A WEIGHT THEORY FOR UNITARY REPRESENTATIONS

THOMAS SHERMAN

Over a field of characteristic 0 certain of the simple Lie algebras have a root theory, namely those called "split" in Jacobson's book (3). We shall assume some familiarity with the subject matter of this book. Then the finite-dimensional representations of these Lie algebras have a weight theory. Our purpose here is to present a kind of weight theory for the representations of these Lie algebras when their ground field is the real numbers, and when the representation comes from a unitary group representation.

To summarize our results we let $(\mathbb{5}$ be a real simple split Lie algebra and \mathfrak{S} a splitting Cartan subalgebra with real dual space \mathfrak{S}^{\prime}. A strongly continuous unitary representation (of a Lie group) will go by the name "representation" in this paper. Let π be a representation of G, a Lie group with the Lie algebra (5). Then for every $\psi \in \mathfrak{S}^{\prime}$, $i \psi$ is a "weight" of π, the "weights" have constant multiplicity (assuming that the identity representation does not occur in π), and the representation space may be regarded as the direct integral over \mathfrak{S}^{\prime} (with respect to Lebesgue measure) of the "infinitesimal weight spaces." In other words the representation space may be regarded as all square-integrable functions on \mathfrak{F}^{\prime} with values in some fixed Hilbert space. Then for x in \mathfrak{F}, $d \pi(x)$ is multiplication by $i(\psi, x)\left(\psi \in \mathfrak{S}^{\prime}\right)$. One biproduct of this study, useful for further application, is the fact that if e_{ϕ} is a root vector, then $d \pi\left(e_{\phi}\right)$ annihilates no vector. (For more discussion of $d \pi\left(e_{\phi}\right)$ see $\S 3$.)

These resuits were obtained in the author's doctoral dissertation at the Massachusetts Inistitute of Technology.

1. We begin by developing the theory for three-dimensional groups with split simple Lie algebra. These are all locally isomorphic to $\operatorname{SL}(2, \mathbf{R})$. Groups of larger dimension are in a sense "pieced together" from these three-dimensional ones. We obtain the general theorem by "piecing it together" from the three-dimensional theorem.

Let ${ }^{(5)}$ denote the three-dimensional real split simple Lie algebra until further notice. Let G be a fixed connected Lie group corresponding to (5). (5) has a basis $\left\{e_{+}, x, e_{-}\right\}$such that $\left[e_{+}, e_{-}\right]=x$ and $\left[x, e_{ \pm}\right]= \pm e_{ \pm}$. Let \mathfrak{S} denote the solvable subalgebra of (5) spanned by x and e_{+}. Let S denote the connected subgroup of G with Lie algebra \subseteq. It is known that there is (up to isomorphism) only one connected Lie group with Lie algebra $\mathfrak{\subseteq}$. It is (isomorphic to) the subgroup of $\operatorname{SL}(2, \mathbf{R})$ consisting of upper-triangular matrices

Received October 15, 1964. The author is a National Science Foundation Postdoctoral Fellow.
with positive diagonal entries. Observe that this group has trivial centre and is simply connected, and is thus unique with Lie algebra \subseteq. Let E and X be the subgroups of S generated by e_{+}and x respectively. Then E is normal and S is the semi-direct product of E and X. The representation theory of S is known; see ($\mathbf{1}$ or 5, p. 132, Example I). There are two faithful irreducible representations σ_{+}and σ_{-}of S. All other irreducible representations of S are the identity on E. Every representation σ of S may be written

$$
\sigma=C_{+} \sigma_{+} \oplus C_{-} \sigma_{-} \oplus \sigma_{0}
$$

where $C_{+} \sigma_{+}$(or $C_{-} \sigma_{-}$) denotes the direct sum of σ_{+}(or σ_{-}) a cardinal number C_{+}(or C_{-}) times, and σ_{0} is the identity on the subgroup $E . \sigma_{+}$and σ_{-}act on $L_{2}(\mathbf{R})$ as follows:

$$
\begin{gather*}
\sigma_{+}(\exp (t x)) f\left(t^{\prime}\right)=\sigma_{-}(\exp (t x)) f\left(t^{\prime}\right)=f\left(t+t^{\prime}\right) \tag{1.1}\\
\sigma_{+}\left(\exp \left(t e_{+}\right)\right) f\left(t^{\prime}\right)=\sigma_{-}\left(\exp \left(-t e_{+}\right)\right) f\left(t^{\prime}\right)=\exp \left(i t \exp \left(t^{\prime}\right)\right) f\left(t^{\prime}\right) \tag{1.2}
\end{gather*}
$$

We need some facts about the differential of a representation. So if π is a representation of a real Lie group L on a Hilbert space H, let $C^{\infty}(\pi)$ denote the set of vectors v in H such that $\pi(\cdot) v$ is a C^{∞} function on $L . C^{\infty}(\pi)$ is a linear subset of H. It is dense and in fact contains the analytic vectors which are dense (6). For any $y \in \Omega$, the Lie algebra of L, the one-parameter unitary group $\pi(\exp (\mathbf{R} y))$ is generated by a skew-adjoint operator, which we denote by $d \pi(y)$, so that

$$
\pi(\exp (t y))=\exp (t d \pi(y)), \quad t \text { in } \mathbf{R}
$$

For all v in $C^{\infty}(\pi), v$ is in the domain of $d \pi(y)$ and

$$
d \pi(y) v=d \pi(\exp (t y)) v / d t \quad(\text { at } t=0)
$$

$C^{\infty}(\pi)$ is stable under $d \pi(y)$ for all y in \mathfrak{R} and $y \rightarrow d \pi(y) \mid C^{\infty}(\pi)$ defines a representation of $\mathbb{R} . d \pi(y)$ is essentially skew-adjoint on $C^{\infty}(\pi ;)$ (6 , Lemma 5.1). $d \pi$ extends to a representation, also denoted $d \pi$, of the universal enveloping algebra U of \mathbb{R}. Also if c is a central element of U, rixed under the antiautomorphism $u \rightarrow u^{\prime}$ of U, where $y^{\prime}=-y$ for $y \in \mathcal{Q}$, then $d \pi(c)$ is essentially self-adjoint, and the spectral resolution of its self-iddjoint closure commutes with $\pi(L)$ (7).

For the group S and the representations σ_{+}and σ_{-}we have

$$
\begin{align*}
C^{\infty}\left(\sigma_{ \pm}\right) & =C^{\infty}(\mathbf{R}) \cap \bigcap_{n=0}^{\infty} L^{2}\left(\mathbf{R}, e^{n t} d t\right) \\
d \sigma_{+}\left(e_{+}\right) & =-d \sigma_{-}\left(e_{+}\right)=\text {multiplication by } i e^{t} \tag{1.3}\\
d \sigma_{+}(x) & =d \sigma_{-}(x)=d / d t \tag{1.4}
\end{align*}
$$

Lemma 1. Let σ be an arbitrary representation of S on a Hilbert space H. Let

$$
H(y)=\{v \in H \mid \sigma(\exp (y)) v=v\}
$$

for any y in \subseteq. Then for any $t \neq 0, H\left(t e_{+}\right)$reduces σ and $\sigma(E) \mid H\left(t e_{+}\right)=I$. If $t \neq 0, H(t x)$ reduces σ and in fact $\sigma(S) \mid H(t x)=I$.

Proof. Write $\sigma=C_{+} \sigma_{+} \oplus C_{-} \sigma_{-} \oplus \sigma_{0}$. If $t \neq 0$, the representations σ_{+}and σ_{-}leave no vector of $L^{2}(\mathbf{R})$ fixed under $\exp t e_{+}$by (1.2). Thus the same is true of $C_{+} \sigma_{+}$and $C_{-} \sigma_{-}$and their direct sum. Hence $H\left(t e_{+}\right)$is exactly the representation subspace of σ_{0} and thus reduces σ. The same argument shows that

Thus

$$
H(t x) \subseteq \text { the representation subspace of } \sigma_{0}=H\left(t e_{+}\right)
$$

$$
\pi(S)|H(t x)=\pi(X E)| H(t x) \cap H\left(t e_{+}\right)=I
$$

Lemma 2. Let π be a representation of G and suppose that the identity representation of G does not occur in π. Then for any vector v in the representation space H, and any $t \neq 0, \pi\left(\exp t e_{+}\right) v=v$ implies $v=0$.

Proof. In the universal enveloping algebra U of 55 consider the element $c=e_{+} e_{-}+e_{-} e_{+}+x^{2} . c$ is central, as a calculation easily shows. (It suffices to check that c commutes with e_{+}, x, and e_{-}.) It is fixed under the antiautomorphism $u \rightarrow u^{\prime}$ of U, which on ${ }^{5} 5$ is $y^{\prime}=-y$. Thus by Segal's theorem (7), the closure of $d \pi(c)$ is self-adjoint and has a spectral resolution that commutes with π. The representation π is consequently the direct integral over the spectrum of $d \pi(c)$ of representations π^{r} for which $d \pi^{r}(c)$ is the real scalar r. If for some $v \neq 0$ in H and some $t \neq 0$ (fixed for the rest of the proof) we have $\pi\left(\exp t e_{+}\right) v=v$, then writing $v=\int \oplus v^{r}$, we get

$$
\pi^{r}\left(\exp t e_{+}\right) v^{\tau}-v^{\tau}=0
$$

for almost all r. It therefore suffices to show that for any real number r, the lemma holds under the added assumption that $d \pi(c)=r$.

Let σ denote the restriction of π to S. Let

$$
H_{0}=\left\{v \in H \mid \pi\left(\exp \left(t e_{+}\right)\right) v=v\right\}=H\left(t e_{+}\right) .
$$

By Lemma 1, H_{0} reduces σ, and $\pi(E) \mid H=I$. Thus by the spectral theorem,

$$
H_{0}=\left\{v \in H \mid d \pi\left(e_{+}\right) v=0\right\}
$$

Here $d \pi\left(e_{+}\right)$is regarded as a skew-adjoint operator. Also since H_{0} reduces σ, H_{0} reduces the skew-adjoint operator $d \pi(x)$. In particular, $d \pi(x)$ and $(d \pi(x))^{2}$ are densely defined in H_{0}.

Now for all $v \in C^{\infty}(\pi)$,

$$
d \pi\left(e_{+}\right) d \pi\left(e_{-}\right) v=d \pi\left(e_{-}\right) d \pi\left(e_{+}\right) v+d \pi(x) v .
$$

Choose v_{0} in H_{0} in the dense intersection of the domains of $d \pi(x)$ and $(d \pi(x))^{2}$. Then

$$
\begin{aligned}
& \left\langle d \pi\left(e_{-}\right) d \pi\left(e_{+}\right) v, v_{0}\right\rangle=\left\langle d \pi\left(e_{+}\right) d \pi\left(e_{-}\right) v, v_{0}\right\rangle-\left\langle d \pi(x) v, v_{0}\right\rangle \\
& \quad=\left\langle d \pi\left(e_{-}\right) v,-d \pi\left(e_{+}\right) v_{0}\right\rangle+\left\langle v, d \pi(x) v_{0}\right\rangle=\left\langle v, d \pi(x) v_{0}\right\rangle .
\end{aligned}
$$

On the other hand,

$$
r I=d \pi(c) \supseteq\left(2 d \pi\left(e_{-}\right) d \pi\left(e_{+}\right)+d \pi(x)+(d \pi(x))^{2}\right) \mid C^{\infty}(\pi) .
$$

This implies that

$$
2 d \pi\left(e_{-}\right) d \pi\left(e_{+}\right) v=r v-d \pi(x) v-(d \pi(x))^{2} v .
$$

Hence

$$
\begin{aligned}
\left\langle v, d \pi(x) v_{0}\right\rangle & =\frac{1}{2}\left\langle\left(r-d \pi(x)-(d \pi(x))^{2}\right) v, v_{0}\right\rangle \\
& =\frac{1}{2}\left\langle v,\left(r+d \pi(x)-(d \pi(x))^{2}\right) v_{0}\right\rangle .
\end{aligned}
$$

Therefore

$$
\left\langle v,\left(r-d \pi(x)-(d \pi(x))^{2}\right) v_{0}\right\rangle=0 .
$$

Since v was arbitrary in the dense set $C^{\infty}(\pi)$, we have

$$
\left(r-d \pi(x)-(d \pi(x))^{2}\right) v_{0}=0
$$

Since $d \pi(x)$ is skew-adjoint,

$$
\left\langle d \pi(x) v_{0}, v_{0}\right\rangle=0 .
$$

Thus

$$
0=\left\langle\left(r-d \pi(x)-(d \pi(x))^{2}\right) v_{0}, v_{0}\right\rangle=\left\langle\left(r-(d \pi(x))^{2}\right) v_{0}, v_{0}\right\rangle .
$$

Since v_{0} was chosen arbitrarily from a dense set in H_{0}, and since $r-(d \pi(x))^{2}$ is self-adjoint on H_{0}, it is 0 on H_{0}. Thus on H_{0} we have

$$
0=r-(d \pi(x))^{2}-d \pi(x)=-d \pi(x)
$$

Hence $\pi(x) \mid H_{0}=I$.
Let \mathbb{S}_{-}denote the subalgebra of (\mathfrak{F}) spanned by e_{-}and x. Then \mathbb{S}_{-}is isomorphic to \mathfrak{S} by $e_{+} \rightarrow e_{-}, x \rightarrow-x$. Let S_{-}denote the connected subgroup of G with Lie algebra \mathfrak{S}_{-}. Then S_{-}is isomorphic to S and consequently has the same representation theory. We may therefore apply Lemma 1 to the restriction of the representation π to the group S_{-}. Since $\pi(\exp (X \mathbf{R})) \mid H_{0}=I$, we conclude that $\pi\left(S_{-}\right) \mid H_{0}=I$. Since the subgroups S and S_{-}generate G, and since $\pi\left(S_{-}\right)\left|H_{0}=\pi(S)\right| H_{0}=I$, we have $\pi(G) \mid H_{0}=I$. This contradicts our assumption that the identity representation does not occur in π, unless $H_{0}=0$.

The significance of this lemma may be seen if we again write

$$
\pi \mid S=\sigma=C_{+} \sigma_{+} \oplus C_{-} \sigma_{-} \oplus \sigma_{0} .
$$

The lemma then states that the piece σ_{0} does not occur, so we have simply $\sigma=C_{+} \sigma_{+} \oplus C_{-} \sigma_{-}$. In particular, $\pi \mid X$ is just ($C_{+}+C_{-}$) copies of translation in $L^{2}(\mathbf{R})$ (see 1.1), or if one wishes, of the regular representation of X. Let us replace σ_{+}and σ_{-}by their conjugates under the Fourier transform on $L^{2}(\mathbf{R})$. Then for f in $L^{2}(\mathbf{R}), t, t^{\prime}$ in \mathbf{R}, we have

$$
\begin{equation*}
\left(\sigma_{+}(\exp (t x)) f\right)\left(t^{\prime}\right)=\left(\sigma_{-}(\exp (t x)) f\right)\left(t^{\prime}\right)=\exp \left(i t t^{\prime}\right) f\left(t^{\prime}\right) \tag{1.5}
\end{equation*}
$$

($\sigma_{ \pm}\left(\exp t e_{+}\right)$is difficult to describe explicitly and this is why we did not originally use this form.) In differential terms (1.5) reads

$$
\begin{equation*}
d \sigma_{+}(x)=d \sigma_{-}(x)=\text { multiplication by } i t . \tag{1.6}
\end{equation*}
$$

$\mathfrak{S}=\{\mathbf{R} x\}$ is a splitting Cartan subalgebra of \mathfrak{H}. If we identify \mathbf{R} with \mathfrak{S}^{\prime}, the real dual of \mathfrak{S}, then the representation space of π is $C_{+}+C_{-}$copies of $L^{2}\left(\mathfrak{F}^{\prime}\right)$ and for $f \in\left(C_{+}+C_{-}\right) L^{2}\left(\mathfrak{S}^{\prime}\right), \phi \in \mathfrak{Y}^{\prime}$ we have

$$
\begin{equation*}
(d \pi(x) f)(\phi)=i \phi(x) f(\phi) \tag{1.7}
\end{equation*}
$$

Here we have regarded $\left(C_{+}+C_{-}\right) L^{2}\left(\mathfrak{F}^{\prime}\right)$ as the set of all measurable functions f from \mathfrak{S}^{\prime} to a fixed Hilbert space H • of dimension $C_{+}+C_{-}$such that the H. norm of f as a real function on \mathfrak{W}^{\prime} is square-integrable. This is a standard identification; see (4). (1.7) may be interpreted as saying that each point of $i \mathscr{S}^{\prime}$ is an infinitesimal weight of multiplicity $C_{+}+C_{-}$.

Before going on to establish these results for an arbitrary real split simple Lie algebra we need one more observation about the representation σ. Regard σ_{+}and σ_{-}as operating on $L^{2}(\mathbf{R})$ with (1.5) giving σ_{+}and σ_{-}on X. Let ρ denote the regular representation of \mathbf{R} on $L^{2}(\mathbf{R})$:

$$
\rho(t) f\left(t^{\prime}\right)=f\left(t^{\prime}-t\right) \quad\left(f \in L^{2}(\mathbf{R}) ; t, t^{\prime} \in \mathbf{R}\right)
$$

The following three sets of operators act irreducibly on $L^{2}(\mathbf{R}): \sigma_{+}(S), \sigma_{-}(S)$, and $\sigma_{ \pm}(X) \cup \rho(\mathbf{R})$. We now have

Lemma 3. Let $\sigma=C_{+} \sigma_{+} \oplus C_{-} \sigma_{-}$be a representation of S on a Hilbert space H. Let P be the projection-valued measure on \mathbf{R} such that

$$
\sigma\left(\exp t^{\prime} x\right)=\int_{\mathbf{R}} \exp \left(i t t^{\prime}\right) P(d t)
$$

Then there is a representation τ of \mathbf{R} on H such that for any real t, and measurable subset M of \mathbf{R},

$$
\tau(t) P(M) \tau(-t)=P(M+t)
$$

and τ is such that if a normal operator commutes with σ, then it commutes with τ (and, of course, with P).

Proof. Let $C=C_{+}+C_{-}$. Then $H=C L^{2}(\mathbf{R})$ consists of all squareintegrable functions from \mathbf{R} to a Hilbert space H. of dimension C. In this representation $P(M)$ is just multiplication by the characteristic function K_{M} of M, and $\tau=C \rho$. So

$$
\begin{aligned}
(\tau(t) P(M) \tau(-t) f)\left(t^{\prime}\right) & =(P(M) \tau(-t) f)\left(t^{\prime}-t\right) \\
& =K_{M}\left(t^{\prime}-t\right) f\left(t^{\prime}\right)=(P(M+t) f)\left(t^{\prime}\right) .
\end{aligned}
$$

Now suppose the operator N commutes with σ. Since $C_{+} \sigma_{+}$and $C_{-} \sigma_{-}$are primary, N is completely reduced by the representation subspace of $C_{+} \sigma_{+}$ (and of $C_{-} \sigma_{-}$). C_{ρ} restricted to this space is $C_{+} \rho\left(C_{-} \rho\right)$. Since σ_{+}is irreducible, any operator on $L^{2}(\mathbf{R})$ may be strongly approximated by finite sums of ele-
ments in $\sigma_{+}(S)$ and, in particular, $\rho(t)$ may be so approximated. Thus if N commutes with $C_{+} \sigma_{+}$, it commutes with all finite sums in $C_{+} \sigma_{+}(S)$ and hence with all strong limits of such sums including $C_{+} \rho(t)$. Similarly N commutes with $C_{-} \rho(t)$, so N commutes with $C_{\rho}(t)=\tau(t)$ for all t.
2. Now let \mathfrak{G} denote any real simple split Lie algebra and $\mathfrak{5}$ a splitting Cartan subalgebra with real dual space \mathfrak{W}^{\prime}. Let Φ be a fundamental system of roots for \mathfrak{S}. Then Φ is a basis of \mathfrak{S}^{\prime}. For any root ψ let e_{ψ} be a root vector for ψ. Let $x_{\psi}=\left[e_{\psi}, e_{-\psi}\right]$ and assume e_{ψ} and $e_{-\psi}$ to be so normalized that $\psi\left(x_{\psi}\right)=1$. The set of vectors $F=\left\{x_{\phi} \mid \phi \in \Phi\right\}$ is a basis of \mathfrak{W}. Let F^{\prime} denote the basis of \mathfrak{F} dual to Φ. We shall denote the elements of F^{\prime} by x_{ϕ}^{\prime} in such a way that $\phi_{1}\left(x_{\phi}^{\prime}\right)=1$ if and only if $\phi_{1}=\phi$. Thus for all x in $\mathfrak{S}, x=\sum \phi(x) x_{\phi}^{\prime}(\phi \in \Phi)$.

Now let G be any connected Lie group with Lie algebra (5). The connected subgroup corresponding to \mathfrak{S} is isomorphic as a Lie group with the additive vector group \mathfrak{W} by way of the exponential map. Indeed, since \mathfrak{F} is abelian, exp is a locally isomorphic epimorphism. It is a monomorphism when G is the adjoint group, since for each x in \mathfrak{F}, ad x is diagonalizable over \mathbf{R}. Since every other group G covers the adjoint group, it is a monomorphism in general.

Now the character group of $\exp (\mathfrak{F})$ may be identified with \mathfrak{S}^{\prime} by $(\exp x, \psi)=\exp (i \psi(x))$ for $x \in \mathfrak{W}, \psi \in \mathfrak{W}^{\prime}$. If η is any representation of the group $\exp \mathfrak{S}$, there is a projection valued measure $\mathfrak{B}_{\boldsymbol{\eta}}$ on \mathfrak{S}^{\prime} such that

$$
\eta(\exp x)=\int_{\mathfrak{W}^{\prime}} \exp (i \phi(x)) \mathscr{P}_{\eta}(\mathrm{d} \phi) \quad \text { for all } x \text { in } \mathscr{I} .
$$

The following theorem asserts that when η is the restriction to $\exp (\mathfrak{y})$ of a representation of G, then \mathfrak{F}_{η} is distributed over \mathfrak{S}^{\prime} as evenly as possible.

Theorem 1. Let π be a representation of G on the Hilbert space H. Assume that the identity representation does not occur in π. Then H consists of C copies of $L^{2}\left(\mathfrak{S}^{\prime}\right)$ for some cardinal number C, and π restricted to the subgroup $\exp (\mathfrak{5})$ consists of C copies of the representation η^{0} on $L^{2}\left(\mathfrak{S}^{\prime}\right)$:

$$
\left(\eta^{0}(\exp x) f\right)(\phi)=\exp (i \phi(x)) f(\phi)
$$

Preliminaries to the proof. Let $\mathfrak{P}=\mathfrak{F}_{\eta}$ be the projection valued measure on \mathfrak{S}^{\prime} for the representation $\eta=\pi \mid \exp (\mathfrak{S})$. We shall show that for every $\psi \in \mathfrak{F}^{\prime}$ there is a unitary operator $\tau(\psi)$ on H such that if \mathfrak{M} is a measurable subset of \mathfrak{S}^{\prime}, then

$$
\tau(\psi) \mathfrak{B}(\mathfrak{M}) \tau(\psi)^{-1}=\mathfrak{P}(\mathfrak{M}+\psi) .
$$

We shall do this by applying Lemmas 2 and 3 to the connected three-dimensional subgroups G_{ϕ} of G which correspond to the Lie albegras \mathbb{G}_{ϕ} spanned by e_{ϕ}, x_{ϕ}, and $e_{-\phi}, \phi$ a root. But in order to apply Lemma 2, we must show that the restriction of π to G_{ϕ} does not contain the identity representation of G_{ϕ}.

Now a vector v in H is fixed under $\pi\left(G_{\phi}\right)$ if and only if it is fixed under $\pi(\exp (\mathbf{R} x))$. The necessity of this condition is clear. The sufficiency follows from Lemma 1 applied to the subgroups S_{ϕ} and $S_{-\phi}$ spanned by $\left\{e_{\phi}, x_{\phi}\right\}$ and
$\left\{e_{-\phi},-x_{\phi}\right\}$, showing that v is fixed under $\pi\left(S_{\phi}\right)$ and $\pi\left(S_{-\phi}\right)$, which generate $\pi\left(G_{\phi}\right)$. Let ψ be another root. Then either $\left[x_{\phi}, e_{\psi}\right]=0$ or $\psi\left(x_{\phi}\right) \neq 0$. In the first case, $\pi\left(\exp \left(\mathbf{R} e_{\psi}\right)\right)$ commutes with $\pi\left(\exp \left(\mathbf{R} x_{\phi}\right)\right)$. In the second case, we may apply Lemma 1 to the connected subgroup of G whose Lie algebra is spanned by $\left\{x_{\phi} / \psi\left(x_{\phi}\right), e_{\psi}\right\}$. In either case we conclude that $\pi\left(\exp \left(t e_{\psi}\right)\right)$ maps the space H_{0} of fixed vectors of $\pi\left(\exp \left(\mathbf{R} x_{\phi}\right)\right)$ onto itself. Since the root vectors generate (J), we have that a generating set of one-parameter subgroups of $\pi(G)$ leave H_{0} fixed. So H_{0} reduces π. Restrict π to H_{0}. We have already observed that $\pi\left(G_{\phi}\right) \mid H_{0}=I$. Since (5) is simple, it follows that $\pi(G) \mid H_{0}=I$. Since we are assuming that the identity representation does not occur in π, we have proved

Lemma 4. Let π be a representation of G in which the identity representation does not occur. Then the identity representation does not occur in the restriction of π to G_{ϕ} for any root ϕ.

Corollary 1. Let π be as in Lemma 4. Let e_{ϕ} be a root vector and $t \neq 0$. Then $\pi\left(\exp \left(t e_{\phi}\right)\right)$ leaves no non-zero vector fixed.

Proof. Apply Lemma 2 to the restriction of π to G_{ϕ}.
Corollary 2. Let $\phi \in \Phi$ and let $\mathbb{S}_{\phi}^{\prime}$ denote the subalgebra of $\mathfrak{G H}$ spanned by $\left\{x_{\phi}^{\prime}, e_{\phi}\right\}$. Let S_{ϕ}^{\prime} be the corresponding connected subgroup of $G .{S^{\prime}}_{\phi}$ is isomorphic to the subgroup S of $\mathrm{SL}(2, \mathbf{R})$. If $\sigma=\pi \mid S_{\phi}^{\prime}$, then $\sigma=C_{+} \sigma_{+} \oplus C_{-} \sigma_{-}$, i.e., σ_{0} does not occur in σ.

Proof. S_{ϕ}^{\prime} is isomorphic to S since $\mathbb{S}_{\phi}^{\prime}$ is isomorphic to \mathbb{S} by $x_{\phi}^{\prime} \rightarrow x, e_{\phi} \rightarrow e_{+}$. So the representation theory of S_{ϕ}^{\prime} is identical with that of S. In particular, we may write $\sigma=C_{+} \sigma_{+} \oplus C_{-} \sigma_{-} \oplus \sigma_{0}$ for any representation σ of S_{ϕ}^{\prime}. If $\sigma=\pi \mid S_{\phi}^{\prime}$, however, it follows immediately from Corollary 1 that σ_{0} does not occur.

Proof of Theorem 1. Throughout this proof M, M_{1}, etc. will denote Lebesgue measurable subsets of \mathbf{R}. So for such a set M and $\phi_{1} \in \Phi$ we define (M, ϕ_{1}) to be the subset of \mathfrak{F}^{\prime} :

$$
\left\{\sum_{\phi \Phi \Phi} t_{\phi} \phi \mid t_{\phi_{1}} \in M, t_{\phi} \in \mathbf{R} \text { for } \phi \neq \phi_{1}\right\}
$$

So if we were to co-ordinatize \mathfrak{S}^{\prime} with the basis $\left\{\phi_{1}, \ldots\right\}=\Phi$, then

$$
\left(M, \phi_{1}\right)=M \times \mathbf{R} \times \ldots \times \mathbf{R}
$$

For the next two paragraphs fix $\phi \in \Phi$. Consider π restricted to the subgroup S_{ϕ}^{\prime} of Corollary 2. By Corollary 2 and Lemma 3, there exists a projection valued measure P on \mathbf{R} such that

$$
\pi\left(\exp \left(t^{\prime} x_{\phi}^{\prime}\right)\right)=\int_{\mathbf{R}}\left(\exp \left(i t^{\prime} t\right) P_{\phi}(d t)\right.
$$

and a representation τ_{ϕ} of \mathbf{R} on H such that

$$
\tau_{\phi}(t) P_{\phi}(M) \tau_{\phi}(-t)=P_{\phi}(M+t)
$$

Now on the other hand we have the projection valued measure \mathfrak{B} on \mathfrak{S}^{\prime} such that

$$
\pi(\exp x)=\int_{\mathfrak{F}^{\prime}} \exp (i \psi(x)) \mathfrak{P}(d \psi) .
$$

Let P_{ϕ}^{\prime} be defined on the measurable sets M of \mathbf{R} by $P_{\phi}^{\prime}(M)=\mathfrak{P}((M, \phi))$. Thus $P_{\phi}^{\prime}(d t)=\mathfrak{P}((d t, \phi))$. Then

$$
\begin{aligned}
& \int_{\mathbf{R}} \exp \left(i t^{\prime} t\right) P_{\phi}^{\prime}(d t)=\int_{\mathbf{R}} \exp \left(i \psi\left(t^{\prime} x_{\phi}^{\prime}\right)\right) \mathfrak{B}((d t, \phi)) \\
& \quad=\int_{\mathbf{R}} \exp \left(i \psi\left(t^{\prime} x_{\phi}^{\prime}\right)\right) \mathfrak{B}(d \psi)=\pi\left(\exp t^{\prime} x_{\phi}^{\prime}\right)=\int_{\mathbf{R}} \exp \left(i t^{\prime} t\right) P_{\phi}(d t),
\end{aligned}
$$

where in the second expression on the left we take $\psi=t \phi+\psi^{\sim}$, where $\psi^{\sim}\left(x_{\phi}^{\prime}\right)=0$ and otherwise ψ^{\sim} is arbitrary. We conclude, by the uniqueness of the measure P_{ϕ}, that $P_{\phi}^{\prime}=P_{\phi}$, i.e. $P_{\phi}(M)=\mathfrak{B}((M, \phi))$. So we have

$$
\tau_{\phi}(t) \mathfrak{P}((M, \phi)) \tau_{\phi}(t)^{-1}=\tau_{\phi}(t) P_{\phi}(M) \tau_{\phi}(t)^{-1}=P_{\phi}(M+t)=\mathfrak{P}((M, \phi)+t \phi) .
$$

Now pick $\psi \in \Phi, \psi \neq \phi$. Then for $x^{\prime}{ }_{\psi} \in F^{\prime}$ we have $\left[x^{\prime}{ }_{\psi}, x_{\phi}^{\prime}\right]=0$ and $\left[x^{\prime}{ }_{\psi}, e_{\phi}\right]=\phi\left(x^{\prime}{ }_{\psi}\right) e_{\phi}=0$. So $\exp \left(\mathbf{R} x^{\prime}{ }_{\psi}\right)$ commutes with S_{ϕ}^{\prime} and $\pi\left(\exp \left(\mathbf{R} x^{\prime}{ }_{\psi}\right)\right)$ commutes with the representation τ_{ϕ} of \mathbf{R} by Lemma 3 . Now, as with ϕ, we define P_{ψ} and prove that $P_{\psi}(M)=\mathfrak{B}((M, \psi))$. Then since τ_{ϕ} commutes with

$$
\pi\left(\exp t^{\prime} x_{\psi}^{\prime}\right)=\int_{\mathbf{R}} \exp \left(i t^{\prime} t\right) P_{\psi}(d t)
$$

τ_{ϕ} also commutes with $P_{\psi}(M)=\mathfrak{P}((M, \psi))$ for all measurable sets M in \mathbf{R}. But since $\psi \neq \phi$, we have $(M, \psi)=(M, \psi)-t \phi$. Thus

$$
\tau_{\phi}(t) \mathfrak{P}((M, \psi)) \tau_{\phi}(t)^{-1}=\mathfrak{P}((M, \psi))=\mathfrak{P}((M, \psi)-t \phi) .
$$

Thus for all $\psi \in \Phi$, whether $\psi=\phi$ or not, we have

$$
\tau_{\phi}(t) \mathfrak{F}((M, \psi)) \tau_{\phi}(t)^{-1}=\mathfrak{P}((M, \psi)-t \phi) .
$$

The projection valued measure \mathfrak{F} is known to be regular (2, $\S \S 38$ and 39) and is therefore determined by its values on the rectangles $\left(M_{1}, \phi_{1}\right) \cap \ldots \cap$ (M_{n}, ϕ_{n}), where $\phi_{1}, \ldots, \phi_{n} \in \Phi$ and M_{1}, \ldots, M_{n} are measurable subsets of R. But

$$
\begin{aligned}
\tau_{\phi}(t) & \mathfrak{P} \\
& \left(\left(M_{1}, \phi_{1}\right) \cap \ldots \cap\left(M_{n}, \phi_{n}\right)\right) \tau_{\phi}(t)^{-1} \\
& =\left(\tau_{\phi}(t) \mathfrak{P}\left(\left(M_{1}, \phi_{1}\right)\right) \tau_{\phi}(t)^{-1}\right) \cdot \ldots \cdot\left(\tau_{\phi}(t) \mathfrak{B}\left(\left(M_{n}, \phi_{n}\right)\right) \tau_{\phi}(t)^{-1}\right) \\
& =\mathfrak{B}\left(\left(M_{1}, \phi_{1}\right)+t \phi\right) \cdot \ldots \cdot \mathfrak{P}\left(\left(M_{n}, \phi_{n}\right)+t \phi\right) \\
& =\mathfrak{B}\left(\left(M_{1}, \phi_{1}\right) \cap \ldots \cap\left(M_{n}, \phi_{n}\right)+t \boldsymbol{\phi}\right) .
\end{aligned}
$$

So for any measurable subset \mathfrak{M} of \mathfrak{S}^{\prime} and t real and $\phi \in \phi$ we have

$$
\tau_{\phi}(t) \mathfrak{P}(\mathfrak{M}) \tau_{\phi}(t)^{-1}=\mathfrak{B}(\mathfrak{M}+t \phi) .
$$

Now for each ψ in \mathfrak{S}^{\prime} write

$$
\psi=\sum_{j=1}^{n} t_{j} \phi_{j} \quad\left(\phi_{j} \in \Phi\right)
$$

and let $\tau(\psi)=\tau_{\phi_{1}}\left(t_{1}\right) \cdot \ldots \cdot \tau_{\phi_{n}}\left(t_{n}\right) . \tau(\psi)$ is not uniquely defined and τ is not a representation of \mathfrak{S}^{\prime}. However, it is unitary and

$$
\begin{aligned}
\tau(\psi) & \mathfrak{P}(\mathfrak{M}) \tau(\psi)^{-1}=\tau_{\phi_{1}}\left(t_{1}\right) \cdot \ldots \cdot \tau_{\phi_{n}}\left(t_{n}\right) \mathfrak{P}(\mathfrak{M}) \tau_{\phi_{n}}\left(t_{n}\right)^{-1} \ldots \ldots \tau_{\phi_{1}}\left(t_{1}\right)^{-1} \\
& =\tau_{\phi_{1}}\left(t_{1}\right) \cdot \ldots \cdot \tau_{\phi_{n-1}}\left(t_{n-1}\right) \mathfrak{B}\left(\mathfrak{M}+t_{n} \phi_{n}\right) \tau_{\phi_{n-1}}\left(t_{n-1}\right)^{-1} \cdot \ldots \cdot \tau_{\phi_{1}}\left(t_{1}\right)^{-1} \\
& =\ldots=\mathfrak{P}\left(\mathfrak{M}+t_{1} \phi_{1}+\ldots+t_{n} \phi_{n}\right)=\mathfrak{B}(\mathfrak{M}+\psi) .
\end{aligned}
$$

We may now apply the second and third paragraphs of (4, §6). There Mackey proves exactly what we want. In his notation, \mathfrak{S}^{\prime} is an abelian locally compact group G, ψ is σ, \mathfrak{P} is P, \mathfrak{M} is $E, \tau(-\psi)$ is U_{σ}. For him, U is a representation, but this fact is not used in the paragraphs in question or in the results invoked there. His conclusion stated in our notation is that H is some cardinal number of copies of $L^{2}\left(\mathfrak{g}^{\prime}\right)$ and that $\mathfrak{P}(\mathfrak{M})$ is multiplication by the characteristic function of \mathfrak{M} on each copy. Since

$$
\pi(\exp x)=\int_{\mathfrak{W}^{\prime}} \exp (i \psi(x)) \mathfrak{B}(d \psi),
$$

this completes our proof.
3. We conclude with some heuristic remarks intended to strengthen the impression that we have here a weight theory. H will be a fixed Hilbert space and π a representation of G in which the identity representation does not occur. Then, by Theorem 1, we may regard H as the set of all square-integrable functions from \mathfrak{S}^{\prime} to some fixed Hilbert space H^{\cdot}, and $\pi(\exp x)$ is multiplication by the function $\left(\psi \rightarrow \exp (i \psi(x))\left(\psi \in \mathfrak{S}^{\prime}\right)\right)$. Let Ω denote the set of all functions f in H (from \mathfrak{S}^{\prime} to H^{\cdot}) which are the restriction to \mathfrak{S}^{\prime} of entire (vector-valued) functions, again denoted by f, on the complexification of \mathfrak{W}^{\prime}; assume further that the function f_{ψ} defined by $f_{\psi}(\cdot)=f(\cdot+i \psi)$ is in H for each $\psi \in \mathfrak{S}^{\prime}$. Ω may easily be seen to be dense in H. For any root ϕ define the operator T_{ϕ} on Ω by $\left(T_{\phi} f\right)(\psi)=f(\psi+i \phi)=f_{\phi}(\psi)$. Now for any x in \mathfrak{S} and f in Ω we have

$$
\begin{aligned}
& {\left[d \pi(x), T_{\phi}\right] f(\psi)=\left(d \pi(x) T_{\phi}-T_{\phi} d \pi(x)\right) f(\psi)} \\
& \quad=i \psi(x) f(\psi+i \phi)-i(\psi+i \phi)(x) f(\psi+i \phi)=\phi(x) T_{\phi} f(\psi)
\end{aligned}
$$

or $\left[d \pi(x), T_{\phi}\right]=\phi(x) T_{\phi}$. Thus T_{ϕ} interacts with $d \pi(\mathfrak{L})$ on Ω in the same way $d \pi\left(e_{\phi}\right)$ does on $C^{\infty}(\pi)$. Were Ω and $C^{\infty}(\pi)$ to coincide, this would imply that $d \pi\left(e_{\phi}\right)=A T_{\phi}$, where A is some unbounded operator commuting with $d \pi(\mathfrak{W})$. The actual situation is more complicated, but one can show that $d \pi\left(e_{\phi}\right)=U i T_{\phi} U^{-1}$, where the unitary operator U commutes with $d \pi(\mathfrak{W})$ and may therefore be regarded as a function on \mathfrak{S}^{\prime} whose values are unitary operators on H. For the moment, we see little use for such a result and merely wish to point out the analogy with finite-dimensional representations: The
operator $d \pi\left(e_{\phi}\right)$ shifts the weight spaces by an amount ϕ and then operates on the shifted space.

In much the same spirit, the operators $\pi(g)$ may be partially described, where g is a coset representation of an element of the Weyl group, i.e. Ad $g(\mathfrak{Y}) \subseteq \mathfrak{F}$. Let $\omega(g)$ be defined on H by

$$
\omega(g) f(\psi)=f(\psi \circ \operatorname{Ad}(g))
$$

Since $\operatorname{Ad}(g)$ is of determinant 1 on $\mathfrak{S}, \omega(g)$ is unitary. Also for any $x \in \mathfrak{S}$,

$$
\begin{aligned}
& \omega(g) \pi(\exp x) f(\psi)=\exp (i \psi(\operatorname{Ad} g(x))) f(\psi \circ \operatorname{Ad} g) \\
& \quad=\pi(\exp (\operatorname{Ad} g(x))) \omega(g) f(\psi)=\pi\left(g \exp (x) g^{-1} \omega(g) f(\psi)\right. \\
& \quad=\pi(g) \pi(\exp x) \pi\left(g^{-1}\right) \omega(g) f(\psi)
\end{aligned}
$$

So $\pi(g) \omega\left(g^{-1}\right)$ commutes with $\pi(\exp x)$ for all x in \mathfrak{F}. Thus $\pi(g)=U_{\rho} \omega(g)$, where U_{g} commutes with $\pi(\exp \mathfrak{G})$ and may thus be considered a function on \mathfrak{F}^{\prime} whose values are unitary operators on H.

References

1. I. Gelfand and M. Naimark, Unitary representations of the group of linear transformations of the straight line, C. R. (Doklady), Acad. Sci. U.S.S.R. (N.S.), 55 (1947), 567-570.
2. Paul Halmos, Introduction to Hilbert space and the theory of spectral multiplicity (New York, 1957).
3. Nathan Jacobson, Lie algebras (New York, 1962).
4. George W. Mackey, A theorem of Stone and von Neumann, Duke Math J., 16 (1949), 313-326.
5. -——Induced representations of locally compact groups I, Ann. of Math., 55 (1952), 101-139.
6. Edward Nelson, Analytic vectors, Ann. of Math., 70 (1959), 572-615.
7. I. E. Segal, Hypermaximality of certain operators on Lie groups, Proc. Amer. Math. Soc., 3 (1952), 13-15.

The Institute for Advanced Study, Princeton

