A WEIGHT THEORY FOR UNITARY REPRESENTATIONS

THOMAS SHERMAN

Over a field of characteristic 0 certain of the simple Lie algebras have a root theory, namely those called "split" in Jacobson's book (3). We shall assume some familiarity with the subject matter of this book. Then the finite-dimensional representations of these Lie algebras have a weight theory. Our purpose here is to present a kind of weight theory for the representations of these Lie algebras when their ground field is the real numbers, and when the representation comes from a unitary group representation.

To summarize our results we let \mathfrak{G} be a real simple split Lie algebra and \mathfrak{F} a splitting Cartan subalgebra with real dual space \mathfrak{F}' . A strongly continuous unitary representation (of a Lie group) will go by the name "representation" in this paper. Let π be a representation of G, a Lie group with the Lie algebra \mathfrak{G} . Then for every $\psi \in \mathfrak{F}'$, $i\psi$ is a "weight" of π , the "weights" have constant multiplicity (assuming that the identity representation does not occur in π), and the representation space may be regarded as the direct integral over \mathfrak{F}' (with respect to Lebesgue measure) of the "infinitesimal weight spaces." In other words the representation space may be regarded as all square-integrable functions on \mathfrak{F}' with values in some fixed Hilbert space. Then for x in \mathfrak{F} , $d\pi(x)$ is multiplication by $i(\psi, x)$ ($\psi \in \mathfrak{F}'$). One biproduct of this study, useful for further application, is the fact that if e_{ϕ} is a root vector, then $d\pi(e_{\phi})$ annihilates no vector. (For more discussion of $d\pi(e_{\phi})$ see §3.)

These results were obtained in the author's doctoral dissertation at the Massachusetts Institute of Technology.

1. We begin by developing the theory for three-dimensional groups with split simple Lie algebra. These are all locally isomorphic to $SL(2, \mathbf{R})$. Groups of larger dimension are in a sense "pieced together" from these three-dimensional ones. We obtain the general theorem by "piecing it together" from the three-dimensional theorem.

Let \mathfrak{G} denote the three-dimensional real split simple Lie algebra until further notice. Let G be a fixed connected Lie group corresponding to \mathfrak{G} . \mathfrak{G} has a basis $\{e_+, x, e_-\}$ such that $[e_+, e_-] = x$ and $[x, e_{\pm}] = \pm e_{\pm}$. Let \mathfrak{S} denote the solvable subalgebra of \mathfrak{G} spanned by x and e_+ . Let S denote the connected subgroup of G with Lie algebra \mathfrak{S} . It is known that there is (up to isomorphism) only one connected Lie group with Lie algebra \mathfrak{S} . It is (isomorphic to) the subgroup of SL(2, **R**) consisting of upper-triangular matrices

Received October 15, 1964. The author is a National Science Foundation Postdoctoral Fellow.

with positive diagonal entries. Observe that this group has trivial centre and is simply connected, and is thus unique with Lie algebra \mathfrak{S} . Let E and X be the subgroups of S generated by e_+ and x respectively. Then E is normal and S is the semi-direct product of E and X. The representation theory of S is known; see (1 or 5, p. 132, Example I). There are two faithful irreducible representations σ_+ and σ_- of S. All other irreducible representations of S are the identity on E. Every representation σ of S may be written

$$\sigma = C_+ \sigma_+ \oplus C_- \sigma_- \oplus \sigma_0,$$

where $C_+ \sigma_+$ (or $C_- \sigma_-$) denotes the direct sum of σ_+ (or σ_-) a cardinal number C_+ (or C_-) times, and σ_0 is the identity on the subgroup E. σ_+ and σ_- act on $L_2(\mathbf{R})$ as follows:

(1.1)
$$\sigma_{+}(\exp(tx))f(t') = \sigma_{-}(\exp(tx))f(t') = f(t+t'),$$

(1.2)
$$\sigma_+(\exp(te_+))f(t') = \sigma_-(\exp(-te_+))f(t') = \exp(it \exp(t'))f(t').$$

We need some facts about the differential of a representation. So if π is a representation of a real Lie group L on a Hilbert space H, let $C^{\infty}(\pi)$ denote the set of vectors v in H such that $\pi(\cdot) v$ is a C^{∞} function on L. $C^{\infty}(\pi)$ is a linear subset of H. It is dense and in fact contains the analytic vectors which are dense (6). For any $y \in \mathbb{R}$, the Lie algebra of L, the one-parameter unitary group $\pi(\exp(\mathbf{R}y))$ is generated by a skew-adjoint operator, which we denote by $d\pi(y)$, so that

$$\pi(\exp(ty)) = \exp(td\pi(y)), \qquad t \text{ in } \mathbf{R}.$$

For all v in $C^{\infty}(\pi)$, v is in the domain of $d\pi(y)$ and

$$d\pi(y)v = d\pi(\exp(ty))v/dt \qquad (\text{at } t = 0).$$

 $C^{\infty}(\pi)$ is stable under $d\pi(y)$ for all y in \mathfrak{A} and $y \to d\pi(y)|C^{\infty}(\pi)$ defines a representation of \mathfrak{A} . $d\pi(y)$ is essentially skew-adjoint on $C^{\infty}(\pi)$ (6, Lemma 5.1). $d\pi$ extends to a representation, also denoted $d\pi$, of the universal enveloping algebra U of \mathfrak{A} . Also if c is a central element of U, fixed under the antiautomorphism $u \to u'$ of U, where y' = -y for $y \in \mathfrak{A}$, then $d\pi(c)$ is essentially self-adjoint, and the spectral resolution of its self-adjoint closure commutes with $\pi(L)$ (7).

For the group S and the representations σ_+ and σ_- we have

$$C^{\infty}(\sigma_{\pm}) = C^{\infty}(\mathbf{R}) \cap \bigcap_{n=0}^{\infty} L^{2}(\mathbf{R}, e^{nt} dt),$$

(1.3) $d\sigma_+(e_+) = -d\sigma_-(e_+) = \text{multiplication by } ie^i;$

(1.4)
$$d\sigma_+(x) = d\sigma_-(x) = d/dt$$

LEMMA 1. Let σ be an arbitrary representation of S on a Hilbert space H. Let

$$H(y) = \{v \in H | \sigma(\exp(y))v = v\}$$

160

for any y in \mathfrak{S} . Then for any $t \neq 0$, $H(te_+)$ reduces σ and $\sigma(E)|H(te_+) = I$. If $t \neq 0$, H(tx) reduces σ and in fact $\sigma(S)|H(tx) = I$.

Proof. Write $\sigma = C_+ \sigma_+ \oplus C_- \sigma_- \oplus \sigma_0$. If $t \neq 0$, the representations σ_+ and σ_- leave no vector of $L^2(\mathbf{R})$ fixed under exp te_+ by (1.2). Thus the same is true of $C_+ \sigma_+$ and $C_- \sigma_-$ and their direct sum. Hence $H(te_+)$ is exactly the representation subspace of σ_0 and thus reduces σ . The same argument shows that

 $H(tx) \subseteq$ the representation subspace of $\sigma_0 = H(te_+)$.

Thus

$$\pi(S)|H(tx)| = \pi(XE)|H(tx) \cap H(te_{+})| = I.$$

LEMMA 2. Let π be a representation of G and suppose that the identity representation of G does not occur in π . Then for any vector v in the representation space H, and any $t \neq 0$, $\pi(\exp te_+)v = v$ implies v = 0.

Proof. In the universal enveloping algebra U of \mathfrak{G} consider the element $c = e_+ e_- + e_- e_+ + x^2$. c is central, as a calculation easily shows. (It suffices to check that c commutes with e_+ , x, and e_- .) It is fixed under the antiautomorphism $u \to u'$ of U, which on \mathfrak{G} is y' = -y. Thus by Segal's theorem (7), the closure of $d\pi(c)$ is self-adjoint and has a spectral resolution that commutes with π . The representation π is consequently the direct integral over the spectrum of $d\pi(c)$ of representations π^r for which $d\pi^r(c)$ is the real scalar r. If for some $v \neq 0$ in H and some $t \neq 0$ (fixed for the rest of the proof) we have $\pi(\exp te_+)v = v$, then writing $v = \int \oplus v^r$, we get

$$\pi^r(\exp te_+)v^r - v^r = 0$$

for almost all r. It therefore suffices to show that for any real number r, the lemma holds under the added assumption that $d\pi(c) = r$.

Let σ denote the restriction of π to S. Let

$$H_0 = \{v \in H | \pi(\exp(te_+)) \ v = v\} = H(te_+).$$

By Lemma 1, H_0 reduces σ , and $\pi(E)|H| = I$. Thus by the spectral theorem,

$$H_0 = \{ v \in H | d\pi(e_+)v = 0 \}.$$

Here $d\pi(e_+)$ is regarded as a skew-adjoint operator. Also since H_0 reduces σ , H_0 reduces the skew-adjoint operator $d\pi(x)$. In particular, $d\pi(x)$ and $(d\pi(x))^2$ are densely defined in H_0 .

Now for all $v \in C^{\infty}(\pi)$,

$$d\pi(e_{+})d\pi(e_{-})v = d\pi(e_{-})d\pi(e_{+})v + d\pi(x)v.$$

Choose v_0 in H_0 in the dense intersection of the domains of $d\pi(x)$ and $(d\pi(x))^2$. Then

$$\begin{aligned} \langle d\pi(e_{-})d\pi(e_{+})v, v_{0} \rangle &= \langle d\pi(e_{+})d\pi(e_{-})v, v_{0} \rangle - \langle d\pi(x)v, v_{0} \rangle \\ &= \langle d\pi(e_{-})v, -d\pi(e_{+})v_{0} \rangle + \langle v, d\pi(x)v_{0} \rangle = \langle v, d\pi(x)v_{0} \rangle. \end{aligned}$$

On the other hand,

$$rI = d\pi(c) \supseteq (2d\pi(e_{-})d\pi(e_{+}) + d\pi(x) + (d\pi(x))^{2})|C^{\infty}(\pi).$$

This implies that

$$2d\pi(e_{-})d\pi(e_{+})v = rv - d\pi(x)v - (d\pi(x))^{2}v.$$

Hence

$$\begin{aligned} \langle v, d\pi(x)v_0 \rangle &= \frac{1}{2} \langle (r - d\pi(x) - (d\pi(x))^2)v, v_0 \rangle \\ &= \frac{1}{2} \langle v, (r + d\pi(x) - (d\pi(x))^2)v_0 \rangle. \end{aligned}$$

Therefore

$$\langle v, (r - d\pi(x) - (d\pi(x))^2)v_0 \rangle = 0$$

Since v was arbitrary in the dense set $C^{\infty}(\pi)$, we have

$$(r - d\pi(x) - (d\pi(x))^2)v_0 = 0.$$

Since $d\pi(x)$ is skew-adjoint,

$$\langle d\pi(x)v_0, v_0\rangle = 0$$

Thus

$$0 = \langle (r - d\pi(x) - (d\pi(x))^2) v_0, v_0 \rangle = \langle (r - (d\pi(x))^2) v_0, v_0 \rangle.$$

Since v_0 was chosen arbitrarily from a dense set in H_0 , and since $r - (d\pi(x))^2$ is self-adjoint on H_0 , it is 0 on H_0 . Thus on H_0 we have

$$0 = r - (d\pi(x))^2 - d\pi(x) = -d\pi(x).$$

Hence $\pi(x)|H_0 = I$.

Let \mathfrak{S}_{-} denote the subalgebra of \mathfrak{G} spanned by e_{-} and x. Then \mathfrak{S}_{-} is isomorphic to \mathfrak{S} by $e_{+} \to e_{-}, x \to -x$. Let S_{-} denote the connected subgroup of G with Lie algebra \mathfrak{S}_{-} . Then S_{-} is isomorphic to S and consequently has the same representation theory. We may therefore apply Lemma 1 to the restriction of the representation π to the group S_{-} . Since $\pi(\exp(X\mathbf{R}))|H_{0} = I$, we conclude that $\pi(S_{-})|H_{0} = I$. Since the subgroups S and S_{-} generate G, and since $\pi(S_{-})|H_{0} = \pi(S)|H_{0} = I$, we have $\pi(G)|H_{0} = I$. This contradicts our assumption that the identity representation does not occur in π , unless $H_{0} = 0$.

The significance of this lemma may be seen if we again write

$$\pi|S = \sigma = C_+ \sigma_+ \oplus C_- \sigma_- \oplus \sigma_0.$$

The lemma then states that the piece σ_0 does not occur, so we have simply $\sigma = C_+ \sigma_+ \oplus C_- \sigma_-$. In particular, $\pi | X$ is just $(C_+ + C_-)$ copies of translation in $L^2(\mathbf{R})$ (see 1.1), or if one wishes, of the regular representation of X. Let us replace σ_+ and σ_- by their conjugates under the Fourier transform on $L^2(\mathbf{R})$. Then for f in $L^2(\mathbf{R})$, t, t' in **R**, we have

(1.5)
$$(\sigma_{+}(\exp(tx))f)(t') = (\sigma_{-}(\exp(tx))f)(t') = \exp(itt')f(t').$$

162

 $(\sigma_{\pm}(\exp te_{+}))$ is difficult to describe explicitly and this is why we did not originally use this form.) In differential terms (1.5) reads

(1.6)
$$d\sigma_{+}(x) = d\sigma_{-}(x) =$$
multiplication by *it*.

 $\mathfrak{H} = \{\mathbf{R}x\}$ is a splitting Cartan subalgebra of \mathfrak{G} . If we identify \mathbf{R} with \mathfrak{G}' , the real dual of \mathfrak{G} , then the representation space of π is $C_+ + C_-$ copies of $L^2(\mathfrak{G}')$ and for $f \in (C_+ + C_-)L^2(\mathfrak{G}')$, $\phi \in \mathfrak{G}'$ we have

(1.7)
$$(d\pi(x)f)(\phi) = i\phi(x)f(\phi).$$

Here we have regarded $(C_+ + C_-) L^2(\mathfrak{H}')$ as the set of all measurable functions f from \mathfrak{H}' to a fixed Hilbert space $H \cdot$ of dimension $C_+ + C_-$ such that the $H \cdot$ norm of f as a real function on \mathfrak{H}' is square-integrable. This is a standard identification; see (4). (1.7) may be interpreted as saying that each point of $i\mathfrak{H}'$ is an infinitesimal weight of multiplicity $C_+ + C_-$.

Before going on to establish these results for an arbitrary real split simple Lie algebra we need one more observation about the representation σ . Regard σ_+ and σ_- as operating on $L^2(\mathbf{R})$ with (1.5) giving σ_+ and σ_- on X. Let ρ denote the regular representation of \mathbf{R} on $L^2(\mathbf{R})$:

$$\rho(t)f(t') = f(t'-t) \qquad (f \in L^2(\mathbf{R}); t, t' \in \mathbf{R}).$$

The following three sets of operators act irreducibly on $L^2(\mathbf{R})$: $\sigma_+(S)$, $\sigma_-(S)$, and $\sigma_{\pm}(X) \cup \rho(\mathbf{R})$. We now have

LEMMA 3. Let $\sigma = C_+ \sigma_+ \oplus C_- \sigma_-$ be a representation of S on a Hilbert space H. Let P be the projection-valued measure on **R** such that

$$\sigma(\exp t'x) = \int_{\mathbf{R}} \exp(itt') P(dt).$$

Then there is a representation τ of **R** on *H* such that for any real *t*, and measurable subset *M* of **R**,

$$\tau(t)P(M)\tau(-t) = P(M+t)$$

and τ is such that if a normal operator commutes with σ , then it commutes with τ (and, of course, with P).

Proof. Let $C = C_+ + C_-$. Then $H = CL^2(\mathbf{R})$ consists of all squareintegrable functions from \mathbf{R} to a Hilbert space H of dimension C. In this representation P(M) is just multiplication by the characteristic function K_M of M, and $\tau = C\rho$. So

$$\begin{aligned} (\tau(t)P(M)\tau(-t)f)(t') &= (P(M)\tau(-t)f)(t'-t) \\ &= K_{\mathcal{M}}(t'-t)f(t') = (P(M+t)f)(t'). \end{aligned}$$

Now suppose the operator N commutes with σ . Since $C_+ \sigma_+$ and $C_- \sigma_-$ are primary, N is completely reduced by the representation subspace of $C_+ \sigma_+$ (and of $C_- \sigma_-$). C_{ρ} restricted to this space is $C_+ \rho$ ($C_- \rho$). Since σ_+ is irreducible, any operator on $L^2(\mathbf{R})$ may be strongly approximated by finite sums of ele-

ments in $\sigma_+(S)$ and, in particular, $\rho(t)$ may be so approximated. Thus if N commutes with $C_+ \sigma_+$, it commutes with all finite sums in $C_+ \sigma_+(S)$ and hence with all strong limits of such sums including $C_+ \rho(t)$. Similarly N commutes with $C_- \rho(t)$, so N commutes with $C\rho(t) = \tau(t)$ for all t.

2. Now let \mathfrak{G} denote any real simple split Lie algebra and \mathfrak{F} a splitting Cartan subalgebra with real dual space \mathfrak{F}' . Let Φ be a fundamental system of roots for \mathfrak{F} . Then Φ is a basis of \mathfrak{F}' . For any root ψ let e_{ψ} be a root vector for ψ . Let $x_{\psi} = [e_{\psi}, e_{-\psi}]$ and assume e_{ψ} and $e_{-\psi}$ to be so normalized that $\psi(x_{\psi}) = 1$. The set of vectors $F = \{x_{\phi} | \phi \in \Phi\}$ is a basis of \mathfrak{F} . Let F' denote the basis of \mathfrak{F} dual to Φ . We shall denote the elements of F' by x'_{ϕ} in such a way that $\phi_1(x'_{\phi}) = 1$ if and only if $\phi_1 = \phi$. Thus for all x in \mathfrak{F} , $x = \sum \phi(x)x'_{\phi}$ ($\phi \in \Phi$).

Now let G be any connected Lie group with Lie algebra \mathfrak{G} . The connected subgroup corresponding to \mathfrak{F} is isomorphic as a Lie group with the additive vector group \mathfrak{F} by way of the exponential map. Indeed, since \mathfrak{F} is abelian, exp is a locally isomorphic epimorphism. It is a monomorphism when G is the adjoint group, since for each x in \mathfrak{F} , ad x is diagonalizable over **R**. Since every other group G covers the adjoint group, it is a monomorphism in general.

Now the character group of $\exp(\mathfrak{H})$ may be identified with \mathfrak{H}' by $(\exp x, \psi) = \exp(i\psi(x))$ for $x \in \mathfrak{H}, \psi \in \mathfrak{H}'$. If η is any representation of the group $\exp \mathfrak{H}$, there is a projection valued measure \mathfrak{P}_{η} on \mathfrak{H}' such that

$$\eta(\exp x) = \int_{\mathfrak{H}'} \exp(i\phi(x))\mathfrak{P}_{\eta}(\mathrm{d}\phi) \qquad \text{for all } x \text{ in } \mathfrak{H}$$

The following theorem asserts that when η is the restriction to $\exp(\mathfrak{H})$ of a representation of G, then \mathfrak{P}_{η} is distributed over \mathfrak{H}' as evenly as possible.

THEOREM 1. Let π be a representation of G on the Hilbert space H. Assume that the identity representation does not occur in π . Then H consists of C copies of $L^2(\mathfrak{H}')$ for some cardinal number C, and π restricted to the subgroup $\exp(\mathfrak{H})$ consists of C copies of the representation η^0 on $L^2(\mathfrak{H}')$:

$$(\eta^{0}(\exp x)f)(\phi) = \exp(i\phi(x))f(\phi).$$

Preliminaries to the proof. Let $\mathfrak{P} = \mathfrak{P}_{\eta}$ be the projection valued measure on \mathfrak{H}' for the representation $\eta = \pi |\exp(\mathfrak{H})$. We shall show that for every $\psi \in \mathfrak{H}'$ there is a unitary operator $\tau(\psi)$ on H such that if \mathfrak{M} is a measurable subset of \mathfrak{H}' , then

$$\tau(\psi)\mathfrak{P}(\mathfrak{M})\tau(\psi)^{-1}=\mathfrak{P}(\mathfrak{M}+\psi).$$

We shall do this by applying Lemmas 2 and 3 to the connected three-dimensional subgroups G_{ϕ} of G which correspond to the Lie albegras \bigotimes_{ϕ} spanned by e_{ϕ} , x_{ϕ} , and $e_{-\phi}$, ϕ a root. But in order to apply Lemma 2, we must show that the restriction of π to G_{ϕ} does not contain the identity representation of G_{ϕ} .

Now a vector v in H is fixed under $\pi(G_{\phi})$ if and only if it is fixed under $\pi(\exp(\mathbf{R}x))$. The necessity of this condition is clear. The sufficiency follows from Lemma 1 applied to the subgroups S_{ϕ} and $S_{-\phi}$ spanned by $\{e_{\phi}, x_{\phi}\}$ and

 $\{e_{-\phi}, -x_{\phi}\}$, showing that v is fixed under $\pi(S_{\phi})$ and $\pi(S_{-\phi})$, which generate $\pi(G_{\phi})$. Let ψ be another root. Then either $[x_{\phi}, e_{\psi}] = 0$ or $\psi(x_{\phi}) \neq 0$. In the first case, $\pi(\exp(\mathbf{R}e_{\psi}))$ commutes with $\pi(\exp(\mathbf{R}x_{\phi}))$. In the second case, we may apply Lemma 1 to the connected subgroup of G whose Lie algebra is spanned by $\{x_{\phi}/\psi(x_{\phi}), e_{\psi}\}$. In either case we conclude that $\pi(\exp(te_{\psi}))$ maps the space H_0 of fixed vectors of $\pi(\exp(\mathbf{R}x_{\phi}))$ onto itself. Since the root vectors generate \mathfrak{G} , we have that a generating set of one-parameter subgroups of $\pi(G)$ leave H_0 fixed. So H_0 reduces π . Restrict π to H_0 . We have already observed that $\pi(G_{\phi})|H_0 = I$. Since \mathfrak{G} is simple, it follows that $\pi(G)|H_0 = I$. Since we are assuming that the identity representation does not occur in π , we have proved

LEMMA 4. Let π be a representation of G in which the identity representation does not occur. Then the identity representation does not occur in the restriction of π to G_{ϕ} for any root ϕ .

COROLLARY 1. Let π be as in Lemma 4. Let e_{ϕ} be a root vector and $t \neq 0$. Then $\pi(\exp(te_{\phi}))$ leaves no non-zero vector fixed.

Proof. Apply Lemma 2 to the restriction of π to G_{ϕ} .

COROLLARY 2. Let $\phi \in \Phi$ and let \mathfrak{S}'_{ϕ} denote the subalgebra of \mathfrak{G} spanned by $\{x'_{\phi}, e_{\phi}\}$. Let S'_{ϕ} be the corresponding connected subgroup of G. S'_{ϕ} is isomorphic to the subgroup S of $SL(2, \mathbb{R})$. If $\sigma = \pi | S'_{\phi}$, then $\sigma = C_{+} \sigma_{+} \oplus C_{-} \sigma_{-}$, i.e., σ_{0} does not occur in σ .

Proof. S'_{ϕ} is isomorphic to S since \mathfrak{S}'_{ϕ} is isomorphic to \mathfrak{S} by $x'_{\phi} \to x, e_{\phi} \to e_{+}$. So the representation theory of S'_{ϕ} is identical with that of S. In particular, we may write $\sigma = C_{+} \sigma_{+} \oplus C_{-} \sigma_{-} \oplus \sigma_{0}$ for any representation σ of S'_{ϕ} . If $\sigma = \pi | S'_{\phi}$, however, it follows immediately from Corollary 1 that σ_{0} does not occur.

Proof of Theorem 1. Throughout this proof M, M_1 , etc. will denote Lebesgue measurable subsets of **R**. So for such a set M and $\phi_1 \in \Phi$ we define (M, ϕ_1) to be the subset of \mathfrak{H}' :

$$\{\sum_{\phi \in \Phi} t_{\phi} \phi | t_{\phi_1} \in M, t_{\phi} \in \mathbf{R} \text{ for } \phi \neq \phi_1\}.$$

So if we were to co-ordinatize \mathfrak{H}' with the basis $\{\phi_1, \ldots\} = \Phi$, then

$$(M, \phi_1) = M \times \mathbf{R} \times \ldots \times \mathbf{R}.$$

For the next two paragraphs fix $\phi \in \Phi$. Consider π restricted to the subgroup S'_{ϕ} of Corollary 2. By Corollary 2 and Lemma 3, there exists a projection valued measure P on \mathbf{R} such that

$$\pi(\exp(t'x'_{\phi})) = \int_{\mathbf{R}} (\exp(it't)P_{\phi}(dt))$$

and a representation τ_{ϕ} of **R** on *H* such that

$$\tau_{\phi}(t)P_{\phi}(M)\tau_{\phi}(-t) = P_{\phi}(M+t).$$

Now on the other hand we have the projection valued measure \mathfrak{P} on \mathfrak{H}' such that

$$\pi(\exp x) = \int_{\mathfrak{G}'} \exp(i\psi(x))\mathfrak{P}(d\psi).$$

Let P'_{ϕ} be defined on the measurable sets M of **R** by $P'_{\phi}(M) = \mathfrak{P}((M, \phi))$. Thus $P'_{\phi}(dt) = \mathfrak{P}((dt, \phi))$. Then

$$\begin{split} \int_{\mathbf{R}} \exp(it't) P'_{\phi}(dt) &= \int_{\mathbf{R}} \exp(i\psi(t'x'_{\phi})) \mathfrak{P}((dt,\phi)) \\ &= \int_{\mathbf{R}} \exp(i\psi(t'x'_{\phi})) \mathfrak{P}(d\psi) = \pi(\exp t'x'_{\phi}) = \int_{\mathbf{R}} \exp(it't) P_{\phi}(dt), \end{split}$$

where in the second expression on the left we take $\psi = t\phi + \psi^{\sim}$, where $\psi^{\sim}(x'_{\phi}) = 0$ and otherwise ψ^{\sim} is arbitrary. We conclude, by the uniqueness of the measure P_{ϕ} , that $P'_{\phi} = P_{\phi}$, i.e. $P_{\phi}(M) = \mathfrak{P}((M, \phi))$. So we have

$$\tau_{\phi}(t)\mathfrak{P}((M,\phi))\tau_{\phi}(t)^{-1} = \tau_{\phi}(t)P_{\phi}(M)\tau_{\phi}(t)^{-1} = P_{\phi}(M+t) = \mathfrak{P}((M,\phi) + t\phi).$$

Now pick $\psi \in \Phi$, $\psi \neq \phi$. Then for $x'_{\psi} \in F'$ we have $[x'_{\psi}, x'_{\phi}] = 0$ and $[x'_{\psi}, e_{\phi}] = \phi(x'_{\psi})e_{\phi} = 0$. So $\exp(\mathbf{R}x'_{\psi})$ commutes with S'_{ϕ} and $\pi(\exp(\mathbf{R}x'_{\psi}))$ commutes with the representation τ_{ϕ} of **R** by Lemma 3. Now, as with ϕ , we define P_{ψ} and prove that $P_{\psi}(M) = \mathfrak{P}((M, \psi))$. Then since τ_{ϕ} commutes with

$$\pi(\exp t' x'_{\psi}) = \int_{\mathbf{R}} \exp(it't) P_{\psi}(dt),$$

 τ_{ϕ} also commutes with $P_{\psi}(M) = \mathfrak{P}((M, \psi))$ for all measurable sets M in **R**. But since $\psi \neq \phi$, we have $(M, \psi) = (M, \psi) - t\phi$. Thus

$$\tau_{\phi}(t)\mathfrak{P}((M,\psi))\tau_{\phi}(t)^{-1}=\mathfrak{P}((M,\psi))=\mathfrak{P}((M,\psi)-t\phi).$$

Thus for all $\psi \in \Phi$, whether $\psi = \phi$ or not, we have

$$\tau_{\phi}(t)\mathfrak{P}((M,\psi))\tau_{\phi}(t)^{-1}=\mathfrak{P}((M,\psi)-t\phi).$$

The projection valued measure \mathfrak{P} is known to be regular (2, §§38 and 39) and is therefore determined by its values on the rectangles $(M_1, \phi_1) \cap \ldots \cap (M_n, \phi_n)$, where $\phi_1, \ldots, \phi_n \in \Phi$ and M_1, \ldots, M_n are measurable subsets of **R**. But

$$\tau_{\phi}(t)\mathfrak{P}((M_{1},\phi_{1})\cap\ldots\cap(M_{n},\phi_{n}))\tau_{\phi}(t)^{-1}$$

$$=(\tau_{\phi}(t)\mathfrak{P}((M_{1},\phi_{1}))\tau_{\phi}(t)^{-1})\cdot\ldots\cdot(\tau_{\phi}(t)\mathfrak{P}((M_{n},\phi_{n}))\tau_{\phi}(t)^{-1})$$

$$=\mathfrak{P}((M_{1},\phi_{1})+t\phi)\cdot\ldots\cdot\mathfrak{P}((M_{n},\phi_{n})+t\phi)$$

$$=\mathfrak{P}((M_{1},\phi_{1})\cap\ldots\cap(M_{n},\phi_{n})+t\phi).$$

So for any measurable subset \mathfrak{M} of \mathfrak{H}' and *t* real and $\phi \in \phi$ we have

$$\tau_{\phi}(t)\mathfrak{P}(\mathfrak{M})\tau_{\phi}(t)^{-1} = \mathfrak{P}(\mathfrak{M} + t\phi)$$

166

Now for each ψ in \mathfrak{H}' write

$$\psi = \sum_{j=1}^{n} t_j \phi_j \qquad (\phi_j \in \Phi)$$

and let $\tau(\psi) = \tau_{\phi_1}(t_1) \cdots \tau_{\phi_n}(t_n)$. $\tau(\psi)$ is not uniquely defined and τ is not a representation of \mathfrak{H}' . However, it is unitary and

$$\tau(\psi)\mathfrak{P}(\mathfrak{M})\tau(\psi)^{-1} = \tau_{\phi_1}(t_1)\cdots\tau_{\phi_n}(t_n)\mathfrak{P}(\mathfrak{M})\tau_{\phi_n}(t_n)^{-1}\cdots\tau_{\phi_1}(t_1)^{-1}$$

= $\tau_{\phi_1}(t_1)\cdots\tau_{\phi_{n-1}}(t_{n-1})\mathfrak{P}(\mathfrak{M}+t_n\phi_n)\tau_{\phi_{n-1}}(t_{n-1})^{-1}\cdots\tau_{\phi_1}(t_1)^{-1}$
= \ldots = $\mathfrak{P}(\mathfrak{M}+t_1\phi_1+\ldots+t_n\phi_n)$ = $\mathfrak{P}(\mathfrak{M}+\psi).$

We may now apply the second and third paragraphs of (4, §6). There Mackey proves exactly what we want. In his notation, \mathfrak{H}' is an abelian locally compact group G, ψ is σ, \mathfrak{P} is P, \mathfrak{M} is $E, \tau(-\psi)$ is U_{σ} . For him, U is a representation, but this fact is not used in the paragraphs in question or in the results invoked there. His conclusion stated in our notation is that H is some cardinal number of copies of $L^2(\mathfrak{H}')$ and that $\mathfrak{P}(\mathfrak{M})$ is multiplication by the characteristic function of \mathfrak{M} on each copy. Since

$$\pi(\exp x) = \int_{\mathfrak{G}'} \exp(i\psi(x))\mathfrak{P}(d\psi),$$

this completes our proof.

3. We conclude with some heuristic remarks intended to strengthen the impression that we have here a weight theory. H will be a fixed Hilbert space and π a representation of G in which the identity representation does not occur. Then, by Theorem 1, we may regard H as the set of all square-integrable functions from \mathfrak{H}' to some fixed Hilbert space $H \cdot$, and $\pi(\exp x)$ is multiplication by the function $(\psi \to \exp(i\psi(x)) \ (\psi \in \mathfrak{H}'))$. Let Ω denote the set of all functions f in H (from \mathfrak{H}' to $H \cdot$) which are the restriction to \mathfrak{H}' of entire (vector-valued) functions, again denoted by f, on the complexification of \mathfrak{H}' ; assume further that the function f_{ψ} defined by $f_{\psi}(\cdot) = f(\cdot + i\psi)$ is in H for each $\psi \in \mathfrak{H}'$. Ω may easily be seen to be dense in H. For any root ϕ define the operator T_{ϕ} on Ω by $(T_{\phi}f)(\psi) = f(\psi + i\phi) = f_{\phi}(\psi)$. Now for any x in \mathfrak{H} and f in Ω we have

$$[d\pi(x), T_{\phi}]f(\psi) = (d\pi(x)T_{\phi} - T_{\phi}d\pi(x))f(\psi)$$

= $i\psi(x)f(\psi + i\phi) - i(\psi + i\phi)(x)f(\psi + i\phi) = \phi(x)T_{\phi}f(\psi)$

or $[d\pi(x), T_{\phi}] = \phi(x)T_{\phi}$. Thus T_{ϕ} interacts with $d\pi(\mathfrak{H})$ on Ω in the same way $d\pi(e_{\phi})$ does on $C^{\infty}(\pi)$. Were Ω and $C^{\infty}(\pi)$ to coincide, this would imply that $d\pi(e_{\phi}) = AT_{\phi}$, where A is some unbounded operator commuting with $d\pi(\mathfrak{H})$. The actual situation is more complicated, but one can show that $d\pi(e_{\phi}) = UiT_{\phi}U^{-1}$, where the unitary operator U commutes with $d\pi(\mathfrak{H})$ and may therefore be regarded as a function on \mathfrak{H}' whose values are unitary operators on H'. For the moment, we see little use for such a result and merely wish to point out the analogy with finite-dimensional representations: The

operator $d\pi(e_{\phi})$ shifts the weight spaces by an amount ϕ and then operates on the shifted space.

In much the same spirit, the operators $\pi(g)$ may be partially described, where g is a coset representation of an element of the Weyl group, i.e. Ad $g(\mathfrak{H}) \subseteq \mathfrak{H}$. Let $\omega(g)$ be defined on H by

$$\omega(g)f(\psi) = f(\psi \circ \operatorname{Ad}(g)).$$

Since Ad(g) is of determinant 1 on \mathfrak{H} , $\omega(g)$ is unitary. Also for any $x \in \mathfrak{H}$,

$$\begin{split} \omega(g)\pi(\exp x)f(\psi) &= \exp(i\psi(\operatorname{Ad}\,g(x)))f(\psi \circ \operatorname{Ad}\,g) \\ &= \pi(\exp(\operatorname{Ad}\,g(x)))\omega(g)f(\psi) = \pi(g\exp(x)g^{-1}\omega(g)f(\psi) \\ &= \pi(g)\pi(\exp x)\pi(g^{-1})\omega(g)f(\psi). \end{split}$$

So $\pi(g)\omega(g^{-1})$ commutes with $\pi(\exp x)$ for all x in \mathfrak{H} . Thus $\pi(g) = U_g\omega(g)$, where U_g commutes with $\pi(\exp \mathfrak{H})$ and may thus be considered a function on \mathfrak{H}' whose values are unitary operators on H'.

References

- 1. I. Gelfand and M. Naimark, Unitary representations of the group of linear transformations of the straight line, C. R. (Doklady), Acad. Sci. U.S.S.R. (N.S.), 55 (1947), 567-570.
- 2. Paul Halmos, Introduction to Hilbert space and the theory of spectral multiplicity (New York, 1957).
- 3. Nathan Jacobson, Lie algebras (New York, 1962).
- 4. George W. Mackey, A theorem of Stone and von Neumann, Duke Math J., 16 (1949), 313-326.
- 5. —— Induced representations of locally compact groups I, Ann. of Math., 55 (1952), 101–139.
- 6. Edward Nelson, Analytic vectors, Ann. of Math., 70 (1959), 572-615.
- 7. I. E. Segal, Hypermaximality of certain operators on Lie groups, Proc. Amer. Math. Soc., 3 (1952), 13-15.

The Institute for Advanced Study, Princeton