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Introduction

1.1 What Is Kinetic Theory?

Kinetic theory is a branch of statistical mechanics that aims to derive expressions
for the macroscopic properties of fluids in terms of the microscopic properties of
the constituent particles. These properties include nonequilibrium quantities, such
as diffusion coefficients and viscosities, which do not follow in a straightforward
way from the standard techniques based on Boltzmann–Gibbs ensembles. The
microscopic properties include single-particle properties, such as particle masses
and sizes as well as the interactions between particles, and their interactions through
external forces with the outside world, including boundaries. The methods of
kinetic theory are based upon the laws of mechanics, either classical or quantum,
that describe the motion of the system of particles.1 However, kinetic theory is not
based on solutions of these equations for the full system but rather on estimates
of the average behavior of ensembles of mechanically identical systems that differ
only in their initial conditions. In this respect, kinetic theory is properly thought
of as a branch of statistical mechanics, since it uses statistical methods in order
to determine the typical, or most likely, behaviors of systems of many particles. It
had its origins almost three centuries ago in the work of D. Bernoulli (1738), who
used a simple kinetic theory to derive the perfect gas equation of state. The first
application of kinetic theory to transport phenomena may have been accomplished
by J. J. Herapath (1847), who used arguments based on collision dynamics to
explain experiments by T. Graham on the diffusion of gases through small holes.
By the time of J. C. Maxwell’s prediction that the viscosity of a gas is independent
of density (1860), the use of kinetic theory to explain transport phenomena in gases
was accepted by many workers.

The aim of nonequilibrium statistical mechanics, including kinetic theory, to
characterize macroscopic systems that are out of equilibrium requires it to focus
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2 Introduction

on dynamical processes taking place in the system. First of all, for particles that
interact with short-range forces, these are collisions between the constituent parti-
cles or between the particles and the boundaries. In the case of particles that interact
with long-range forces, such as in the interactions of charged particles, collective
effects can dominate the dynamics. The particles of interest can be electrons, nuclei,
atoms, molecules, excitations such as phonons, photons, colloidal particles, bits of
dust, planets, galaxies, etc. In many cases, the boundaries may also be considered as
a type of particle and treated as such in the basic equations. The possibility to treat
such a wide variety of systems accounts for many modern applications of kinetic
theory, many of which we will explore in this book.2

1.2 The Kinetic Theory of Gases

1.2.1 Dilute Gases

The development of kinetic theory began in the eighteenth century with the work
of Daniel Bernoulli, who was able to show3 in 1738 that the pressure of a dilute gas
on its container is proportional to the mean square molecular velocity. The theory
was further advanced in the first part of the nineteenth century by John Herapath
(1820) and by John J. Waterston (1845). The work of these pioneers eventually
led to the recognition of the connection between the thermodynamic temperature
of a gas and the average kinetic energy of its molecules, which resulted in the
well-known kinetic theory derivation of the perfect gas equation of state. It should
be noted that this work was carried out at a time when the existence of atoms
and molecules as individual particles with empty space between them was not at
all obvious, and many prominent scientists at the time did not believe in them. In
fact, the atomic picture of matter was not universally accepted until the early part
of the twentieth century. The general acceptance of the atomic picture was due,
among other things, to A. Einstein’s explanation of Brownian motion in terms of
fluctuations in a fluid composed of individual particles, followed by J. B. Perrin’s
quantitative confirmations of Einstein’s predictions, and to the successful explana-
tions of thermodynamic and transport properties of solids and fluids based upon
statistical thermodynamics and the kinetic theory of gases. The lack of univer-
sal acceptance of the atomic picture notwithstanding, the kinetic theory of gases
became a central pillar of physics with the work of Maxwell and L. Boltzmann in
the later part of the nineteenth century. Today, the methods developed by Herapath
and Waterston, based on collisions of particles with each other and with the walls
of the container, are often used to provide elementary derivations of the expressions
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1.2 The Kinetic Theory of Gases 3

for thermodynamic and transport properties of rarefied and dilute gases [71, 72].4

They form the subject matter of elementary books on the kinetic theory of gases.
Maxwell and Boltzmann used statistical methods to compute the properties of

gases, recognizing that the random motion of gas molecules could be best described
by distribution functions. In addition to giving the equilibrium form of the velocity
distribution function for gases, Maxwell derived equations for the transport of
mass, energy, and momentum for a dilute gas. For a fictitious gas of molecules
that interact with central, two-body repulsive forces proportional to the inverse
fifth power of the distance between the centers of a pair of particles, the so-called
Maxwell molecules, Maxwell was able to derive explicit expressions for the trans-
port coefficients appearing in the Navier–Stokes equations [465]. In particular, he
was able to show that for dilute gases, the coefficients of shear viscosity and thermal
conductivity would be independent of the gas density, in agreement with exper-
imental results. The most important advance in the nineteenth century, and one
that set the stage for almost all of the later developments in kinetic theory and its
many applications, was made by Boltzmann in 1872 [57]. He used mechanical and
statistical arguments to obtain an equation – the Boltzmann transport equation – that
describes the irreversible time evolution of the single-particle velocity and position
distribution function for a dilute gas not in equilibrium. The Boltzmann equation is
extremely successful as a tool for calculating the transport properties of dilute gases
and gas mixtures, so much so that the results obtained are often used to test different
models of pair potentials by comparing theoretical values for given potentials with
experimental results.

The first systematic calculations of transport properties of dilute gases and
their mixtures based on the Boltzmann equation were carried out independently
by S. Chapman [88] and by D. Enskog [175, 176] in 1917.5 They used this
equation as a starting point for a derivation of the Navier–Stokes equations of fluid
dynamics and obtained explicit expressions for the transport coefficients appearing
in these equations. On the basis of his theoretical work on gas mixtures, Enskog
discovered the phenomenon of thermal diffusion, which – years later – provided a
method for separation of isotopes of uranium for use in atomic bombs and nuclear
reactors [558].

As we will discuss in greater detail in Chapter 2, the Boltzmann equation is not
invariant under a time-reversal transformation where all velocities and the direc-
tion of time change sign. In fact, Boltzmann constructed a function out of the
single-particle distribution function, called the H -function, which decreases mono-
tonically in time unless the gas is at equilibrium. Of course, this means that the
Boltzmann equation is not a consequence of only the applications of the basic
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equations of mechanics to behavior of dilute gases. Instead, there is embedded in
Boltzmann’s derivation a stochastic assumption, the Stosszahlansatz, that breaks
the time-reversal symmetry of the description of the dynamics of the gas. Although
the Stosszahlansatz is not a purely mechanical statement, it reflects the expected
and typical behavior of a dilute gas that is not in equilibrium. It can also be thought
of as statement about the initial state of the gas that is assumed to be propagated
forward in time.

1.2.2 Enskog’s Extension of the Boltzmann Equation to Dense,
Hard Sphere Gases

The first important extension of the Boltzmann equation to higher densities was
made by D. Enskog [175, 176] in 1922. He considered only hard-sphere gases and
modified Boltzmann’s arguments in a way that includes some but not all of the
effects of higher densities. First of all, Enskog took into account excluded volume
effects. At finite densities, the presence of other particles reducing the available free
volume for a given pair enhances the probability for a collision between this pair.
In addition, Enskog realized that the finite size of the particles, coupled with the
hard-sphere potential, allows an instantaneous transfer of momentum and energy
over a distance of the diameter of a sphere at each binary collision. The inclusion
of excluded volume and collisional transfer effects allows the Enskog equation to
apply to very dense hard-sphere fluids. The Enskog theory is only an approximation
to a kinetic equation for dense gases, but it provides useful estimates for nonequi-
librium properties of such gases. As we will see further on, Enskog’s methods need
to be refined when applied to mixtures of hard spheres; otherwise, one obtains
expressions for transport coefficients that are not consistent with the Onsager recip-
rocal relations [508, 509, 22]. This refinement, now called the revised Enskog
equation, was obtained by H. van Beijeren and M. H. Ernst in 1973 [644, 645].
It leads to the same transport coefficients as the usual Enskog equation for pure
hard-sphere gases and to transport coefficients that satisfy the Onsager relations for
mixtures of hard spheres. The Enskog and revised Enskog equations can be applied
to other types of monatomic particles besides hard spheres if one replaces the
correct interaction potentials by “effective” hard-sphere interactions using effective
hard-sphere radii obtained by finding the best fit of some thermodynamic property
of the system to a hard-sphere model. In many cases, the results so obtained are
in good agreement with experimental results. As we discuss later in this book,
the revised Enskog theory is also capable of describing some properties of hard-
sphere solids, since the equations of an elastic solid can be obtained from it, with
approximate expressions for the elastic coefficients, the heat conduction coefficient,
and the sound attenuation constants.
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1.2.3 Derivations of the Boltzmann Equation Using the Liouville Equation

In order to derive the Boltzmann equation and to justify the Stosszahlansatz, one
must start from some more fundamental equation for the distribution functions
characterizing the gas and then obtain the Boltzmann equation by making some
plausible [406] and physically motivated assumptions. Such a derivation is also
important and even necessary for extending the Boltzmann equation in a systematic
way to dense gases. The natural starting point is the Liouville equation [549], which
describes the time development of the complete N -particle distribution function
for a gas of N particles. This equation is reversible and follows directly from the
mechanical equations of motion. While it was long recognized that a derivation
of the Boltzmann equation should be based upon the Liouville equation, it was
not until the work of N. N. Bogoliubov [55] in 1947, completed later by M. S.
Green [270, 271] and by E. G. D. Cohen [98, 99, 100, 101, 102], that satisfactory
derivations of the Boltzmann equation were given and progress was made on the
rather intricate problem of generalizing it to higher densities [274, 153, 154].6

1.2.4 Green–Kubo Formulae

Concurrently with the developments in the work to generalize the Boltzmann equa-
tion to higher densities, it was realized that the same methods are extremely useful
for the evaluation of the Green–Kubo expressions for transport coefficients, for
systems of moderately dense gases. These expressions, derived by M. S. Green
[268, 269] and by R. Kubo [405, 408] in the 1950s, express the hydrodynamic
transport coefficients as time integrals of equilibrium time correlations of micro-
scopic currents. The Green–Kubo formulae are quite general [709, 608, 705], not
restricted to dilute or moderately dense gases, and ideally suited for computer-
simulated molecular dynamics [312, 548]. Methods have been developed for the
evaluation of the time correlation functions, and results so obtained have been
very important for the development and testing of detailed theories of transport
phenomena in fluids. The time correlation function method and the Boltzmann
equation lead to identical results when the Green–Kubo formulae are applied to
dilute gases.7

1.2.5 Divergences in the Virial Expansions of Transport Coefficients

The efforts to generalize the Boltzmann equation to higher densities in a sys-
tematic way produced a number of discoveries that led to deeper understanding
of nonequilibrium processes in gases, and in fluids in general. These results, in
essence, opened a new era in the development of kinetic theory.8 In contrast to
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the essentially instantaneous binary collisions that are taken into account in the
Boltzmann equation, the higher-density corrections are determined by dynamical
events that take place among groups of more than two particles [274, 273, 153,
154]. These can involve much longer time scales, typically on the order of a few
mean free times. As a result of these dynamical events taking place in a gas –
or, more generally, a fluid – memory effects make their appearance in nonequilib-
rium processes, producing striking results that have no counterparts in equilibrium
statistical mechanics. For example, the thermodynamic properties of dense gases
over a wide range of gas densities are well represented by virial expansions [549],
which are series expansions in powers of the gas density. However, no such virial-
type expansions – that is, expansions in powers of the density – exist for transport
coefficients. If one assumes that such a density expansion is possible, then one finds
that only the first few powers have finite coefficients, while all further coefficients
are divergent [677, 580, 581, 154, 256]. The coefficient of each power in the density
is determined by the dynamics of a fixed number of particles in an infinite space.
The first term in such a virial-like expansion is determined by the dynamics of
two particles, the next power is determined by the dynamics of three particles, and
the number of particles in the group increases successively for the coefficients of
successively higher powers of the density. For two-dimensional systems, only the
first term, the Boltzmann contribution from binary collisions, is finite. The coeffi-
cients of all higher powers of the density diverge. For three-dimensional systems,
the first two terms, namely the two-particle and three-particle terms, are finite. The
coefficients of all higher powers diverge.9 The divergences are due to sequences
of correlated collisions that allow for correlations among the particles to extend
over large distances and long times.10 These correlations do not exist when the
gas is in equilibrium, but for systems not in equilibrium, they are responsible for
the memory effects mentioned earlier. That long-range correlations are present
in nonequilibrium fluids has been well confirmed by light scattering experiments
[323, 432, 418].

1.2.6 Mode-Coupling Theory and Long-Time Tails

The memory effects lead directly to what are often called mode-coupling effects
[218, 333, 346, 59, 251]. That is to say, the dominant parts of the memory effects
at long times, as will be made more precise later, give rise to a special structure
in the kinetic and hydrodynamic equations, in which combinations of what will
be called microscopic hydrodynamic modes appear.11 Much of this book will be
devoted to the properties of these modes and their effects on nonequilibrium pro-
cesses. The microscopic hydrodynamical modes are best thought of as the slowest-
decaying normal modes of the operator that describes the time dependence of a
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1.2 The Kinetic Theory of Gases 7

spatially nonuniform, nonequilibrium distribution function. Typically these modes
describe the time decays of microscopic fluctuations in an equilibrium fluid, or a
fluid in a nonequilibrium stationary state, via long-wavelength microscopic col-
lective excitations of the fluid. These collective modes can be classified as shear,
sound, thermal, and diffusive modes, and combinations of two or more of them arise
naturally in the equations of kinetic theory beyond the Boltzmann, binary collision
approximation.

Mode-coupling effects first made their appearance in the context of a theory
for the anomalous behavior of transport coefficients near the critical point of gas–
liquid phase transitions developed by M. Fixman [218] and by L. P. Kadanoff
and J. Swift [333]. In a different direction, people working in kinetic theory –
including R. Goldman and E. A. Frieman [256], Y. Pomeau [533, 534, 556, 536],
and J. R. Dorfman and E. G. D. Cohen [157, 156, 155] – obtained mode-coupling
contributions to the time correlation functions as a consequence of the resummation
techniques needed for the renormalization of the divergences in the density expan-
sions of transport coefficients carried out by K. Kawasaki and I. Oppenheim [350].
Kinetic theory is only one approach to obtain expressions of the mode-coupling
form. Mode-coupling theories can also be obtained using more general arguments
based on the assumption that the large-distance or small-wave-number parts of
the microscopic densities of particles, momentum, and energy obey macroscopic
hydrodynamic equations. The main observation from this work is that long-range,
long-time, dynamically produced correlations exist in a nonequilibrium fluid and
are manifested in the existence of algebraic decays in time correlation functions
for long times and can be observed in light scattering by a fluid with a stationary
temperature gradient, for example.

Dorfman and Cohen [157, 156, 155] showed that these mode-coupling contri-
butions to the time correlation functions, as obtained from kinetic theory, could
explain some remarkable results obtained by B. J. Alder and T. E. Wainwright using
computer-simulated molecular dynamics. Alder and Wainwright showed that the
velocity autocorrelation function that determines the coefficient of self-diffusion
via the Green–Kubo relations decays algebraically with time t as (t/t0)

−d/2, where
d is the number of spatial dimensions of the system and t0 is some characteristic
microscopic time such as the mean free time between collisions for a particle
in the gas [9, 10, 673]. These algebraic decays, generally called long-time tails,
have many important consequences, both experimental and theoretical, which will
be discussed in this book.12 Among other things, the slow inverse time decay
of the time correlation functions for two-dimensional systems implies that the
transport coefficients appearing in the linearized Navier–Stokes equations for two-
dimensional systems are divergent. Although for three-dimensional systems the
structure of Navier–Stokes equations is unaffected by the long-time tails, since
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the Green–Kubo expressions are convergent, a very similar divergence difficulty
appears in the higher-order hydrodynamic equations, such as the Burnett and super-
Burnett equations, and leads to a complex description of higher-order hydrodynam-
ics. As a consequence, we learn that for both two- and three-dimensional systems,
the equations of fluid dynamics are intrinsically nonanalytic in the gradients
of the hydrodynamic fields and may contain effects of the boundaries in the
equations themselves. Experimental measurements have confirmed the presence
of nonanalytic terms in hydrodynamic equations. For example, the presence of
fractional powers of the wave number and related mode-coupling effects have
been observed in neutron scattering experiments on fluids [130, 129, 491]. In other
cases, such as heat flow in a nonequilibrium stationary state with a temperature
gradient, mode-coupling effects closely related to the long-time tails produce long-
range spatial correlations that have a very strong influence on the properties of
fluctuations of the hydrodynamic fields in nonequilibrium steady states. These
effects can be orders of magnitude larger than the effects of static correlations in
the fluid. The theory for these fluctuations has been confirmed by very careful light
scattering experiments, as discussed in the next subsection [371, 374, 323].

Finally, it should be mentioned that for some complex fluids and for certain
magnetic systems, the effects of the long-time tails are even more dramatic. In both
smectic and cholesteric liquid crystals [470, 120] and in the hydrodynamic descrip-
tion of helimagnets [369], there are long-range static correlations due to a continu-
ous broken symmetry (Goldstone’s theorem) that effectively multiply and amplify
the long-time tails. In particular, for these systems, the lower critical dimension
of two for ordinary fluids is replaced by four. This, in turn, leads to transport
coefficients that diverge in three dimensions for low frequencies as 1/ω. That is, for
these systems, even in bulk systems, the leading order hydrodynamic description
breaks down.

1.2.7 Mode-Coupling Theory and Hydrodynamic Fluctuations

Mode-coupling theories can be applied to many physical situations. We will have
occasion in this book to discuss their application to light scattering by fluids in
nonequilibrium stationary states, which led to predictions of, among other effects,
a striking modification of the strength of the central Rayleigh peak [364, 371,
372, 373, 374, 160, 562, 627], since verified experimentally by J. V. Sengers and
co-workers [418, 323].13 It is also worth mentioning that the application of kinetic
theory of moderately dense gases leading to the mode-coupling equations is closely
related to the derivation of the Balescu–Lenard–Guernsey (BLG) equation used in
the theory of moderately dense plasmas [578].

https://doi.org/10.1017/9781139025942.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781139025942.002


1.2 The Kinetic Theory of Gases 9

An important example of the application of mode-coupling theory is to the theory
for the behavior of glassy materials and to the theory of the liquid–glass transition
[251]. Here the central idea is to construct a self-consistent formulation of mode-
coupling theory whereby the hydrodynamic properties of the system under study
are determined by integrals that depend upon the same hydrodynamic properties,
so that solutions can only be obtained in some self-consistent way. A remarkable
feature of such solutions is that, while based upon ad hoc approximations, these
theories provide a useful description of the transition of a liquid to an amorphous
solid, or glass, and of aspects of the behavior of such a glass [251]. The fluid–glass
transition seems to be a dynamical phase transition in the sense that the behavior
of the system is sensitive to the time scales associated with external forces applied
to the system. In such a case, the system may exhibit some form of hysteresis. Thus,
the memory effects incorporated in mode-coupling theory may play an important
role in establishing the correlations responsible for the phase transition. It is inter-
esting to note that an exact solution of the dynamics of a system of hard spheres
in infinite dimensions has been shown to have a mode-coupling-like glass transi-
tion [90, 451]. Further, the complicated features of the many possible metastable
states in this system have also been determined. These results are consistent with
the RFOT (random first-order transition) theory of the glass transition that was
introduced some time ago [389, 519].

It is important to mention that mode-coupling theory can also be obtained
in a variety of ways that do not require kinetic theory. The initial work of
L. P. Kadanoff and J. Swift [333] was based upon an insightful and clever ansatz for
the hydrodynamic modes of an N -particle Liouville operator.14 These authors took
advantage of the fact that the Liouville operator is a linear differential operator.
As a result, the product of two or more eigenfunctions is also an eigenfunction.
This provides the mechanism for the coupling of two or more hydrodynamic
modes.

Perhaps the method most widely used to develop mode-coupling theory is the
method of fluctuating hydrodynamics [412, 576, 323]. One assumes that the micro-
scopic densities of particles, momentum, and energy in a fluid obey nonlinear
Navier–Stokes-type equations in which white noise fluctuations are added to the
dissipative fluxes. The main results of mode-coupling theory are obtained as addi-
tional terms in the hydrodynamic equations by averaging over the fluctuations.
This approach to mode-coupling theory is algebraically simpler than kinetic theory
and produces the same leading terms as one obtains by kinetic theory. However,
it is not a systematic approach to nonequilibrium processes in fluids, and kinetic
theory provides additional terms, however small, that are not obtained by the use
of fluctuating hydrodynamics.
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1.2.8 Model Systems

As with most, if not all, issues in statistical physics, a great deal can be learned by
considering simplified models. Such models are constructed so as to exhibit some
central features of more complex and realistic systems and yet are simple enough
to allow a more detailed treatment than might be possible for more complicated
systems. Kinetic theory utilizes many such model systems. One prominent model
already mentioned is the hard-sphere gas. This model can be studied in any number
of dimensions and has the advantage that the collisions between particles are all
instantaneous, binary collisions [158, 190]. Mixtures of hard spheres are also
convenient models for study. The first important extension of the Boltzmann
equation to higher densities, the Enskog theory, was specifically formulated for
hard-sphere particles for which both excluded volume effects and collisional
transport of momentum and energy can be accounted for in a straightforward way
[175, 176, 89, 644, 645]. While the Enskog theory does not provide a systematic
extension of the Boltzmann equation to higher densities, and it does not account
for many dynamical processes taking place in the gas, it nevertheless gives a
good representation of experimental data for dense fluids, provided one uses an
appropriate value of an effective hard-sphere radius for the particles of the real gas
under study.15 Another version of the Boltzmann equation is the lattice Boltzmann
equation [37, 684, 615]. This is a discretized version of the Boltzmann equation
appropriate for a system consisting of a collection of particles moving on a lattice.
The particles may jump from one site on the lattice to another at discrete times, and
particles approaching the same lattice point from different directions collide with
each other according to a set of collision rules, which may be either deterministic or
probabilistic. All possible particle velocities are directed along the various bonds of
the lattice and remain so after each collision. Such a gas is called a cellular automata
lattice gas (CALG) [235, 332, 58, 684, 565]. A CALG is easily simulated on a
computer since the dynamics can be reduced to the simple integer operations of a
Boolean algebra. It was thought at one time that CALGs would provide an efficient
way to simulate complicated hydrodynamic flows, and they attracted a great deal of
attention for this reason. However, it became clear that some of the early hopes were
too optimistic. Nevertheless, CALGs are indeed useful for studying such flows on
a computer, and the kinetic theory for them has been studied in some detail.

A mixture of particular interest for the development of kinetic theory is the
Lorentz gas. This is a binary mixture of two gases, one very heavy and one very
light. This model was used by H. A. Lorentz [440, 89] as a way to understand
the motion of electrons in metals and to develop a theoretical expression for the
resistance of a wire. One limiting case of the model that has been studied in great
depth, both theoretically and by means of computer simulations, is the case where
the heavy particles are fixed in space (that is, infinitely heavy), and the density
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of the light particles is so low that they can be considered as independent and
not interacting with each other16 [69, 70, 299, 48, 617]. One particular version
of Lorentz-type models was invented by P. and T. Ehrenfest to clarify and illustrate
the assumptions made by Boltzmann in his derivation of the Boltzmann transport
equation. In the Ehrenfest model, also known as the wind-tree model, the fixed
particles (or “trees”) are squares in a plane with their diagonals oriented along the x

and y coordinate axes in the plane [173]. The moving particles (or “wind particles”)
are restricted to have velocities only in the four directions along the coordinate axes
(±x and ±y). At each collision of a wind particle with a tree, the particle’s speed
remains constant, but its direction is rotated by ±π/2 radians, depending upon the
face of the tree with which it collides.

It was discovered by E. H. Hauge and E. G. D. Cohen that, if the trees are allowed
to overlap each other in the plane, the model becomes sub-diffusive even at very
low densities, and the Boltzmann equation does not apply to it [300, 301]. For
all the versions of the Lorentz gas that have been studied, including the wind-tree
model, there are interesting long-time tail phenomena taking place that differ in
some crucial ways from their counterparts in a pure gas of interacting particles
[70, 69]. The quantum Lorentz gas [416, 557, 381, 380, 29] exhibits the phe-
nomenon of localization, which means that, under certain circumstances, particles
do not diffuse through the system, even when the classical limit of the motion is
diffusive. Localization in quantum Lorentz gases is closely related to the long-time
tail effects in classical gases [422, 29]. Quantum Lorentz gases have an important
application in condensed matter physics, where they are used to understand the
behavior of electron transport in disordered systems, for which there is an abun-
dance of experimental data on transport properties.

Another example of a binary mixture is the Rayleigh model. Here there is one
heavy particle moving in a gas of much lighter particles. The light particles can
be taken as either not interacting with each other or with mutual interactions,
but, in any case, the light particles do interact with the heavy particle [614]. The
Rayleigh model with interactions between the gas particles is a useful model for
Brownian motion. In all of these models, a further simplification is possible by
making all interactions hard-sphere-like interactions – that is, only instantaneous,
binary collisions take place. A version of the Rayleigh model that has attracted
considerable attention is the piston model, in which the heavy particle is a piston in
a tube with gases on either side of it in the tube [617, 433, 93].

1.2.9 Dilute Quantum Gases

A model system of considerable interest is a weakly interacting quantum Bose–
Einstein gas. Since such a system undergoes an equilibrium phase transition to
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a superfluid phase, the description of the nonequilibrium behavior of the gas
near the Bose–Einstein phase transition is an interesting challenge for kinetic
theory [385, 382, 384, 529, 530, 431, 524, 278, 537, 626]. The kinetic theory of
these weakly interacting quantum gases became particularly important over recent
decades because of the experimental realization of such gases and the experimental
verification of their Bose–Einstein phase transition. Here we will describe some
of the main features and show that below the Bose–Einstein phase transition, the
hydrodynamic behavior of such a gas is described by the Landau–Khalatnikov
two-fluid equations [438, 545], the two fluids being the normal and superfluid
components of the gas.

1.3 Further Applications of Kinetic Theory

By now, it is well known that the methods of kinetic theory, including mode-
coupling theory, can be applied to a wide range of topics in fluid, plasma, and
colloid physics. Among the topics to which kinetic theory has been applied are
the closely related phenomena of Stokes flow around large solid bodies such as
spheres and cylinders [637, 638, 574, 80, 575, 478, 586], the motion of Brownian
[52, 50] particles in fluids, the motion of ions in solution [340, 341], and the motion
of colloidal particles in fluid suspensions [104, 108, 316]. All of these systems
have a fundamentally hydrodynamic structure whose source is the interactions of
macroscopically large particles with the much smaller particles that make up the
surrounding fluid or with each other. The flow of a gas around a large macroscopic
object such as a sphere or a cylinder, for example, can be described as a function
of a dimensionless parameter – in this case, the Knudsen number, which is the
ratio of the mean free path of the surrounding gas molecules to some characteristic
size of the object. Kinetic theory has been used with great success to describe the
dynamics, for large Knudsen numbers, of rarefied gases [264, 598, 281, 84] and
has been extended, as mentioned before, to describe hydrodynamic flow, at small
Knudsen numbers, where one recovers the classic results for the flow based upon
the applications of the Navier–Stokes equations. Kinetic theory for gases in the
small Knudsen number regime has been used to describe the diffusion of a large
Brownian particle in a dilute gas. The treatment of Brownian motion often begins
with the Langevin equation, where the equation of motion for the particle includes
the effects of hydrodynamic friction due to the surrounding fluid. In the Langevin
theory, a fluctuating term is added to the equation of motion, which is supposed
to account for the fact that the collisions of the Brownian particle with the gas
molecules are random, and only the average motion can be described by a frictional
force. L. Landau and E. M. Lifshitz had the idea of adding fluctuating terms to
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the linearized hydrodynamic equations [412], an idea that was later generalized
by R. Zwanzig and M. Bixon [42] as well as by R. Fox and G. E. Uhlenbeck
[230, 231], who explored the consequences of adding noise terms to the linearized
Boltzmann equation. The addition of such noise terms makes it possible to con-
struct a theory for the macroscopic fluctuations of density in a fluid, the results
of which can be used to make predictions about the scattering of light by a fluid
under various circumstances [38]. This is of special interest because light scat-
tering experiments are important methods for the study of fluid properties, and
provide experimental ways of testing and checking some of the predictions of
kinetic theory.

The motions of ions and colloidal particles are often affected by electrodynamic
interactions produced by the charges on the particles. Treatment of such interac-
tions leads naturally to a treatment of plasmas where nonequilibrium behavior is
almost entirely determined by the Coulomb interactions of the charged particles.
The basic kinetic equations of nonequilibrium plasmas are the Vlasov equation and
the Balescu–Lenard–Guernsey (BLG) equations [656, 578]. The Vlasov equation,
unlike the Boltzmann equation, is time reversible. Nevertheless, it exhibits solutions
that decay in time, associated with the phenomenon of Landau damping. This
apparently paradoxical situation – a time-reversible equation with time-irreversible
solutions – is resolved by a careful consideration of the function spaces in which
these solutions are embedded. In addition to its importance for plasma physics, the
BLG equations are also interesting because they are the analog in plasma physics
of the generalized Boltzmann equation with mode-coupling contributions, valid for
neutral particles interacting with short-ranged potentials. Due to space limitations,
we will not cover colloids and plasmas in this book, but we refer the interested
reader to some basic literature [18, 19, 455].

1.3.1 Granular Materials

Some time ago, it was realized that the Boltzmann equation could be applied to
obtain a theory for the behavior of granular gases – that is, gases whose particles
make inelastic collisions with each other – and the system loses energy to the
environment. It is not difficult to obtain the Boltzmann equation for particles that
suffer inelastic collisions when one can specify the dynamics of an inelastic binary
collision. In general, this is not a simple requirement, since binary collisions – both
elastic and inelastic – can have a very complex dynamics, but considerable progress
can be made by using tractable and highly simplified models for inelastic collisions
[66, 25, 401]. One interesting application of the kinetic theory for granular, inelastic
media is to the theory for planetary rings [262, 208].

https://doi.org/10.1017/9781139025942.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781139025942.002


14 Introduction

1.3.2 Chaotic Dynamics

Kinetic theory has recently been applied in a new context – dynamical systems
theory. Dynamical systems theory attempts to understand the very complicated
chaotic motions typical of classical, nonlinear mechanical systems. Such systems,
although mechanically reversible and deterministic, have the property that the
phase-space trajectories of two systems that start from infinitesimally nearby
points in phase space, separate exponentially with time. One consequence of this
exponential separation is that a small uncertainty in the specification of the initial
state of such a system will lead to an exponential growth of the uncertainty in the
location of the phase point with time. The rate of the growth is characterized by a
set of exponents called Lyapunov exponents. Usually, a system is called chaotic if
it has at least one positive Lyapunov exponent [569, 513, 243, 152].

A group of mathematicians including Ya. G. Sinai, L. A. Bunimovich, N.
Chernov [592, 593], D. Szasz [616], and N. Simanyi [591, 590] have given proofs
of the ergodicity of systems of hard-sphere Lorentz gases with d-dimensional
spheres as fixed scatterers with d ≥ 2, and, under certain general conditions, of
hard-sphere gases as well [487]. While ergodicity is generally not considered to be
essential for the applications of statistical mechanics to such systems, these proofs
do suggest that these hard-ball systems have interesting dynamical properties and
are, in fact, chaotic. Ya. G. Sinai was the first to establish this line of approach to
ergodicity of hard-sphere systems [593, 592]. As we mention later, kinetic theory
can be used to calculate Lyapunov exponents and Kolmogorov–Sinai entropies
of Lorentz and hard-sphere gases. These studies, while not rigorous, provide
evidence that such systems are chaotic and their chaotic properties are accessible to
calculations. Computer simulations by P. Gaspard, F. Baras [244, 245], H. Posch,
C. Dellago, C. Forster [142], and others have verified, as much as is possible
by computer studies, the chaotic nature of these systems and given values for
Lyapunov exponents, Kolmogorov–Sinai entropies, topological pressures, and
related quantities that characterize their dynamical behavior.

On the other hand, V. Rom-Kedar, D. Turaev [629, 560], and also V. Donnay[148]
have shown that if the hard-sphere potential is softened, elliptic islands with
positive measure appear in the phase space of these systems. These islands spoil
the ergodicity, and their appearance means that not all starting points will exhibit
chaotic behavior. For non-integrable systems at high enough energy, it is expected
that the fraction of the energy shell in phase space taken up by the elliptic islands is
an exponentially decaying function of particle number (at fixed particle and energy
density), but to our knowledge, no proofs of this are known. It is not known what
conditions a non-hard-sphere potential must satisfy in order that the motion of a
system of particles with interactions specified by this potential will be chaotic for
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almost all initial points on an energy shell. It is known that not all such potentials
lead to elliptic islands in phase space. For instance, A. Knauf [395] has shown
that a Lorentz gas where the scatterers are placed on a square lattice and interact
with the moving particles via repulsive Yukawa potentials is also a chaotic system,
provided the moving particles have sufficiently high energies.

Here we will show how kinetic theory can be used to calculate the dynamical
properties of dilute, random hard-sphere Lorentz gases systems. Similar kinetic
theory methods, such as the Boltzmann equation and others based on collision
dynamics, can be used to extend the work presented here to calculate dynamical
properties of dilute hard-sphere gases [135, 132, 134, 133, 663]. We shall be able to
obtain expressions for Lyapunov exponents for Lorentz gases with an equilibrium
distribution of moving particles as well as for Lorentz gases in a thermostatted
electric field [639, 640, 165, 642, 417, 641]. In those cases where comparisons
with computer simulations are possible, the agreement between kinetic theory and
computer simulation results is excellent. Such results indicate that the systems we
study are indeed chaotic but do not constitute mathematical proofs.

1.4 Outline of This Book

Chapters 2, 3, and 4 are devoted to the Boltzmann equation for dilute gases and
dilute gas mixtures. We begin in Chapter 2 with Boltzmann’s heuristic derivation
of this equation. One feature of our presentation is that we incorporate boundary
effects directly into the Boltzmann equation by modeling the boundary as a kind of
“super-particle” with which the gas particles collide, in addition to their collisions
with other particles. Then we prove that the Boltzmann entropy, the negative of the
Boltzmann H -function, is monotonically non-decreasing with time, provided there
is no heat flowing out of the system. Heat flow will arise naturally in this proof as
a result of the way we incorporate the boundaries in the Boltzmann equation. To
make this result somewhat less mysterious, especially for those readers encoun-
tering the H -theorem for the first time, we will explain the various assumptions
that are made in the course of this derivation and discuss the time-symmetry-
breaking assumption responsible for the irreversibility of this equation. Simple
model systems have been used to clarify and illustrate the ideas, among them
the Ehrenfest wind-tree model [173] and the Kac ring model [329]. Here we will
discuss the Kac ring model in some detail. In Chapter 3, we present the Chapman–
Enskog method for constructing solutions to the Boltzmann equation that describe
hydrodynamic flows. We derive the Navier–Stokes equations and obtain expres-
sions for transport coefficients, in particular the coefficients of shear viscosity and
thermal conductivity, appropriate for monatomic gases at low densities. At this
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point, we summarize the experimental support for the Boltzmann equation and
describe various applications of it for hydrodynamic processes. We also discuss
the boundary conditions appropriate for various flows and explain how they
may be obtained from the Boltzmann equation coupled with models of gas–
surface interactions. In Chapter 4, the Chapman–Enskog method is applied to the
Boltzmann equation for dilute gas mixtures, and the Onsager reciprocal relations
are discussed.

Next, in Chapter 5, we consider a very particular and very useful mixture, the
dilute Lorentz gas. As described earlier, this consists of non-interacting particles
that move among and collide with a collection of fixed scatterers placed randomly
in space, with their average separation distance large compared to their size. This
model is often used to study the motion of classical electrons in an amorphous solid.
In Chapter 6, we discuss the Liouville equation for both general repulsive potentials
and for hard-sphere systems. There we present the BBGKY hierarchy equations,
which – in later chapters – will provide the statistical mechanical foundations for
the extension of the Boltzmann equation to higher densities. In Chapter 6, we will
also give a careful analysis of the dynamics of hard-sphere particles, which will be
used as a model system for our later work on dense gases. An earlier and widely
used approximate theory for transport in dense hard-sphere fluids, due to Enskog,
with the necessary modifications due to H. van Beijeren and Ernst [644, 645], is
presented in Chapter 7. Chapter 8 is concerned with the effects of adding noise
terms to the linearized Boltzmann equation, a la the Langevin equation, as a way
of correcting for the averaging used when deriving the Boltzmann equation. This
allows for a treatment of density and other fluctuations in a gas and provides the
basis for a description of the scattering of light by the gas.

Two chapters are devoted to the nonequilibrium properties of systems that have
been the focus of much activity, namely granular gases and quantum gases includ-
ing weakly interacting, condensed Bose–Einstein gases. Chapter 9 is devoted to
classical dilute gases of particles that suffer inelastic collisions and lose energy to
the environment. The latter systems, a part of the general field of granular matter,
also exhibit interesting behavior, and the general topic has important applications
– among others, to systems of interest for astrophysics, such as planetary rings.
Dilute quantum gases, Bose–Einstein gases, below the superfluid phase transition
are discussed in Chapter 10.

The next three chapters are devoted to the kinetic theory of moderately dense
gases, in particular the microscopic foundations, and applications of mode-coupling
theory. In Chapter 11, we describe nonequilibrium cluster expansions that pro-
vide the foundations for extending the Boltzmann equation in a systematic way
to higher densities. These methods allow for a virial expansion of the general-
ized Boltzmann equation where the successive powers of the density take into
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account dynamical events involving groups of two, three, and so on, particles. As
discussed in Chapter 12, virial expansion methods fail for nonequilibrium gases
because all but the first few terms in the virial expansion contain secular diver-
gences in time. Resummations designed to cure these divergence problems due to
K. Kawasaki and I. Oppenheim [350] are presented in this chapter. When applied
to the density dependence of the various transport coefficients, the resummation
leads to the appearance of logarithms in the density expansions of transport coef-
ficients. In Chapter 13, we show that the resummations provide a microscopic
basis for mode-coupling theory, which, in turn, leads to a kinetic theory description
of long-time tails in the Green–Kubo time correlation functions. The presence of
the long-time tails shows that there are serious problems in providing a successful
foundation for the equations of hydrodynamics, especially, but not exclusively, for
two dimensional gases.

The following chapter, Chapter 14, is the final technical chapter. It is devoted to
the efforts to reformulate the equations of hydrodynamics for both two- and three-
dimensional systems in the light of the difficulties due to the existence of long-
range spatial and long-time temporal correlations in the gas produced by sequences
of correlated collisions and that are ignored in both the Boltzmann and Enskog
equations. This chapter concludes with a discussion of one of the central results in
the theory of nonequilibrium processes in fluids, the theory leading to the major
enhancement of the central, Rayleigh peak, in the small-angle scattering of light
by a fluid maintained in a nonequilibrium stationary state. We conclude the book
in Chapter 15 with brief discussions of some of the many applications, some very
recent, of kinetic theory that are not covered in the book and with final thoughts on
some related developments in cosmology.

The mathematical methods used here are not rigorous. Rigorous results have
been obtained for certain areas covered in this book. In particular, there is a large
mathematical literature on the existence of solutions of the Boltzmann equation
under various conditions, as well as for the ergodic properties of various types of
hard-sphere gases. When appropriate, we provide references to the literature so that
the interested reader can explore the mathematical discussions at greater depth.

Notes

1 Standard references for the kinetic theory of gases, apart from textbooks, include S. Chapman
and T. G. Cowling [89]; H. Grad [265]; E G. D. Cohen [103]; H. Spohn [606]; J. H. Ferziger and
H. G. Kaper [215]; C. Cercignani [79, 81, 83, 85]; P. Résibois and M. de Leener [555];
P. Schram [578]; and P. L. Krapivsky, S. Redner, and A. Ben-Naim [401]; among many others.

2 This book is a greatly expanded version of a review article that two of us published in 1976,
several years before a number of topics discussed here had been developed [164]. In view of the
many advances and applications of kinetic theory, it seemed to us that a more lengthy review of
this subject would be warranted.
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3 This discussion is based upon historical studies by Steven Brush, as described, for example, in
his book The Kind of Motion We Call Heat [72].

4 The books by S. Brush [71, 72], to which we refer, contain a bibliography of important papers
for the history of kinetic theory as well as a thorough description of this history. We can do no
better than to refer to these books rather than to the individual papers.

5 The standard reference for the kinetic theory of dilute gases and gas mixtures is the book by
S. Chapman and T. G. Cowling [89]. While their notation is cumbersome, the discussion is
complete and clear.

6 There were a number of other efforts to obtain the Boltzmann equation using the Liouville
equation as a starting point, in addition to those of N. N. Bogoliubov, M. S. Green, and
E. G. D. Cohen. The paper by Cohen [98] provides a comparison of different methods, and the
paper by E. G. D. Cohen and T. Berlin [107] exposes an important facet of the Bogoliubov
method and gives an essential clue as to the origin of irreversibility in this and other approaches
to the derivation of the Boltzmann equation.

7 A proof of the general equivalence of kinetic theory and time correlation function formalisms for
evaluating transport coefficients is complicated by the fact that nonanalytic and even divergent
terms appear when one looks at either of these methods for gases at moderate or high density.
Instead, one can verify the equivalence by explicit calculations as will be discussed in later
chapters. For low-density gases, there are several discussions of the equivalence of the two
methods. Here we mention only one of them [189].

8 A brief characterization of the various periods in the development of kinetic theory can be found
as a footnote in the Introduction to J. Stat. Phys. 109, Numbers 3/4, by M. H. Ernst, H. van
Beijeren, and E. G. D. Cohen [194]. See also the paper by Ernst [180].

9 These remarks apply to gases in which the particles interact with short-range forces, which are
repulsive for small inter-particle distances.

10 Several authors almost simultaneously realized that the virial expansions of transport
coefficients were plagued by divergence difficulties. The history of this discovery is summarized
in volume 3 of Brush’s three-volume set of books on kinetic theory [71].

11 If one thinks, loosely speaking, of the hydrodynamic modes as eigenfunctions of the Liouville
operator, which is a linear differential operator, it follows that products of these modes are also
eigenfunctions.

12 Kinetic theory is one of several approaches for studying the long-time tails. Identical results
have been obtained at the same time using mode-coupling or related hydrodynamic arguments
by M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen [191, 192, 193, 195, 196] and by
R. Zwanzig and M. Bixon [706].

13 Closely related work on long-range correlations in fluids maintained in nonequilibrium
stationary states was carried out by a number of groups. See, for example,
[544, 543, 564, 628, 627].

14 To fully appreciate this method, one has to realize that besides proper eigenfunctions under L2

norm with purely imaginary eigenvalues, there exist generalized eigenfunctions with real or
complex eigenvalues. These are known as Pollicott–Ruelle resonances [567, 532].

15 Values for the effective hard-sphere radius of particles in a real gas are generally obtained by
fitting results from equilibrium measurements, such as virial coefficients, to hard-sphere models
for those properties.

16 This model is also usually referred to as the Lorentz model. We will indicate whenever
necessary which version is under discussion.
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