

lllustration with Simulated Data
To illustrate the bias in path coefficients of the genetic
factor that occurs in the analysis of sum scores
derived from non-invariant items, 500 data sets
according to the common pathway model were
created for five groups (i.e., MZ female and male, DZ
female and male, and opposite sex) with the following
characteristics. The a and e parameters are V.3 for
both males and females, whereas ¢ equals 0. Further-
more, O, = &, =1and o, = o, =0, =0.5,
which is the parameterization for absence of sex limi-
tation. The variance of the factors A and E is unity.
The measurement model is a single common factor
model with four observed continuous items, factor
loadings for females and males are .3, .4, .3, .4 and
.6, .7, .8, .9, respectively, and residual variances for
the two genders are .91, .84, .91, .84 and .64, .51,
.36, .19, such that the variance of all observed items
is approximately unity. The 500 data sets differ with
respect to the factor scores A and E and with respect
to the residual scores. Sample sizes are 200 for MZ
and DZ male and female twin pairs and for opposite
sex twin pairs. Sum scores are derived by summing
the observed item scores using unity weights for all
items in all groups.

Table 1 shows the sum score correlations between
twins for the five zygosity groups averaged over the
500 data sets. The empirical standard errors of the

. ____________________________________________________________________|
Table 1

Twin Sum Score Correlations Versus Factor Correlations Averaged
Over 500 Data Sets

MZ, Dz, Mz DZ DZ

Sum score 18(.07) .09(.07) .42(.06) .21(.07) .14(.05)
Unequal loadings  .50(.20) .25(.19) .50(.06) .25(.08) .25(.09)

Note: Standard errors of the mean correlations capturing the variation across the
500 replications are given between brackets. The standard errors of the factor
correlations of female twins are higher due to the lower reliability of the
item scores.

averaged sum score correlations are small, indicating
that these results do not vary greatly over the 500
data sets. The pattern of the correlations clearly indi-
cates scalar sex limitation. The table also shows the
estimated correlation between factors of twin pairs
after fitting a single factor model to the multivariate
data, without restricting the factor loadings to be
equal across groups. The model with factor loadings
equated across groups is always rejected due to lack
of fit. Not surprisingly, the correlation between
factors when the factor loadings are not equated cor-
responds to the true values.

Conclusion

This article shows the confounding between absence
of measurement invariance and scalar sex limitation
that occurs when sum scores are analyzed instead of
individual items. By replacing gender by grouping
variables such as environmental exposure or age, the
argument is easily extended to G x E or G X age
interaction. Analyzing sum scores precludes the detec-
tion of group-specific factor loadings which are a
form of non-invariance. If undetected, absence of
measurement invariance will be confounded with
group differences in heritabilities. In the present
article, sum scores are assumed to be derived by
assigning the same weight to each of the individual
items across groups. We note that any weighted sum
score with weights differing across items (such as
factor scores) will suffer from the same problem if the
same scoring procedure is used for all groups.

Measurement invariance is a broad concept,
which can be applied even if the assumption of an
underlying latent trait or factor is not based on
theoretical considerations. Generally, measurement
invariance can be assessed in any scores with common
variation by modeling the scores using an item
response model such as the common factor model. An
example is counts of hair in different sub-areas of the
male and female body, which can be modeled to be
due to one or more factors. Simply summing over all
counts and decomposing the resulting sum score may
lead to a confounding of sex limitation and measure-
ment invariance.

Caution is therefore required in the interpretation
of any study that tests for the effects of sex-limitation
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in pre-computed scale scores. A finding of scalar sex-
limitation could arise from genuine differences in the
scale of genetic effects, or from failure of measure-
ment invariance, or both. Conversely, the absence of
evidence for scalar sex-limitation in a sum score could
reflect the absence of sex-limitation as well as mea-
surement invariance for that scale. However, it is also
possible that both sex-limitation and absence of
measurement invariance exist and that their effects
counterbalance each other — for example, when both
higher heritability and lower factor loadings exist in
one group.

These arguments extend beyond simple sex-limita-
tion and genotype by environment interaction where
the environmental variable is simply binary. Models
for continuous G X E interaction (Neale, 1998; Neale
& Cardon, 1992; Purcell, 2002) that involve an
ordinal or continuous environmental measure would
be similarly affected when the observed sum scores to
be analyzed fail to meet the assumption of measure-
ment invariance. This problem will also be manifest
in the linkage analysis of quantitative trait loci
(QTLs) whose action varies as a function of environ-
mental indices (Purcell & Sham, 2002).

The multivariate analysis of item-level data may
pose significant computational burdens, especially in
the case of linkage analysis. Therefore, it is important
to consider alternative approaches. One obvious
approach is to conduct the test for measurement
invariance prior to the computation of sum scores or
factor scores. If the data exhibit the property of mea-
surement invariance, then it is safe to proceed with
the variance components or linkage analysis of sum
scores or factor scores. However, if the data exhibit
non-invariance, then the investigator should consider
conducting the multivariate analysis and hope that
sufficiently rapid hardware and software are available
for the task. Another possibility to consider would be
to revise the scale to establish measurement invari-
ance. Obviously, this latter approach is not always
feasible; many measures (such as the DSM) have
established scales on which much prior research has
been done. At the very least, reporting of absence of
measurement invariance and consideration of its
likely consequences as a limitation, is warranted.

The type of absence of measurement invariance
discussed here (e.g., differences in factor loadings)
concerns an interaction between the non-invariant
item and the grouping variable (e.g., gender or envi-
ronmental exposure), where the regression of the item
on the factor is steeper for one group than for the
other. The interaction is due to the sensitivity of the
item to other variables in addition to the factor. It is
an interaction on the item level between the underly-
ing factor and the additional variable and not, as one
would conclude in an analysis of sum scores, between
the genetic factor and gender or environmental expo-
sure. Analysis of sum scores is therefore to be avoided
if individual item scores are available, and multivariate

Detecting Sex Limitation and Genotype by Environment Interaction

item-level analysis should be used instead. If a non-
invariant item is detected in a multivariate analysis,
further research may trace the nature of the additional
variable(s) that influence that item.
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Endnote

1 For the equivalence relation of factor loadings in the
common factor model and discrimination parameters
in IRT models, see Lord and Novick (1968).
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