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Abstract

Let C be a smooth, separated and geometrically connected curve over a finitely
generated field k of characteristic p > 0, η the generic point of C and π1(C) its étale
fundamental group. Let f : X→ C be a smooth proper morphism, and i > 0, j integers.
To the family of continuous F`-linear representations π1(C)→ GL(Rif∗F`(j)η) (where
` runs over primes 6= p), one can attach families of abstract modular curves C0(`) and
C1(`), which, in this setting, are the analogues of the usual modular curves Y0(`) and
Y1(`). If i 6= 2j, it is conjectured that the geometric and arithmetic gonalities of these
abstract modular curves go to infinity with ` (for the geometric gonality, under a certain
necessary condition). We prove the conjecture for the arithmetic gonality of the abstract
modular curves C1(`). We also obtain partial results for the growth of the geometric
gonality of C0(`) and C1(`). The common strategy underlying these results consists in
reducing by specialization theory to the case where the base field k is finite in order to
apply techniques of counting rational points.

1. Introduction

Let k be a field of characteristic p > 0.
Let C be a smooth, separated curve over k. Write C1, . . . , Cr for the connected components

of C and C
(1)
i , . . . , C

(ni)
i for the connected components of Ci ×k k, i = 1, . . . , r. Set

g(C) := min{g(C
(j)
i ) | j = 1, . . . , ni, i = 1, . . . , r},

γ k(C) := min{γ k(C
(j)
i ) | j = 1, . . . , ni, i = 1, . . . , r},

γk(C) := min{γk(Ci) | i = 1, . . . , r},

where g(C
(j)
i ) (respectively γ k(C

(j)
i ), γk(Ci)) denotes the geometric genus (respectively the k-

gonality, the k-gonality) of (the smooth compactification, if any, of) C
(j)
i (respectively C

(j)
i , Ci).

See § 2.1 for the definition of k- and k-gonalities. Also, for every integer d > 1, write

C(k,6 d) := {c ∈ C | [k(c) : k] 6 d}.
Thus, C(k) = C(k,6 1) and

|C| =
⋃
d>1

C(k,6 d),

where, for a scheme S, |S| denotes the set of closed points of S.
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Let C be a smooth, separated and geometrically connected curve over k with generic point
η and étale fundamental group π1(C). Fix an integer n > 1, an infinite set of primes L and a
family H• = (H` ' F⊕n` )`∈L of n-dimensional F`-vector spaces equipped with a continuous action
of π1(C) or, equivalently, a family of n-dimensional F`-linear continuous representations

ρ• = (ρ` : π1(C)→ GL(H`) ' GLn(F`))`∈L.

Typical examples of such families are those arising from étale cohomology with coefficients in F`.
More precisely, let f : X → C be a smooth, proper scheme over C. By the smooth proper base
change theorem for étale cohomology, for every prime ` 6= p and every pair of integers i > 0, j,
the étale sheaf Rif∗F`(j) is locally constant constructible and hence defines a representation

ρi`(j) : π1(C)→ GL(Rif∗F`(j)η)

and the F`-dimension of
Rif∗F`(j)η = Hi(Xη,F`)(j)

is finite and constant for ` � 0 [Org13, Remark 3.1.5]. We will call such families the motivic
families of X → C. When X → C is an abelian scheme with d = dim(Xη) and

H` = Xη[`] = H1(X∨η ,F`)(1) ' H2d−1(Xη,F`)(d)

is the group of `-torsion points of the generic fiber, we will call the resulting motivic family the
motivic torsion family of X → C.

To such a family, one can associate families of abstract modular curves (see § 2.2) C1(`)→ C
and C0(`)→ C, which, in this setting, are the analogues of the classical modular curves Y1(`)→
Y (1) and Y0(`)→ Y (1) classifying respectively `-torsion points and order-` cyclic subgroups of
elliptic curves.

In general, one expects that the arithmetico-geometric complexity of the abstract modular
curves Ci(`) increases with `. More precisely, under mild assumptions on ρ•, one expects that
the following properties hold:

(G-1) lim
`→+∞

g(Ci(`)) = +∞,
(G-2) lim

`→+∞
γ k(Ci(`)) = +∞,

(A-G) lim
`→+∞

γk(Ci(`)) = +∞

and, if k is finitely generated,

(A-1)′ |Ci(`)(k)| < +∞, `� 0, (A-1) Ci(`)(k) = ∅, `� 0,

(A-2)′ |Ci(`)(k,6 d)| < +∞, `� 0, d > 1, (A-2) Ci(`)(k,6 d) = ∅, `� 0, d > 1.

Note that

(G-1)

 (

(A-1)

v~
(G-2)

6>

 (

(A-1)′ (A-2)

`h

w�
(A-G)

6>

(A-2)′

`h
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Gonality of abstract modular curves in positive characteristic

and, if p = 0,
(A-G) =⇒ (A-2)′.

(See § 2.1 for more details.)
Properties (G-1) and (G-2) have been investigated thoroughly in the classical setting of

Shimura curves1 (see for instance [Abr96] for (G-2) when p = 0, [PP07] for (G-2) when p > 0)
and more recently in the setting of abstract modular curves (see [CT14b] for (G-1) when p > 0
and [EHK12] (and [CT14a]) for (G-2) when p = 0). Properties (A-1) and (A-2) are only known
for the modular curves Y1(`) and Y0(`) [Maz77, Kam92, Mer96, Maz78, Mom95] and for abstract
modular curves in the `-adic setting [CT12a, CT09, CT12b, CT13]. Proving properties (A-1) and
(A-2) for abstract modular curves in the modulo-` setting at stake in this paper is a challenging
widely open problem. Proving properties (G-1), (G-2) and (A-G) is a first significant step towards
it.

In this paper, we investigate properties (G-2) and (A-G) when p > 0 and prove them under
mild assumptions. Precise statements require some technical preliminaries gathered in § 2, so we
postpone them until §§ 2.3.2 (when k is finite) and 5.1 (when k is finitely generated). Let us
however state simplified versions of our main results in the case of finitely generated fields.

– (Special case of Corollary 5.1) Start with

X → C ↪→ Ccpt
→ T → U,

where U is a non-empty open subscheme of spec(Z) (respectively U = spec(Fp)) when p = 0
(respectively p > 0), T is an integral scheme with generic point ζ, T → U is a dominant
morphism of finite type, Ccpt

→ T is a smooth, proper and geometrically connected curve
over T , Ccpt\C is a relatively finite étale divisor and X → C is an abelian scheme. Assume
that:

– the generic fiber of Xζ → Cζ contains no non-trivial abelian subvariety isogenous to a
k(ζ)-isotrivial abelian variety;

– there exists a closed point t ∈ |T | (respectively a Zariski-dense set of closed points
t ∈ |T |) such that Xt→ Ct has a closed fiber which is supersingular.2

Then the motivic torsion family of Xζ → Cζ satisfies

lim
`→+∞

γ
k(ζ)

(Cζ,0(`)) = +∞.

In particular, if p = 0 (respectively p > 0), for every integer d > 1 (respectively d = 1) and
for `� 0, there are only finitely many c ∈ C(k(ζ),6 d) (respectively c ∈ C(k(ζ))) such that
Xc[`] admits a one-dimensional Γk(c)-submodule.

– (Corollary 5.2(2)) Let ρi•(j) be a motivic family attached to a smooth proper morphism
X → C. Assume that 2i 6= j. Then

lim
`→+∞

γk(C1(`)) = +∞.

In particular, if p = 0 (respectively p > 0), for every integer d > 1 (respectively d = 1) and
for `� 0, there are only finitely many c ∈ C(k(ζ),6 d) (respectively c ∈ C(k(ζ))) such that

Hi(Xc,F`)(j)Γk(c) 6= 0.

1 For a review of the problem of and a graph-theoretic approach to the gonality of Drinfeld modular curves, see
for instance [CKK15].
2 A special case of the notion of closed fiber of supersingular type introduced in § 2.3.2.1. See also § 3.3.2 for an
example of a closed fiber of supersingular type which is not a supersingular abelian variety.
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The main new contribution of this paper to the above questions is to deal with the case

of positive characteristic under rather general hypotheses. It seems also that the definition and

study of arithmetic gonality is new. Let us however point out that, in positive characteristic, the

implication (A-G)⇒ (A-2)′ no longer holds. In the appendix, which can be read independently,

we introduce the notion of (geometric) isogonality and show that it is the right invariant to

measure the finiteness of C(k,6 d) in positive characteristic. Unfortunately, geometric isogonality

seems very difficult to control in general and it is not clear if one can reasonably expect Property

(A-G) to hold with isogonality instead of gonality.

The paper is organized as follows. In § 2, we make a short review of gonalities (§ 2.1), define

abstract modular curves (§ 2.2) and state precisely our main results over finite fields (§ 2.3).

The proof of the statements over finite fields are carried out in § 3 (geometric gonality) and § 4

(arithmetic gonality). In § 5, we derive several corollaries over finitely generated fields (§ 5.1) from

the statements over finite fields. This is done, unsurprisingly, by a specialization argument, which

is detailed in § 5.2. The appendix introduces the notion of (geometric) isogonality and discusses

its relation with the finiteness of points of bounded degree on curves in positive characteristic.

2. Preliminaries and statements

2.1 Geometric and arithmetic gonalities

Let k be a field. We define below the geometric and arithmetic gonalities of a connected curve

C smooth and proper over k. Later on, when C is separated but not proper, the geometric and

arithmetic gonalities of C will implicitly refer to the geometric and arithmetic gonalities of its

smooth compactification, if any.

2.1.1 Geometric gonality. Assume furthermore that C is geometrically connected over k.

For a field extension K of k, the K-gonality of C is defined as γK(C) := d + 1, where d is the

largest integer > 1 satisfying the equivalent conditions (i)–(v) below:

(i) for every d′ 6 d, the map C(d′)(K)→ J (d′)(K) is injective;

(ii) for every d′ 6 d, there is no non-constant K-morphism P1
K → C

(d′)
K ;

(iii) L(D) = K for every effective degree d′ 6 d (Cartier) divisor D on CK ;

(iv) there is no f ∈ K(C)\K such that [K(C) : K(f)] 6 d;

(v) there is no non-constant K-morphism CK → P1
K of degree 6 d.

Here, J (d) denotes the degree-d part of the Picard scheme of C over k, C(d) the dth symmetric

product of C and, for a divisor D on CK , L(D) the K-vector space of all f ∈ K(C) such that

D + div(f) is effective.

We will use several times the following fact describing the behaviour of gonality under ground

field extension.

Fact 2.1 [PP07, Theorem 2.5(iii)].3 Assume that k is perfect and C carries a degree-one k-

rational divisor. Then, for every algebraic extension L ⊃ k, one has

γL(C) >
√
γk(C).

3 Note that the proof of [PP07, Theorem 2.5(iii)] only uses the fact that X carries a degree-one k-rational divisor
(and that a proper smooth curve of genus 0 over a finite field is P1).
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When the ground field k is finite, the assumption that C carries a degree-one k-rational
divisor is automatically satisfied.

When K = k is an algebraic closure of k, we will call γ k(C) the geometric gonality of
C. The geometric gonality is a subtle invariant, which encodes both geometric and arithmetic
information about C. For instance, one always has [PP07, Proposition A.1(v)]

γ k(C) 6
⌊
g(C) + 3

2

⌋
.

So, the growth of the geometric gonality implies the growth of the genus. In particular, we have
the following facts.

Fact 2.2. When k is finitely generated, there exists an integer γ(k) (> 3) such that

γ k(C) > γ(k) =⇒ |C(k)| < +∞.

(This is the Mordell conjecture when p = 0 [FW84] and a result of Voloch when p > 0; see
[EEHK09, Theorem 3].)

Fact 2.3. When p = 0, one has

γ k(C) > 2d+ 1 =⇒ |C(k,6 d)| < +∞.

(This is a consequence of the Mordell–Lang conjecture [FW84, Fre94]. See Corollary A.4.)
However, in practice, the geometric gonality is usually difficult to estimate (especially when

p > 0), compared to the genus. This motivates the introduction of a weakened arithmetic variant,
which is easier to handle than the geometric gonality (and, sometimes, than the genus) but, still,
can be used to test the finiteness of rational points when k is finitely generated (see Lemma 2.4
below).

2.1.2 Arithmetic gonality. We no longer assume that C is geometrically connected over k.
Let kC denote the algebraic closure of k in the function field of C (thus, C is geometrically
connected over kC).

The k-gonality of C is defined as

γk(C) := min{deg(f) | f : C → P1
k non-constant k-morphism} = [kC : k]γkC (C).

Note that if C is geometrically connected over k (i.e. if kC = k), then the above definition of
γk(C) coincides with the one in § 2.1.1 and, by definition, one always has

γ k(C) 6 γk(C).

Lemma 2.4. Let k be a finitely generated field of characteristic p > 0 and let C be a connected
curve, smooth, proper (but not necessarily geometrically connected) over k.

(1) There exists an integer γ(k) (> 3) such that

γk(C) > γ(k) =⇒ |C(k)| < +∞.

(2) If p = 0, then, for any integer d > 1, one has

γk(C) > 4d3 + 1 =⇒ |C(k,6 d)| < +∞.
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Proof. Assertion (1) follows from the fact that either C(k) = ∅ or C(k) 6= ∅ and kC = k, in which
case [PP07, Proposition 1.1(iv)]

g(C) > γkC (C)− 1 = γk(C)− 1

and the conclusion follows from Fact 2.2. For assertion (2), assume that γk(C) > 4d3 + 1. If
C(k,6 d) = ∅, there is nothing to say. Otherwise, pick c ∈ C(k,6 d). Then

d > [k(c) : k] = [k(c) : kC ][kC : k]

and

γ k(C) >
√
γk(c)(C) >

√
γkC (C)

[k(c) : kC ]
>
√
γk(C)

d
>
√

4d3 + 1

d
> 2d,

where the first inequality follows from Fact 2.1 and the second one from the fact that for a finite
extension L/K (with kC ⊂ K), which is automatically separable as p = 0, one always has

γL(C) > γK(C)

[L : K]
.

Indeed, let L̂/K denote the Galois closure of L/K. Then, starting from a non-constant

L-morphism f : P1
L→ C

(d)
L , just observe that the induced morphism

t ∈ P1
L̂
→

∑
σ∈Gal(L̂|K)/Gal(L̂|L)

(σf
L̂

)(t) ∈ C(d[L:K])

L̂
' (C

(d)

L̂
)[L:K]/S[L:K]

is non-constant and descends to K; hence, γK(C) 6 [L : K]γL(C). 2

2.2 The abstract modular curves C1(`), C0(`)
Let C be a connected scheme. Fix a point c ∈ C and recall that, by definition, the étale
fundamental group π1(C; c) of C with base point any geometric point c over c is the
automorphism group of the fiber functor Fc sending an étale cover C ′ → C to the finite set
C ′c(k(c)). The group π1(C; c) is naturally endowed with a profinite topology and the fiber functor
Fc induces an equivalence of categories between the category of étale covers of C and the category
of finite discrete π1(C; c)-sets. In this equivalence, connected étale covers correspond to transitive
π1(C; c)-sets or, equivalently, to open subgroups of π1(C; c). Also, given any two points c0, c1 ∈ C,
the set of étale paths α : Fc0 → Fc1 is non-empty. Every choice of an étale path α : Fc0 → Fc1
induces an isomorphism of étale fundamental groups

π1(C; c0) →̃ π1(C; c1)

γ → αγα−1.

Thus, unless it helps to understand the situation, we will omit the base point from our notation.
If we assume furthermore that C is of finite type and geometrically connected over a field k,

the sequence of morphisms Ck := C ×k k→ C → spec(k) induces by functoriality a sequence of
fundamental groups

1→ π1(Ck)→ π1(C)
pr
→ Γk → 1,

which is exact, and every closed point c ∈ C, viewed as a morphism c : spec(k(c))→ C, induces
a quasi-splitting
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1 // π1(Ck)
// π1(C)

pr // Γk // 1

Γk(c)

� ?

OO

1 Q
σc

cc

of this short exact sequence. (In the above, given a field k, we identify π1(spec(k)) with the
absolute Galois group Γk of k.)

Given an open subgroup U ⊂ π1(C), let CU → C denote the corresponding connected étale
cover and k ⊂ kU ⊂ k the subfield defined by pr(U) = ΓkU ⊂ Γk. Then kU is the field of definition
for CU and CU is geometrically connected over kU . We call CU → C the abstract modular curve
attached to U . Let us also recall the following fact.

Fact 2.5. (1) The connected étale cover CU ×kU k → Ck corresponds to the open subgroup
U ∩ π1(Ck) ⊂ π1(Ck).

(2) For any closed point c ∈ C, the image of σc is contained in U if and only if c lifts to a
k(c)-rational point on CU [SGA1, Exp. V, Proposition 6.4].

Property (2) is at the origin of the terminology ‘modular’.
Let ` be a prime 6= p and H` a finite-dimensional F`-vector space equipped with a continuous

action of π1(C). For v ∈ H`, we will write C1,v → C0,v → C for the connected étale covers
corresponding to the inclusion of open subgroups

Stabπ1(C)(v) ⊂ Stabπ1(C)(F`v) ⊂ π1(C)

and k1,v and k0,v for the fields of definition of C1,v and C0,v, respectively.
We will also write

C1(`) :=
⊔

0 6=v∈H`
C1,v, C0(`) :=

⊔
06=v∈H`

C0,v.

By construction, C1(`)→ C0(`)→ C are (possibly disconnected) étale covers with the property
that a closed point c ∈ C lifts to a k(c)-rational point on C1(`) (respectively, C0(`)) if and only

if H
Γk(c)
` 6= 0 (respectively, P(H`)

Γk(c) 6= ∅, where P(H`) := (H`\{0})/F×` ). Here, the action of

Γk(c) on H` is via Γk(c)
σc
→ π1(C)

ρ`
→ GL(H`).

2.3 Statements
Let C be a smooth, separated and geometrically connected curve over k with generic point η and
étale fundamental group π1(C). Fix an integer n > 1, an infinite set of primes L and a family
H• = (H` ' F⊕n` )`∈L of n-dimensional F`-vector spaces equipped with a continuous action of
π1(C) or, equivalently, a family of n-dimensional F`-linear continuous representations

ρ• = (ρ` : π1(C)→ GL(H`) ' GLn(F`))`∈L.

2.3.1 Characteristic polynomial, finiteness and semisimplicity assumptions. Our general
strategy will be to reduce by a specialization argument (see § 5.2) to the case where the base
field k is finite in order to exploit the fact that, over finite fields, elementary numerical invariants
attached to closed points usually encode enough data to estimate the geometric or arithmetic
gonality from below.

So, from now on and until the end of § 4, we assume that k = Fq with q = pr. We refer to § 5.1
for the statements over finitely generated fields. Let Ccpt denote the smooth compactification
of C.
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2.3.1.1 Characteristic polynomial assumptions. The conditions on the characteristic
polynomials of Frobenius elements we formulate below will be used to control the numerical
invariants attached to C1(`) in order to estimate its arithmetic gonality.

Write ϕ ∈ Γk ' Ẑ for a generator of Γk.
For every point c ∈ |Ccpt|, let Dc and Ic denote respectively ‘the’ decomposition group and

inertia group at c in π1(C). We have the following commutative diagram with exact rows:

1 // Ic_�

��

// Dc_�

��

// Γk(c)
_�

��

// 1

1 // π1(Ck)
// π1(C) // Γk // 1

Write
ρ`,c := ρ`|Dc : Dc→ GL(H`)

for the resulting local representation at c.

Case 1: c ∈ |C|. Then Ic is trivial and the morphism Γk(c)→̃Dc ↪→ π1(C) can be identified with
the morphism

σc : Γk(c) = π1(spec(k(c)))→ π1(C).

Set ϕc := ϕ[k(c):k] ∈ Γk(c) and ϕ`,c := ρ`,c(ϕc). We will say that ρ• is weakly ϕ-Z-integral4 at c if

there exists a polynomial Pc ∈ Z[T ] whose image in F`[T ] is an F×` -multiple of the characteristic
polynomial of ϕ`,c for `� 0 and that ρ• is ϕ-Z-integral at c if there exists a monic polynomial
Pc ∈ Z[T ] whose image in F`[T ] is the characteristic polynomial of ϕ`,c for `� 0.

Actually, when ρ• is weakly ϕ-Z-integral or ϕ-Z-integral, we will also need to control the
roots αc,1, . . . , αc,n of Pc. This will be ensured by the following two conditions. Fix an integer
N > 1.

ϕ-(R, c) ρ• is weakly ϕ-Z-integral at c and none of the products αc,i1 · · ·αc,it , 1 6 i1 < · · · <
it 6 n, 1 6 t 6 n, is a root of unity.

ϕ-(R, N, c) ρ• is ϕ-Z-integral at c and 1 6= |αc,i| 6 |k(c)|N , i = 1, . . . , n.

Case 2: c ∈ |Ccpt|\|C|. Then the inertia group Ic is no longer trivial, so ρ`,c : Dc → GL(H`) is
not identified with a representation of Γk(c) as above. However, assume that:

(U) for every c ∈ |Ccpt|\|C|, there exists an open subgroup D′c ⊂ Dc such that I ′c := D′c∩ Ic acts
unipotently on H` for `� 0.

Then (for `� 0), I ′c lies in the kernel of the semisimplification

ρss
`,c : Dc→ GL(Hss

` )

of ρ`,c : Dc→ GL(H`) and ρss
`,c|D′c : D′c→ GL(Hss

` ) factors through

ρss′
`,c : D′c/I

′
c→ GL(Hss

` ).

Let k(c)′ denote the finite field extension of k(c) fixed by D′c/I
′
c ↪→ Dc/Ic ' Γk(c) and set

ϕ′c := ϕ[k(c)′:k] ∈ Γk(c)′ , ϕ
′
`,c := ρss′

`,c(ϕ
′
c). We will say that ρ• is weakly ϕ-Z-integral4 at c if there

4 Note that the definition of being weakly ϕ-Z-integral at c does not depend on the choice of ϕ±1 since we do not
require Pc (if c ∈ |C|) or Qc (if c ∈ |Ccpt|\|C|) to be monic.
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exists a non-zero polynomial Qc ∈ Z[T ] whose image in F`[T ] is divisible by the characteristic

polynomial of ϕ′`,c for `� 0.

Theorem 2.6. Let f : X → C be a smooth, proper scheme over C with d := dim(Xη), and

consider the corresponding motivic family

ρi•(j) = (ρi`(j) : π1(C)→ GL(Rif∗F`(j)η))`�0.

(1) Assume that i 6= 2j. Then there exists5 a generator ϕ ∈ Γk such that ρi•(j) satisfies Condition

ϕ-(R,c) at every c ∈ |C|.
(2) Assume that i 6= 2j and that j 6 max{0, i − d} or j > min{i, d}. Then there exists6 a

generator ϕ ∈ Γk such that ρi•(j) satisfies Condition ϕ-(R,|i− 2j|/2, c) at every c ∈ |C|.
(3) ρi•(j) satisfies Condition (U) and is weakly Z-integral at every c ∈ |Ccpt|\|C|.

Proof. Recall first that the assumption that X → C is proper ensures that for i > 0 and `� 0,

the Z`-module Hi(Xη,Z`) is torsion-free (hence a Z`-lattice in Hi(Xη,Q`)) [Org13, Remark 3.1.5]

and Hi(Xη,Z`)/` ' Hi(Xη,F`) (see e.g. [CT14b, (1) in Proof of Fact 5.1]). Thus, it is enough to

prove that the conditions at stake in Theorem 2.6 (with F` replaced by Q`) are satisfied by the

family

π1(C)→ GL(Rif∗Q`(j)η).

Then (1) directly follows from the Weil conjectures [Del80]. Assertion (2) also follows from the

Weil conjectures together with Poincaré duality and [Pin98, Theorem 3.3] (the restrictions on

i, j are there to ensure the Z-integrality condition).

In (3), Condition (U) and the weakly ϕ-Z-integral condition at every c ∈ |Ccpt|\|C| follow

essentially from de Jong’s alteration theorem and the Rapoport–Zink weight spectral sequence.

Indeed, Condition (U) is [Ber97, Proposition 6.3.2]. So, up to replacing C by a connected

étale cover (independent of `), one may assume that Ic acts unipotently on Hi(Xη,Q`)(j)

for every prime ` 6= p and c ∈ |Ccpt|\|C|. As the question is local at c, we may replace C

with spec(ÔC,c) = {η, c}. Set D̃c := Γk(η) and let Ĩc ⊂ D̃c denote the inertia group. By the

argument in the second paragraph of the proof of [Ber97, Proposition 6.3.2] (here we use that

X → C is proper and smooth), up to replacing C by a connected, generically étale cover,

there exists a strictly semistable (that is, proper, flat, generically smooth with simple normal

crossing special fiber) morphism X ′ → C such that Hi(Xη,Q`)(j) embeds as a D̃c-module into

Hi(X ′η,Q`)(j) for all primes ` 6= p. As Ĩc acts unipotently on Hi(X ′η,Q`)(j), the D̃c-action on the

semisimplification as D̃c-module factors through D̃c→ Γk(c) = D̃c/Ĩc and hence Hi(Xη,Q`)(j)
ss

embeds as a Γk(c)-module into Hi(X ′η,Q`)(j)
ss. In particular, the characteristic polynomial of

the Frobenius acting on Hi(Xη,Q`)(j)
ss divides the characteristic polynomial of the Frobenius

acting on Hi(X ′η,Q`)(j)
ss. Thus, we may assume that X→ C is strictly semistable. Let X1, . . . ,Xt

denote the irreducible components of Xc and, for each integer 1 6 s 6 t, set

X(s) :=
⊔

16i1<···<is6t
Xi1 ∩ · · · ∩ Xis .

5 More precisely, one can take ϕ to be the geometric Frobenius or the arithmetic Frobenius.
6 More precisely, if j 6 max{0, i− d}, one can take ϕ to be the geometric Frobenius and, if j > min{i, d}, one can
take ϕ to be the arithmetic Frobenius.
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The X(s) are smooth proper schemes over k(c). Write X
(s)
c for their geometric fibers. The

Rapoport–Zink weight spectral sequence [RZ82] is a D̃c-equivariant spectral sequence:

Ep,q1 =
⊕

a>max{0,p}
H2p+q−2a(X

(2a−p+1)
c ,Q`)(j + p− a)⇒ Hp+q(Xη,Q`)(j).

By the Weil conjectures (the geometric Frobenius of) Γk(c) acts with weight q−2j on Ep,qr , r > 1.

As the differentials dp,qr : Ep,qr → Ep+r,q−r+1
r are D̃c-equivariant, they are trivial for r > 2 and

the spectral sequence degenerates at E2. In particular,

Grnp := Grp(H
n(Xη,Q`)) = Ep,n−p2 =

ker(dp,n−p1 : Ep,n−p1 → Ep+1,n−p
1 )

im(dp−1,n−p
1 : Ep−1,n−p

1 → Ep,n−p1 )
.

(Observe that Ep,n−p1 = 0 and hence Grnp = 0, unless −n 6 p 6 n.) Thus,

χ
im(dp−1,n−p

1 )
χGrnp = χker(dp,n−p1 ),

where χ− denotes the characteristic polynomial of the Frobenius acting on −. This implies that

χGrnp divides χEp,n−p1
. Now, the Weil conjectures for the Hi(X

(s)
c ,Q`)(j) ensure that χEp,n−p1

∈
Q[T ]. So, take for Qc

λ
∏
−i6p6i

χ
Ei,n−i1

,

where 0 6= λ ∈ Z is chosen in such a way that Qc ∈ Z[T ]. 2

2.3.1.2 Finiteness and semisimplicity assumptions. Condition (U) above will be used not only
to define the notion of weak Z-integrality for points at infinity but also to ensure that the group

π1(Ck)/K(ρ•)

is topologically finitely generated [CT14b, Lemma 4.3] (note that condition (U) implies Condition
(F) of [CT14b]), where

K(ρ•) :=
⋂
`

ker(ρ`) ∩ π1(Ck).

Apart from this finiteness condition, we will also consider the following semisimplicity condition.

(SSgeo) For every open subgroup Π ⊂ π1(Ck), H` is a semisimple Π-module for `� 0.

Condition (SSgeo) is satisfied by motivic families when X → C → spec(k) lifts to
characteristic 0 [Del71] (see [CT11, Lemma 2.5] for details), and by motivic torsion families
of abelian schemes [Tat66, Zar77, Szp85].

2.3.2 Statements.
2.3.2.1 Growth of the geometric gonality. Write

G` := ρ`(π1(C)) ⊂ GL(H`),

Ggeo
` := ρ`(π1(Ck)) C G`,
G`,c := 〈ϕ`,c〉 ⊂ G` (c ∈ |C|).

For each prime `, fix a commutative F`-subalgebra

F` ⊂ EndG`(H`) ⊂ EndF`(H`).
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(An example: F` = F`[Z(G`)].) Also, given 0 6= v ∈ H` and a subgroup G#
` ⊂ G`, define the

subgroups

G#
〈〈v〉〉 := Stab

G#
`

(F`v),

G#
〈v〉 := Stab

G#
`

(F`v),

G#
v := Stab

G#
`

(v).

Note that G#
v ⊂ G#

〈v〉 ⊂ G#
〈〈v〉〉 and that G#

v , G
#
〈v〉 C G#

〈〈v〉〉. We will also sometimes consider the

representation obtained from H` after tensoring by F`r . In that case, given 0 6= v ∈ H`⊗F`r , we
will write G#

F`rv for the group Stab
G#
`

(F`rv).

A point c ∈ |C| is said to be of supersingular type for ρ• if there exist integers Bc, Nc > 1
such that for every prime `, one has

[G` : NorG`(G
Nc
`,c )] 6 Bc.

The notion of point of supersingular type generalizes the notion of supersingular abelian variety
to the abstract setting we consider, in the following sense. Assume that ρ• is the motivic torsion
family arising from an abelian scheme X → C. Then every c ∈ |C| such that the fiber Xc is a
supersingular abelian variety is of supersingular type. Indeed, Xc is then isogenous (over a finite
extension of k(c)) to a product of supersingular elliptic curves and thus there exists an integer
n > 1 (independent of `) such that for ` 6= p, ρ`,c(ϕ

2n
c ) = |k(c)|nId (where ϕc is the arithmetic

Frobenius) lies in the center of G`.

Proposition 2.7. Assume that Condition (U) holds, that there exists a point c ∈ |C| of
supersingular type for ρ• and that

lim
`→+∞

min{[Ggeo
` : Ggeo

v ] | 0 6= v ∈ H`} = +∞.

Then

lim
`→+∞

γ k(C0(`)) = +∞

and, in particular,

lim
`→+∞

γ k(C1(`)) = +∞.

Proposition 2.7 is well adapted to the case where X → C is a universal abelian scheme
over a Shimura curve, since the moduli problem a Shimura curve represents usually ensures the
existence of a supersingular point (see § 3.3).

Under Condition (U), the condition that

lim
`→+∞

min{[Ggeo
` : Ggeo

v ] | 0 6= v ∈ H`} = +∞

is equivalent to the condition that

lim
`→+∞

min{[Ggeo
` : Ggeo

〈v〉 ] | 0 6= v ∈ H`} = +∞

(see Lemma 2.8 below), which is necessary for lim`→+∞ γ k(C0(`)) = +∞.
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For every integer r > 1 and prime `, set H`r := H` ⊗ F`r and define

d0(`r) := min{[Ggeo
` : Ggeo

F`rv] | 0 6= v ∈ H`r}

and

d1(`r) := min{[Ggeo
` : Ggeo

v ] | 0 6= v ∈ H`r}.

Lemma 2.8. Assume that Condition (U) holds. Then the following conditions are equivalent:

(1) for every open subgroup Π ⊂ π1(Ck), H
Π
` = 0 for `� 0;

(2) lim`→+∞ d0(`) = +∞;

(2′) lim`→+∞ d1(`) = +∞;

(3) for every integer r > 1, lim`→+∞ d0(`r) = +∞;

(3′) for every integer r > 1, lim`→+∞ d1(`r) = +∞.

Proof. Condition (U) ensures that Condition (F) of [CT14a, Theorem 1.1] holds and thus, up to
replacing C by a connected étale cover, one may assume that for every open subgroup Π⊂ π1(Ck),
the group ρ`(Π) is generated by its order-` elements for `� 0.

The implications (3) ⇒ (2) ⇒ (2′) and (3) ⇒ (3′) ⇒ (2′) are straightforward. It remains to
prove (1)⇒ (3) and (2′)⇒ (1).

(1)⇒ (3): Since H`r = H` ⊗ F`r is (non-canonically) isomorphic to H⊕r` as a π1(C)-module,
both Conditions (U) and (1) hold for H`r . Assume that there exists an integer d > 1 such
that for infinitely many `, one has d0(`r) 6 d, that is, there exists 0 6= v` ∈ H`r such that
deg(CF`rv`,k → Ck) 6 d (here, CF`rv` → C denotes the connected étale cover corresponding to

ρ−1
` (GF`rv) ⊂ π1(C)). As π1(Ck) acts through a topologically finitely generated quotient, there

are only finitely many possibilities for the covers CF`rv`,k → Ck of degree 6 d. Thus, up to
replacing C by a connected étale cover (viz, π1(C) by an open subgroup), one may assume that
for infinitely many ` there exists 0 6= v` ∈ H`r such that D` := F`rv` is a π1(Ck)-submodule. But
then the image of π1(Ck) acting on D` is both a quotient of Ggeo

` (hence generated by its order-`
elements for `� 0) and a subgroup of F×`r (hence of prime-to-` order). So, π1(Ck) acts trivially
on D` for `� 0, which contradicts (1).

(2′) ⇒ (1): Assume that there exists an open subgroup Π ⊂ π1(Ck) such that for infinitely
many primes `, there exists 0 6= v` ∈ H` such that

ρ`(Π) ⊂ Ggeo
v`
.

Then

d1(`) 6 [Ggeo : Ggeo
v`

] 6 [π1(Ck) : Π],

which contradicts (2′). 2

For instance, if ρ• is the motivic torsion family arising from an abelian scheme X → C, the
geometric Lang–Néron theorem [LN59] ensures that ρ• satisfies Condition (1) of Lemma 2.8 as
soon as Xη contains no non-trivial abelian subvariety isogenous to a k-isotrivial abelian variety.

The basic idea behind the proof of Proposition 2.7 is that a point of supersingular type for ρ•
provides ‘enough k-rational points’ on the abstract modular curves C0(`). Refining this idea and
up to strengthening the condition on the growth of the degree, one can get rid of the condition
that there exists a point of supersingular type for ρ•.
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Proposition 2.9. Assume that Conditions (U) and (SSgeo) hold and that

lim
`→+∞

min{[Ggeo
〈〈v〉〉 : Ggeo

v ] | 0 6= v ∈ H`} = +∞.

Then

lim
`→+∞

γ k(C1(`)) = +∞.

The conditions of Proposition 2.9 are satisfied in the case of ‘big symplectic geometric
monodromy’, that is, ρ`(π1(Ck)) = Sp(H`) (with respect to some non-degenerate alternating
bilinear form on H`) for ` � 0. See [Hal08, § 5] for an example of an abelian scheme X → C
whose associated family of F`-linear representations has big symplectic geometric monodromy.
See also [EEHK09, Proposition 5] for results about the growth of the genus.

2.3.2.2 Growth of the arithmetic gonality. Our results about the growth of arithmetic gonality
only involve Condition (U) and the purely arithmetic conditions on the characteristic polynomials
of Frobenius we formulated in § 2.3.1.1.

Theorem 2.10. Assume that Condition (U) holds and that at least one of the following two
conditions holds:

(1) there exist c ∈ |C| and a generator ϕ ∈ Γk such that ρ• satisfies Condition ϕ-(R, c);

(2) there exist a generator ϕ ∈ Γk and an integer N > 1 such that ρ• is weakly ϕ-Z-integral at
every c ∈ |Ccpt|\|C| and that ρ• satisfies7 Condition ϕ-(R, N, c) at every c ∈ |C|.

Then

lim
`→+∞

γk(C1(`)) = +∞.

Let us mention that (1) and (2) of Theorem 2.10 rely on rather different arguments. More
precisely, (1) is a corollary of Proposition 2.9 and, as such, its proof is based on a rather standard
‘counting of rational points’ method, whereas the proof of (2)8 uses the arithmetic property of
the set

DC := {[k(c) : k] | c ∈ |C|} ⊂ Z>1.

Also, the proof of (1) works under weaker assumptions but is not effective, whereas the proof of
(2) is effective and gives a lower bound in ln(`).

3. Growth of the geometric gonality over finite fields: proofs and applications

Before performing the proofs of Propositions 2.7 and 2.9, let us recall that finite base changes
do not affect the growth of geometric gonality. More precisely, let f : C ′→ C be a non-constant
morphism. By functoriality of étale fundamental groups, it induces a morphism π1(f) : π1(C ′)→
π1(C) and hence a family ρ′• of n-dimensional F`-linear continuous representations

ρ′` := ρ` ◦ π1(f) : π1(C ′)→ GL(H`), ` ∈ L
7 Here, we need to impose the Z-integrality condition, not only the weak Z-integrality one, because, in the proof,
we have to consider the reduction modulo ` of the characteristic polynomials of the (geometric or arithmetic)
Frobenius at the infinitely many c in |C|.
8 The proof of (2) works (and is, actually, simpler) in the `-adic setting as well.
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and, for every 0 6= v ∈ H` and i = 0, 1, one has a commutative square of non-constant morphisms

of curves

C ′i,v //

��

Ci,v

��
C ′

f
// C

with deg(C ′i,v → Ci,v) 6 deg(f) (more precisely, C ′i,v can be identified with a connected

component of Ci,v ×C C ′). From Fact 2.1, this implies that

γ k(Ci,v) deg(f) > γ k(C
′
i,v) > γ k(Ci,v).

Thus, to prove Propositions 2.7 and 2.9, we may perform finitely many finite base changes.

3.1 Proof of Proposition 2.7

Step 1. As π1(Ck) acts through a topologically finitely generated quotient, up to replacing C by a

connected étale cover, one may assume that G`,c = 〈ϕ`,c〉 is normal in G`. Let G`,c = G
(`′)
`,c ×G

(`)
`,c

be the unique decomposition into the direct product of a (cyclic) group G
(`′)
`,c of order prime to `

and a (cyclic) group G
(`)
`,c of `-power order, and ϕ

(`)
`,c the image of ϕ`,c in G

(`)
`,c . Thus, G

(`)
`,c = 〈ϕ(`)

`,c〉.
As G

(`)
`,c is characteristic in G`,c, it is normal in G`. It follows from this that there exists a

character χ : G` → (Z/`eZ)× such that, for each σ ∈ G`, σϕ(`)
`,cσ

−1 = (ϕ
(`)
`,c)

χ(σ) holds, where `e

is the order of G
(`)
`,c . For each element a ∈ Z/`eZ, write ã ∈ {0, 1, . . . , `e − 1} ⊂ Z for the unique

lift of a.

Step 2. In this step, we are going to reduce to the case where ϕ`,c acts semisimply on H`. Set

ε := ϕ
(`)
`,c − 1 ∈ F`[G`]. Observe that

σεσ−1 = (1 + ε)χ(σ) − 1 =

χ̃(σ)∑
j=1

(
χ̃(σ)

j

)
εj = uσε,

where uσ :=
∑χ̃(σ)

j=1

(
χ̃(σ)
j

)
εj−1. As the element ϕ

(`)
`,c of `-power order acts unipotently on H`, ε

acts nilpotently on H`. Let m = m`,c be the minimal integer such that εmH` = 0. Consider the

filtration H` = Fm ⊃ Fm−1 ⊃ · · · ⊃ F1 ⊃ F0 = 0, where Fi := H`[ε
i] (:= ker(εi : H`→ H`)).

Claim 1. Fi ⊂ H` is G`-stable.

Proof of Claim 1. For each σ ∈ G`, σ(H`[ε
i]) = H`[σε

iσ−1]. But, as σεiσ−1 = (σεσ−1)i =

(uσε)
i = uiσε

i, one has σ(H`[ε
i]) = H`[u

i
σε
i] ⊃ H`[ε

i]. Considering the F`-dimension, one gets

σ(H`[ε
i]) = H`[ε

i], as desired. 2

Claim 2. For each 0< i <m, the F`-linear map Fi+1/Fi→ Fi/Fi−1 given by the ε-multiplication

is injective and induces an injective G`-equivariant map P(Fi+1/Fi)→ P(Fi/Fi−1) of projective

spaces over F`.

2418

https://doi.org/10.1112/S0010437X16007612 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007612


Gonality of abstract modular curves in positive characteristic

Proof of Claim 2. By definition, Fi+1/Fi → Fi/Fi−1 is injective. Take any x ∈ Fi+1/Fi. Then,
for each σ ∈ G`,
ε(σx) = σ(σ−1εσx) = σ(uσ−1εx) = σ(χ̃(σ−1)εx) = χ̃(σ−1)σε(x) = χ(σ)−1σε(x) ∈ F×` σε(x),

where the third equality follows from the fact that ε2Fi+1 ⊂ Fi−1. Thus, the injective map
P(Fi+1/Fi)→ P(Fi/Fi−1) in question is G`-equivariant. 2

For each 0 6= v ∈ H`, there exists a unique 0 < i 6 m such that v ∈ Fi\Fi−1. Let vi denote
the image of v in Fi/Fi−1. Then, by Claim 2, one has

Stabπ1(C)(F`v) ⊂ Stabπ1(C)(F`vi) = Stabπ1(C)(F`εvi) = · · · = Stabπ1(C)(F`εi−1vi),

where εkvi ∈ Fi−k/Fi−k−1 and, in particular, εi−1vi = εi−1v ∈ F1. Thus, C0,v→ C factors through
C0,εi−1vi → C. As a result, it is enough to consider the k-gonality of C0,v for those 0 6= v ∈ H`

lying in F1 = H`[ε] ⊂ H`. Note that, as ϕ
(`)
`,c acts trivially on F1, the G`,c-submodule F1 ⊂ H` is

semisimple. Thus, up to replacing H` with F1, one may assume that ϕc acts semisimply on H`.

Step 3. Set r := n!. In this step, we are going to replace H` with H`r := H`⊗F` F`r but, as already
observed in (the proof of) Lemma 2.8, since H`r is (non-canonically) isomorphic to H⊕r` as a
π1(C)-module, both Condition (U) for H`r and the fact that

lim
`→+∞

d0(`r) = +∞

still hold.
As the minimal polynomial of ϕ`,c has degree 6 n, ϕ`,c is diagonalizable over F`r . As G`,c is

normal in G`, the elements of G` permute the eigenspaces of ϕ`,c in H`r . In particular, there exists
a subgroup S` ⊂ G` with [G` : S`] 6 r whose elements preserve each eigenspace of ϕ`,c in H`r .
Again, as π1(Ck) acts through a topologically finitely generated quotient, up to replacing C by
a connected étale cover, one may assume that each eigenspace of ϕ`,c in H`r is a G`-submodule.

Write
H`r =

⊕
16i6t

ker(ϕ`,c − λ`,iId)

as a direct sum of the eigenspaces of ϕ`,c each of which, by assumption, is a G`-submodule. For
every 0 6= v ∈ H`r and 1 6 i 6 t, let vi denote the projection of v onto ker(ϕ`,c − λ`,iId). Then
the inclusion

Stabπ1(C)(F`v) ⊂ Stabπ1(C)(F`rv) ⊂ Stabπ1(C)(F`rvi)
shows that C0,v → C factors through CF`rvi → C. In particular, γ k(C0,v) > γ k(CF`rvi). As a
result, it is enough to consider the k-gonality of CF`rv for those 0 6= v ∈H`r lying in an eigenspace
of ϕ`,c.

Step 4. From Step 3, for 0 6= v` ∈ H`r and every γ ∈ π1(C), one has γσc(ϕc)γ
−1 ∈ π1(CF`rv`),

which implies that the fiber of CF`rv` → C over c is totally k(c)-rational (Fact 2.5(2)). Thus,

|CF`rv`(k(c))| > deg(CF`rv`,k → Ck) > d0(`r).

Hence,

γ k(CF`rv`) >
√
γk(c)(CF`rv`) >

√
|CF`rv`(k(c))|
|k(c)|+ 1

>
√

d0(`r)

|k(c)|+ 1
→ +∞.

Here, the first inequality follows from Fact 2.1 and the second one from the general fact that if C
is a smooth, separated and geometrically connected curve over a finite field k with k-gonality γ,
one has |C(k)| 6 γ|P1(k)| (as can be seen by considering a degree-γ non-constant rational map
f : C → P1

k).
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3.2 Proof of Proposition 2.9
Step 1. Let Hss

` denote the semisimplification of H` as a G`-module. From Condition (SSgeo),
one has H`→̃Hss

` as a Ggeo
` -module. Thus, one may freely replace H` with Hss

` and hence assume
that H` is a semisimple G`-module.

Step 2. As already mentioned, Condition (U) ensures that Condition (F) of [CT14a, Theorem
1.1] holds. As Condition (SSgeo) holds by assumption, it follows from [CT14a, Corollary 3.5]
that, up to replacing C by a connected étale cover, one may assume that for every prime `� 0,
Ggeo
` is generated by its order -` elements and Z(G`)G

geo
` = G`.

Step 3. Up to replacing F` by F`[Z(G`)] ⊂ EndG`(H`), one may assume that F` contains Z(G`).
For 0 6= v ∈ H`, take any irreducible F`-submodule H ⊂ F`v and any 0 6= w ∈ H, so that
H = F`w. As w ∈ H ⊂ F`v, there exists an a ∈ F` such that w = av. As a-multiplication
H`→ H` is G`-equivariant, one has

Stabπ1(C)(v) ⊂ Stabπ1(C)(w)

and hence C1,v→ C factors through C1,w→ C. As a result, it is enough to consider the k-gonality
of C1,v for 0 6= v ∈ H` such that F`v is an irreducible F`-module. Then, in particular, the image
Fv of F` in EndF`(F`v) is a finite field extension, say of degree sv, of F`. Let H∗` denote the set
of v ∈ H` such that F`v is an irreducible F`-module.

Step 4. Fix ϕ` ∈ Z(G`) lifting a generator of G`/G
geo
` . Write

γ
〈〈〉〉
k (`) := min{γk(C〈〈v〉〉) | v ∈ H∗` }

and
γ
〈〈〉〉
k

(`) := min{γ k(C〈〈v〉〉) | v ∈ H∗` }.
Fix v` ∈H∗` . As ϕ` ∈ G〈〈v`〉〉 and ϕ` generates G`/G

geo
` , the étale cover C〈〈v`〉〉→ C corresponding

to the inclusion G〈〈v`〉〉 ⊂ G` is defined over k. As C〈〈v`〉〉 is defined over k and k is finite, Fact 2.1
yields

γk(C〈〈v`〉〉) > γ k(C〈〈v`〉〉) >
√
γk(C〈〈v`〉〉).

Thus, γ
〈〈〉〉
k (`)→ +∞ if and only if γ

〈〈〉〉
k

(`)→ +∞. If γ
〈〈〉〉
k

(`)→ +∞, we are done.

Step 5. Otherwise, there exist an integer γ > 1 and infinitely many primes ` such that there
exists v` ∈ H∗` with γk(C〈〈v`〉〉) 6 γ. In particular, one has a degree 6 γ non-constant rational
map

fv` : Ccpt
〈〈v`〉〉→ P1

k.

So, replacing k by its degree-γ! extension, one may assume that Ccpt
〈〈v`〉〉(k) 6= ∅.

Also, from Condition (U), up to replacing C with a connected étale cover, one may assume
that the images of the inertia groups Ic,` are unipotent of order dividing `. But, on the other
hand, the cover C1,v` → C〈〈v`〉〉 is Galois with group a subgroup of F×v` ' Z/(`sv` − 1). Thus,

C1,v` → C〈〈v`〉〉 actually extends to an étale cover Ccpt
1,v`
→ Ccpt

〈〈v`〉〉. Similarly, the morphism

π1(C〈〈v`〉〉)→ Aut(F`v`)

γ → v` 7→ γ · v`
factors through

π1(C〈〈v`〉〉)� π1(Ccpt
〈〈v`〉〉).
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Let c ∈ Ccpt
〈〈v`〉〉(k) and let σc : Γk → π1(Ccpt

〈〈v`〉〉) denote the section it induces. Define a twisted
morphism

αv`,c : π1(Ccpt
〈〈v`〉〉)→ Aut(F`v`)

γ → v` 7→ σc(pr(γ))−1γ · v`
and let Tv`,c → Ccpt

〈〈v`〉〉 denote the connected abelian étale cover corresponding to ker(αv`,c) C
π1(Ccpt

〈〈v`〉〉). By construction, we have the following.

(1) Tv`,c,k ' C
cpt

1,v`,k
(Fact 2.5(1), observing that π1(Ccpt

〈〈v`〉〉,k
)∩ker(αv`,c) = Stabπ1(Ccpt

〈〈v`〉〉,k
)(v`) =

π1(Ccpt

1,v`,k
)) and hence γ k(C1,v`) = γ k(Tv`,c) and

deg(Tv`,c→ Ccpt
〈〈v`〉〉) > deg(C1,v`,k

→ C〈〈v`〉〉,k) = [Ggeo
〈〈v`〉〉 : Ggeo

v`
].

(2) The fiber of Tv`,c→ Ccpt
〈〈v`〉〉 above c is totally k-rational.

In particular,

γ k(C1,v`) = γ k(Tv`,c) >
√
γk(Tv`,c) >

√
|Tv`,c(k)|
|k|+ 1

>

√
[Ggeo
〈〈v`〉〉 : Ggeo

v` ]

|k|+ 1
.

So, the conclusion follows from the last assumption in Proposition 2.9. 2

3.3 Applications of Proposition 2.7
3.3.1 Growth of the gonality of Shimura curves. Let Y (1) and Y0(`) denote respectively the

coarse moduli schemes for the moduli stackM of elliptic curves and for the moduli stackM0(`)
of elliptic curves with a cyclic subgroup of order exactly ` as stacks over Z. Proposition 2.7 gives
a new proof of the following standard result.

Corollary 3.1. For every prime p, one has

lim
`→+∞

γFp(Y0(`)Fp) = +∞.

Proof. (See also [Cad12, Proof of Corollary 3].) Fix an elliptic scheme (i.e. abelian scheme of
relative dimension 1) E → C, where C is a smooth, separated and geometrically connected
curve over a finite extension F of Fp with generic point η. Assume that Eη is not (isogenous to)
an F -isotrivial elliptic curve and that it has a supersingular fiber.9 For every prime ` 6= p and
0 6= v ∈ Eη[`], one has the following commutative diagram (over F ):

M

��

E

��
M0(`)

44

��
Y (1) C

boo

Y0(`)

d 44

C0,vc
oo

a

55

9 Such an elliptic scheme always exists. For instance, since Y (N) is a fine moduli scheme for N > 3 (p - N), one
can take for E → C the underlying elliptic scheme of the universal object over Y (3) (if p 6= 3) or Y (5) (if p = 3).
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where a : C0,v → C (respectively d : Y0(`)→ Y (1)) is the natural covering morphism associated
to v (respectively `), and b : C → Y (1) (respectively c : C0,v → Y0(`)) is the (coarse) classifying
morphism for E→ C (respectively (E×CC0,v→ C0,v, 〈v〉)), which is independent of (respectively
dependent on) ` and v.

In particular, we can estimate the gonality as

γF (Y0(`)) > γF (C0,v)

deg(c)
=
γF (C0,v) deg(d)

deg(a) deg(b)
=

γF (C0,v)(`+ 1)

|Ggeo
` · 〈v〉|deg(b)

> γF (C0,v)

deg(b)

with deg(b) independent of ` and v. Applying Proposition 2.7 to E → C yields the desired
result. 2

The standard proof of Corollary 3.1 (see for instance [PP07]) also relies on a rational points
counting argument but it requires us to know exactly how many supersingular elliptic curves one
has over Fp2 , whereas our argument only uses the existence of one supersingular elliptic curve.

The argument in the proof of Corollary 3.1 extends to more general Shimura curves (for
instance, to those classifying abelian surfaces with quaternionic multiplication).

3.3.2 An example of abelian scheme with a fiber of supersingular type which is not a
supersingular abelian variety. Let ω be a primitive third root of unity and consider the smooth,
affine and geometrically connected relative curve U → C0 := P1

Q[ω],λ\{0, 1,∞} defined by the
equation

y3 = x2(x− 1)(x− λ).

Let U ↪→ X0 → C0 denote a relative smooth compactification of U → C0 and let S ⊂
spec(Z[ω][1/`]) denote a non-empty open subscheme over which X0 → C0 extends to a smooth,
proper and geometrically connected curve X → C := P1

S,λ\{0, 1,∞} (of genus 2). Let J → C
denote the Jacobian scheme of X → C.

Proposition 3.2. For every s ∈ |S|, the closed point −1 ∈ |Cs| is of supersingular type for
the motivic torsion family arising from Js → Cs but for every s ∈ |S| of residue characteristic
p ≡ 1 (mod 3), Js,−1 is not a supersingular abelian variety.

Proof. Write η for the generic point of C and, for every closed point s ∈ S, let ηs denote the
generic point of Cs. Note that for every s ∈ |S|, one has Js,−1 ' J−1,s, where J−1→ S denotes
the pull-back of J → C by the (−1)-section S → C = P1

S,λ\{0, 1,∞}.
For every s ∈ S, one has a natural faithful action of Z/3 over Xs which fixes (0, 0) given by

t : (x, y) 7→ (x, ωy),

whence a group morphism Z/3→ Aut(Js), inducing a morphism of rings

Z[Z/3]→ End(Js).

Claim 1. The morphism of rings Z[Z/3]→ End(Js,ηs) factors through a monomorphism of rings

Z[Z/3] //

����

End(Js,ηs)

Z[ω]
�+

88
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Here, we write
Z[Z/3] ' Z[T ]/(T 3 − 1) = Z⊕ Zt⊕ Zt2

for the group ring of Z/3 = 〈t〉 and Z[ω] ' Z[T ]/(T 2 + T + 1) = Z⊕ Zω ⊂ Q(ω) for the ring of
integers of the quadratic imaginary field Q(ω).

As Js → Cs is the Néron model of its generic fiber Js,ηs → ηs, Claim 1 implies that the
morphism of rings Z[Z/3] → End(Js) also factors through a monomorphism of rings Z[ω] ↪→
End(Js).
Proof of Claim 1. As the canonical morphism

End(Js,ηs)→ EndZ`(T`(Js,ηs))
is a monomorphism, it is enough to show that the composite

Z[Z/3]→ End(Js,ηs) ↪→ EndZ`(T`(Js,ηs))
factors through a monomorphism Z[ω] ↪→ EndZ`(T`(Js,ηs)). First, observe that the quotient
curve Ys := Xs,ηs/(Z/3) has genus 0. From [Ser68, VI, § 4], this implies that V`(Js,ηs)Z/3 =
V`(JYs|k(ηs)) = 0. For every 0 6= v ∈ T`(Js,ηs), one has (1 + t + t2)v ∈ T`(Js,ηs)Z/3 and hence
(1 + t + t2) ⊂ ker(Z[Z/3]→ End(Js,ηs)). This inclusion is actually an equality. Otherwise, the
image of Z[Z/3] in End(Js,ηs) would be a proper quotient of Z[ω] and hence finite (and non-
trivial), while End(Js,ηs) is torsion-free. 2

We now specialize to λ = −1. Then X−1 has an extra order-2 automorphism τ given by
(x, y) 7→ (−x, y). The quotient curve E−1 := X−1/〈τ〉 is given by the equation y3 = z(z − 1) =
(z − 1/2)2 − 1/4 or, setting z′ := z − 1/2, by

y3 = (z′)2 − 1
4 .

Thus, E−1 is an elliptic curve having CM by ω : (z′, y) 7→ (z′, ωy). The induced morphism
J−1→ E−1 is Z/3-equivariant and hence the connected component E of ker(J−1→ E−1) is also
an elliptic curve with CM by ω. As the class number of Z[ω] is 1, E and E−1 become isomorphic
over a finite extension k of Q(ω). Let T denote the inverse image of S in spec(Ok), where Ok is
the ring of integers of k. Then J−1,T is isogenous to E−1 ×T E−1 over T .

Now, fix a closed point s ∈ T with residue field of characteristic p ≡ 1 (mod 3). As p splits
in Z[ω], the elliptic curve E−1,s is ordinary. In particular, J−1,s is not supersingular. However,
consider the family

ρ` : π1(Cs)→ GL(Jηs [`]), ` 6= p.

Claim 2. For every prime ` 6= p, one has G`,−1 ⊂ Z(G`) (hence, in particular, −1 ∈ Cλ,s is of
supersingular type).

Proof of Claim 2. Let F denote the Frobenius of E−1,s. Then Z[F ] ⊂ End(E−1,s) is a rank-2
free Z-module and F has characteristic polynomial of the form χF = T 2 − aT + |k(s)| ∈ Z[T ]
with ∆ = a2 − 4|k(s)| < 0 (ordinary case). In particular, F is integral over Z and Q[F ] is two
dimensional. As Q[F ] = End(E−1,s)⊗Z Q ⊃ Q[ω], this implies that

Q[F ] = Q[ω]

and hence Z[F ] ⊂ Z[ω], so F ∈ Z[ω].
But the image of the representation

ρ`∞ : π1(Cs)→ GL(T`(Js,ηs))
commutes with Z[ω] ⊂ End(Js,ηs) and hence with F (= ρ`∞ ◦ σ−1(ϕ−1)) (where ϕ denotes the
arithmetic Frobenius). The conclusion follows by reduction modulo `. 2
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4. Growth of the arithmetic gonality over finite fields: proofs

4.1 Proof of Theorem 2.10(1)
4.1.1 Proof of Theorem 2.10(1) under Condition (SSgeo). We prove first Theorem 2.10(1)

under Condition (SSgeo). Recall (§ 3.2, Step 2) that, under this assumption, up to replacing C
by a connected étale cover, one may assume that for every prime ` > 0, Ggeo

` is generated by its
order-` elements and Z(G`)G

geo
` = G`. For simplicity, write Z` := Z(G`).

Fix ϕ` ∈ Z` lifting a generator of G`/G
geo
` . For every 0 6= v ∈ H` and subgroup G#

` ⊂ G`, set

G#
Z`v

:= {g ∈ G# | gv ∈ Z`v}.

Here, G#
Z`v

is a subgroup of G` such that G#
v C G#

Z`v
C G#

〈〈v〉〉, where G#
〈〈v〉〉 is considered with

respect to F` := F`[Z`]. Let CZ`v → C denote the connected étale cover corresponding to the
inclusion of the subgroup GZ`v ⊂ G` and let kZ`v denote its field of definition. One has

[GZ`v : Gv] = [GZ`v : Ggeo
Z`v

Gv][G
geo
Z`v

Gv : Gv]

= [GZ`v/G
geo
Z`v

: Ggeo
Z`v

Gv/G
geo
Z`v

][Ggeo
Z`v

: Ggeo
v ]

=
[k1,v : k]

[kZ`v : k]
[Ggeo

Z`v
: Ggeo

v ].

As ϕ` ∈ GZ`v and ϕ` generates G`/G
geo
` , one has kZ`v = k. Hence,

[GZ`v : Gv] = [k1,v : k][Ggeo
Z`v

: Ggeo
v ].

Write

d(`) := min{[GZ`v : Gv] | 0 6= v ∈ H`}.
Claim. lim

`→+∞
d(`) = +∞.

Proof of Claim =⇒ Theorem 2.10(1). For every integer d > 1, define

H`(d, 1) := {0 6= v ∈ H` | [k1,v : k] 6 d}, H`(d, 2) := {0 6= v ∈ H` | γ k(C1,v) 6 d}.

It is enough to show that H`(d, 1) ∩ H`(d, 2) = ∅ for ` � 0. Otherwise, there would exist an
infinite subset L′ ⊂ L and, for each ` ∈ L′, an element 0 6= v` ∈ H` such that [k1,v` : k] 6 d and
γ k(Cv`) 6 d. Then it follows from the claim that

[Ggeo
〈〈v`〉〉 : Ggeo

v`
] > [Ggeo

Z`v`
: Ggeo

v`
] =

[GZ`v` : Gv` ]

[k1,v` : k]
> d(`)

d
→ +∞.

But this contradicts Proposition 2.9.

Proof of the Claim. Assume that ` is large enough so that the reduction modulo ` of Pc is non-zero
and choose 0 6= v` ∈ H` such that [GZ`v` : Gv` ] = d(`). One has a commutative diagram with
exact rows

1 // Gv`
// GZ`v`

// Z`v` // 1

1 // Z`,v`
//

� ?

OO

Z` //
� ?

OO

Z`v` // 1
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(Here, we implicitly equip Z`v` with the group structure induced by Z`/Z`,v`→̃Z`v`.) In
particular,

d(`) = [GZ`v` : Gv` ] = |Z`v`| = [Z` : Z`,v` ].

Write M` := F`[G`v`] ⊂ H` for the G`-submodule generated by v` and r` for its F`-dimension.
Let

det` : G`
|M`
→ GL(M`)

det
→ GL(Λr`M`) ' F×`

be the determinant representation of G` acting on M`. As Ggeo
` is generated by order-` elements,

det` : G` → F×` factors through G`/G
geo
` and hence im(det`) = det`(Z`). As Z`,v` acts trivially

on M`, one has
d(`) = [Z` : Z`,v` ] > |im(det`)| =: f`.

Thus, it is enough to show that lim`→+∞f` = +∞.

Up to replacing k with a finite extension, one may assume that k(c) = k. By definition, ϕf``,c
acts trivially on Λr`M`, which is a sub-vector space of Λr`H`. Recall that, with the notation of
§ 2.3.1.1, ϕ`,c acts on H` with characteristic polynomial the monic polynomial associated to the
reduction modulo ` of

Pc = ac
∏

16i6n
(T − αc,i) ∈ Z[T ].

Lemma 4.1. Let P be a degree-n polynomial in Z[T ], and write P (T ) = a
∏

16i6n(T − αi) with

a ∈ Z, α1, . . . , αn ∈ Q. Then, for every pair of positive integers r and f ,

P (r, f, T ) := a(nr)rf
∏

16i1<···<ir6n
(T − (αi1 · · ·αir)f ) ∈ Z[T ].

As ϕf``,c acts on Λr`H` with characteristic polynomial the monic polynomial associated to the
reduction modulo ` of Pc(r`, f`, T ), the prime ` divides |Pc(r`, f`, T )(1)|, which is an integer > 1
(by our assumptions on Pc(T )) and less than

|ac|(
n
r`

)r`f` ∏
16i1<···<ir`6n

(1 + |αc,i1 · · ·αc,ir` |
f`) 6 |ac|(

n
r`

)r`f`(1 + bf`r`c )
(nr`) 6 |ac|n!nf`(1 + bf`nc )n!,

where bc = max{|αc,i| | i = 1, . . . , n}. Hence, ` 6 |ac|n!nf`(1 + bf`nc )n!, which implies that

lim
`→+∞

f` = +∞.

Proof of Lemma 4.1. The assertion of Lemma 4.1 follows from the combination of (1) and (2)
below.

(1) a(nr)r
∏

16i1<···<ir6n(T − αi1 · · ·αir) ∈ Z[T ]. Let σj := σnj (α1, . . . , αn) denote the jth
fundamental symmetric polynomial in α1, . . . , αn. By assumption, aσj ∈ Z, j = 1, . . . , n. Write∏

16i1<···<ir6n
(T − αi1 · · ·αir) =: TN +A1T

N−1 + · · ·+AN ,

where N :=
(
n
r

)
. Then Ak can be written as a Z-linear combination of σm1

1 · · ·σmnn , m1, . . . ,
mn > 0. Regarded as polynomials in the α1, . . . , αn, Ak is homogeneous of degree kr whereas
σm1

1 · · ·σmnn has degree
∑n

i=1 imi. Thus,

kr =
n∑
i=1

imi >
n∑
i=1

mi.

This shows that akrAk ∈ Z, k = 1, . . . , N and hence aNrAk ∈ Z, k = 1, . . . , N , as claimed.
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(2) af
∏

16i6n(T − αfi ) ∈ Z[T ]. Write

P0 :=
∏

16i6n
(T − αi) = Tn − σ1T

n−1 + · · ·+ (−1)nσn.

For every prime p, let vp and denote the (additive) p-adic valuation on Qp with vp(p) = 1. Recall

that the Newton polygon of P0 associated to vp is the convex hull of

{(i, vp(σi)) | i = 0, . . . , n} ∪ ([0, n]× {+∞}) ⊂ R× (R ∪ {+∞})

(where we set σ0 := 1) and that the successive slopes λ1, . . . , λn are given by the vp(αi). Thus,

the condition that a
∏

16i6n(T − αi) has coefficients in Z is equivalent to the condition that for

every prime p, one has

(vp(a) + vp(σi) =) vp(a) +
∑

16j6i
λj > 0, i = 1, . . . , n.

Since f > 1, this implies that vp(a
f ) +

∑
16j6i fλj > 0, i = 1, . . . , n. As the fλ1, . . . , fλn are the

slopes of the Newton polygon of
∏

16i6n(T − αfi ), the conclusion follows. 2

4.1.2 End of the proof of Theorem 2.10(1). We now prove the general case of Theorem 2.10(1).

Let Hss
` denote the semisimplification of H` as a π1(C)-module. As π1(Ck) is normal in π1(C),

Hss
` is also a semisimple π1(Ck)-module. Thus, the resulting family

ρss
• := (ρss

` : π1(C)→ GL(Hss
` )), ` ∈ L

satisfies Condition (SSgeo). Also, ρss
• satisfies Condition (U) and Condition ϕ-(R,c) as ρ• does.

Hence, setting

Css
1 (`) :=

⊔
06=v∈Hss

`

C1,v,

it follows from § 4.1.1 that

lim
`→+∞

γk(C
ss
1 (`)) = +∞.

For every prime `, let again 0 6= v` ∈ H` be such that γk(Cv`) = γk(C1(`)). Considering the socle

filtration

H` = Sn`,c,c(H`) ⊃ Sn`,c−1,c(H`) ⊃ · · · ⊃ S0,c(H`) = 0

for H` as a π1(C)-module, there exists a unique 1 6 i 6 n` such that v` ∈ Si,c(H`)\Si−1,c(H`).

Let v`,i denote the projection of v` onto Si,c(H`)/Si−1,c(H`)(↪→ Hss
` ). It then follows from the

inclusion Stabπ1(C)(v`) ⊂ Stabπ1(C)(v`,i) (which corresponds to an étale cover C1,v` → C1,v`,i)

that

γk(C1(`)) = γk(C1,v`) > γk(C1,v`,i) > γk(Css
1 (`))→ +∞.
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4.2 Proof of Theorem 2.10(2)
4.2.1 An elementary lemma on k-gonality. Given a field Q and a smooth, proper and

geometrically connected curve C over a finite extension QC of Q, set

DC := {[Q(c) : Q] | c ∈ |C|} ⊂ Z>1.

Lemma 4.2. Assume that DP1
Q

= Z>1. Then, for every integer d > γQ(C) and m > 1, one has

DC ∩ {m, 2m, . . . , dm} 6= ∅.

Proof. Let f : C → P1
Q be a non-constant (hence surjective) morphism of degree 6 d. As DP1

Q
=

Z>1, one can find tm ∈ P1
Q such that [Q(tm) : Q] = m. Pick any c ∈ f−1(tm) and just observe

that

[Q(c) :Q] = [Q(c) :Q(tm)][Q(tm) :Q] = [Q(c) :Q(tm)]m ∈DC∩{m, 2m, . . . , dm}. 2

Remark 4.3. The assumption that DP1
Q

= Z>1 simply means that Q[T ] contains degree-d

irreducible polynomials for every integer d > 1. This holds for instance if Q is finitely generated
or finitely generated over Qp.

In particular (take m = 2 in Lemma 4.2), if DC ⊂ {1}∪Z>A, then γQ(C) > A/2. So, to exploit
Lemma 4.2, we will have to estimate the degree of the residue field of closed points; this can be
done group theoretically as follows. For every prime ` and 0 6= v ∈ H`, write πv : Ccpt

1,v → Ccpt.

For every c ∈ |Ccpt|, write I`,c and G`,c for the images of Ic and Dc in G`, respectively. For any
cv ∈ π−1

v (c), one can choose Dc in such a way that Dcv := Dc∩π1(C1,v) is a decomposition group
of cv in π1(C1,v). Then one can recover [k(cv) : k(c)] group theoretically as

[k(cv) : k(c)] = [Γk(c) : Γk(cv)] = [D`,c/I`,c : D`,cvI`,c/I`,c] = [D`,c : D`,cvI`,c].

4.2.2 Proof of Theorem 2.10(2). Up to replacing C with a connected étale cover, one may
assume that:

– the points in |Ccpt|\|C| are all k-rational;
– for every c ∈ |Ccpt|\|C| and prime `, Ic acts unipotently on H`. In particular, in condition

(U) of § 2.3.1.1, one can take D′c = Dc and I ′c = Ic;
– for every c ∈ |Ccpt|\|C|, Qc decomposes as

Qc(T ) = (T − 1)rc−tcQ′c(T ),

where none of the roots βc,1, . . . , βc,tc of Q′c is a root of unity or 0. Here, 0 6= Qc ∈ Z[T ] is the
polynomial introduced in § 2.3.1.1, whose image in F`[T ] is divisible by the characteristic
polynomial of ϕ`,c := ρss

`,c(ϕc).
For every prime ` ∈ L, fix 0 6= v` ∈ H` such that

γk(C1,v`) = γk(C1(`)).

Our aim is to prove that there exists a sequence (A`)`∈L of positive integers such that
lim`→+∞A` = +∞ and

DCcpt
1,v`

⊂ {1} ∪ Z>A` .

To estimate A`, fix c` ∈ |Ccpt
1,v`
| lying over c ∈ |Ccpt|. We distinguish between two cases.
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Case 1: c ∈ |C|. Then one has v` ∈ H
Γk(c`)
` , so 1 is an eigenvalue for ϕ

[k(c`):k(c)]
`,c . This implies that

`

∣∣∣∣∣ ∏
16i6n

(1− α[k(c`):k(c)]
c,i )

and hence
` 6

∏
16i6n

(1 + |αc,i|[k(c`):k(c)]) 6 (1 + |k|N [k(c`):k])n.

So,

[k(c`) : k] > ln(`1/n − 1)

N ln(|k|) =: B`.

Case 2: c ∈ |Ccpt|\|C|. Then k(c) = k by assumption.
Assume that ` 6= p, that ` > n (so that GL(H`) contains no element of order `2) and that ` is

large enough so that the reduction modulo ` of Qc is non-zero. As Ic is an extension of Ẑ(p′)(1)
(as a Γk(c)-module) by a pro-p group and Ic acts unipotently on H`, this action factors through
its unique order-` quotient Ic,` = 〈γ〉 ' F`(1). Let Ic(`) denote the (characteristic) kernel of
Ic� Ic,` and write Dc,` := Dc/Ic(`). Thus, Dc,` fits into the exact sequence (recall that k(c) = k)

1 // Ic,` // Dc,`
// Γk // 1

F`(1) = 〈γ〉 Ẑ = 〈ϕ〉
Set

Ic,`,v` := StabIc,`(v`) ⊂ Ic,` and Dc,`,v` := StabDc,`(v`) ⊂ Dc,`.

By definition, one has the following commutative diagram with exact rows:

1 // Ic,` // Dc,`
pr // Γk // 1

1 // Ic,`,v`
//

� ?

OO

Dc,`,v`

pr //
� ?

OO

Γk(c`)
//

� ?

OO

1

and the two exact sequences split (say, because Γk and Γk(c`) are free profinite groups). To
estimate [k(c`) : k] = [Γk : Γk(c`)], we are going to choose appropriate complements Φ and Φv` of
Ic,` and Ic,`,v` in Dc,` and Dc,`,v` , respectively.

Let W` := F`[Dc,`v`] ⊂ H` denote the Dc,`-submodule generated by v`. We distinguish
between two subcases.

(1) Ic,`,v` = 1. Set D̃c,`,v` := pr−1(Γk(c`)) ⊂ Dc,`. Then one has by construction:

1 // Ic,` // Dc,`
pr //

�

Γk // 1

1 // Ic,` // D̃c,`,v`

pr //
� ?

OO

Γk(c`)
//

� ?

OO

1

1 // 1 //
� ?

OO

Dc,`,v`

pr //
� ?

OO

Γk(c`)
// 1
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In particular, Dc,`,v` provides a complement to Ic,` in D̃c,`,v; let

σ : Γk(c`)

pr−1

→̃ Dc,`,v` ↪→ D̃c,`,v`

denote the corresponding section. Consider the following commutative diagram describing
how the sections of the two first rows are related:

H1(Γk, Ic,`)
res // H1(Γk(c`), Ic,`)

k×/(k×)` // k(c`)
×/(k(c`)

×)`

where the vertical arrows are the Kummer isomorphisms (recall that Ic,` ' F`(1) as a
Γk-module), the upper horizontal arrow is the restriction and the lower horizontal arrow is
induced by the inclusion.
We distinguish again between two subcases.

(a) k(c`)
×/(k(c`)

×)` 6= 1. Then `||k(c`)
×| and hence [k(c`) : k] > ln(`+ 1)/ ln(|k|).

(b) k(c`)
×/(k(c`)

×)` = 1. Then the section σ : Γk(c`) ↪→ D̃c,`,v` extends to a section Γk ↪→
Dc,` of pr : Dc,` � Γk. Let Φ ⊂cl Dc,` denote the corresponding complement of Ic,`. By
construction, Φv` := D̃c,`,v` ∩ Φ = Dc,`,v` .

(2) Ic,`,v` = Ic,`. Then, as Ic,` is normal in Dc,` and acts trivially on v`, it also acts trivially on
the whole W`. Hence, the action of Dc,` on W` factors through Dc,` � Γk ' Dc,`/Ic,`. Let
Φ ⊂ Dc,` be any complement of Ic,` and set Φv` := Dc,`,v` ∩ Φ. Then Dc,`,v` = Ic,`Φv` and
pr(Φv`) = pr(Dc,`,v`) = Γk(c`).

In cases (1)(b) and (2), we have

[Φ : Φv` ] = [k(c`) : k].

Let
V` := F`[Φv`] ⊂W`

denote the Φ-submodule generated by v`. As Φ is abelian (in fact, even cyclic), one has

Φv` = ker(Φ→ GL(V`))

and hence
[k(c`) : k] = |im(Φ→ GL(V`))|.

Then either ` divides |im(Φ → GL(V`))| (hence [k(c`) : k] > `) or Φ acts semisimply on V`.
In the latter case, writing Hss

` for the semisimplification of H` as a Dc,`-module, one has a
monomorphism V` ↪→ Hss

` of Φ-modules.
But, as a Φ ' Γk-module, Hss

` decomposes as

Hss
` = ker(Q′c(ρ

ss
`,c(ϕ)))︸ ︷︷ ︸

:=Hss′
`

⊕ ker(ρss
`,c(ϕ)− Id)︸ ︷︷ ︸
:=Hss◦

`

.

Since v` ∈ V` ⊂ Hss
` , one can write v` = v′` + v◦` with v′` ∈ Hss′

` and v◦` ∈ Hss◦
` . If v′` = 0, then

[Φ : Φv` ] = 1, i.e. k(c`) = k. If v′` 6= 0, then

[k(c`) : k] = [Φ : Φv` ] > [Φ : Φv′`
] = [k(c′`) : k],
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where c′` is the image of c` via Ccpt
1,v`
→ Ccpt

1,v′`
. But then (see (2) in the proof of Lemma 4.1)

` 6 |ac|[k(c′`):k]
∏

16i6tc
(1 + |βc,i|[k(c′`):k]) 6 |ac|[k(c′`):k](1 + b[k(c′`):k])tc 6 a[k(c′`):k](1 + b[k(c′`):k])t,

where ac denotes the leading coefficient of Q′c and

a := max{|ac| | c ∈ |Ccpt|\|C|}, b := min{|βc,i| | c ∈ |Ccpt|\|C|, i = 1, . . . , tc},
t := max{tc | c ∈ |Ccpt|\|C|}.

As a result,

[k(c`) : k] > ln(`)

ln(a) + t ln(1 + b)
.

To sum it up, we have shown that there exists a sequence Bcusp
` such that lim`→+∞B

cusp
` = +∞

and, for every c` ∈ |Ccpt
1,v`
| lying over c ∈ |Ccpt|\|C|, one has [k(c`) : k] = 1 or [k(c`) : k] > Bcusp

` .
Setting A` := min{B`, Bcusp

` }, one has

DCcpt
1,v`

⊂ {1} ∪ Z>A`

and hence

γk(C1(`)) > A`
2
→ +∞.

5. Results over finitely generated fields

We now turn to the general situation where k is a finitely generated field of characteristic p > 0
with prime field F . Let F denote Z if p = 0 and Fp if p > 0.

5.1 Statements
We give here a sample of statements which can be derived from the statements of § 2.3 by the
specialization method we explain in § 5.2 below.

Let X→ C be a smooth proper morphism. Up to enlarging k, we may assume that C admits
a (unique) smooth compactification C ⊂ Ccpt with Ccpt\C étale over k. We call an F-model of
X → C ↪→ Ccpt

→ spec(k)→ spec(F ) the data of

X → C ↪→ Ccpt
→ T → U,

where U is a non-empty open subscheme of spec(F), T is an integral scheme with generic point ζ
and function field k(ζ) = k, T → U is a dominant morphism of finite type, Ccpt

→ T is a smooth,
proper and geometrically connected curve over T and Ccpt\C is a relatively finite étale divisor,
such that Ccpt

ζ and Cζ are isomorphic to (and will be identified with) Ccpt and C respectively

over k andX → C is a smooth proper morphism whose generic fiber Xζ → Cζ is isomorphic to
(and will be identified with) X → C over k. When X → C is an abelian scheme, we require
furthermore that X → C be an abelian scheme. Also, we will say that an F-model is regular if T
is.

Up to shrinking T , F-models always exist and can be chosen to be regular. However, in
order to apply Proposition 2.7, one has to work with a model given a priori with closed points
t ∈ |T |, which cannot all be removed and may be non-regular (for instance the closed points
corresponding to the supersingular fibers in Corollary 5.1 below).
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Corollary 5.1. Let ρ• be the motivic torsion family attached to an abelian scheme X → C
such that Xη contains no non-trivial abelian subvariety isogenous to a k-isotrivial abelian variety.
Assume that p = 0 (respectively p > 0) and that X → C admits an F-model X → C ↪→ Ccpt

→

T → U, with a closed point t ∈ |T | (respectively a Zariski-dense set of closed points t ∈ |T |)
such that Xt → Ct has a point of supersingular type for the motivic torsion family attached to
it. Then

lim
`→+∞

γ k(C0(`)) = +∞.

In particular, for ` � 0, there are only finitely many c ∈ C(k) such that Xc[`] admits a one-
dimensional Γk-submodule and, if p = 0, for every integer d > 1 and for ` � 0, there are only
finitely many c ∈ C(k,6 d) such that Xc[`] admits a one-dimensional Γk(c)-submodule.

Corollary 5.2. Let ρi•(j) be a motivic family attached to a smooth proper morphism X → C.
(1) Assume that ρi•(j) has big symplectic geometric monodromy. Then

lim
`→+∞

γ k(C1(`)) = +∞.

(2) In any case and provided that 2i 6= j, one has

lim
`→+∞

γk(C1(`)) = +∞.

In particular, for `� 0, there are only finitely many c ∈ C(k) such that

Hi(Xc,F`)(j)Γk 6= 0

and, if p = 0, for every integer d > 1 and for ` � 0, there are only finitely many c ∈ C(k,6 d)
such that

Hi(Xc,F`)(j)Γk(c) 6= 0.

The finiteness statements about k-rational points (respectively points of bounded degree 6 d)
in Corollary 5.1 and Corollary 5.2(2) follow from Lemma 2.4(1) (respectively Lemma 2.4(2)) and
the definition of Ci(`), i = 0, 1 (see Fact 2.5(2)). In the remaining part of this subsection, we
prove the statements about the growth of gonality.

5.2 Specialization
In this section, our aim is to deduce the statements of Corollary 5.1 and Corollary 5.2 from
those of Proposition 2.7, Proposition 2.9 and Theorem 2.10, reducing by specialization to the
case where k is finite. Consider an F-model

X → C ↪→ Ccpt
→ T → U

of X → C ↪→ Ccpt
→ spec(k) → spec(F ) and a closed point t ∈ |T |; the residue field k(t) is

finite of characteristic pt (pt = p if p > 0). Let ηt denote the generic point of Ct. More precisely,
we have the following.

(A) In the proof of Corollary 5.1, the F-model is given a priori and we take for t ∈ |T | a closed
point such that there exists ct ∈ Ct of supersingular type for the motivic torsion family
attached to Xt→ Ct.

(B) In the proof of Corollary 5.2, the F-model is not given a priori, so we will take a regular
F-model and any closed point t ∈ |T |.
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For every prime ` 6= pt, any choice of an étale path from η to ηt defines an isomorphism

H` = Hi(Xη,F`)(j) →̃ Hi(Xη,F`)(j) →̃ Hi(Xηt ,F`)(j),

which is compatible with the isomorphism of étale fundamental groups

π1

(
C
[

1

`

]
, η

)
→̃ π1

(
C
[

1

`

]
, ηt

)
and such that the induced representation

ρmod
`,t : π1(Ct, ηt)→ π1

(
C
[

1

`

]
, ηt

)
ρmod
`−→ GL(Hi(Xηt ,F`)(j))

identifies with the motivic representation attached to Xt → Ct. In order to deduce the growth

of the gonality of the abstract modular curves attached to ρ• from the growth of the gonality of

those attached to ρ•,t, we have to check that:

(i) up to replacing C by a finite cover, ρ`(π1(Ck)) = ρmod
`,t (π1(Ct)) for `� 0;

(ii) for every 0 6= v` ∈ H`, one has γ k(Ci,v`) > γ k(t)
(Ct,i,v`) and γk(Ci,v`) > γk(t)(Ct,i,v`) for `� 0

and i = 0, 1.

First, up to replacing C with a finite cover, we may and will assume that the representations

ρmod
` : π1

(
C
[

1

`

])
→ GL(H`)

all factor through the tame fundamental group π1(C[1/`]) → πt1(C[1/`]) along Ccpt\C ⊂ Ccpt.

Indeed, if p = 0, this is straightforward since π1(C[1/`]) ' πt1(C[1/`]). If p > 0, for ` 6= p one has

C = C[1/`] and ρ` : π1(C)→ GL(Hi(Xη,F`)) factors through π1(C)→ π1(C). In particular, from

de Jong’s alteration theorem [Ber97, Proposition 6.3.2], there exists a finite cover Ccpt′
→ Ccpt

(with Ccpt′ normal), whose restriction to C is étale and such that up to base changing X → C
via C′ := C ×Ccpt Ccpt′

→ C one may assume that the image of the inertia groups at the generic

points of the irreducible components of Ccpt\C are unipotent as subgroups of GL(Hi(Xη,Q`)).

It then follows from the fact that Hi(Xη,Z`) is torsion-free and Hi(Xη,F`) = Hi(Xη,Z`)/` for

` � 0 that the image of the inertia groups at the generic points of the irreducible components

of Ccpt\C in GL(H`) is of order a power of ` for ` � 0 (see [CT14b, (3), Proof of Fact 5.1] for

more details). Note that, a priori, Ccpt′ is no longer smooth over T and Ccpt′\C′ is no longer

étale over T . But recall that, when p > 0, we assume that there is a Zariski-dense set of closed

points t ∈ |T | whose corresponding fibers have a closed point of supersingular type. So, first,

we can replace T by a purely inseparable cover T ′ and Ccpt′ by the normalization of Ccpt′ ×T T ′
and hence assume that Ccpt′ is generically smooth over T and Ccpt′\C′ is generically étale over

T . And, next, we can replace T with a non-empty open subscheme and hence assume that Ccpt′

is smooth over T and that Ccpt′\C′ is étale over T (and that there still exists a closed point

t ∈ |T | whose corresponding fiber has a closed point of supersingular type). The smoothness of

Ccpt′ and étaleness of Ccpt′\C′ over T are necessary to apply the theory of specialization of tame

fundamental group (see § 5.2.2).
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5.2.1 Dévissage. We reduce to the case where T is the spectrum of a discrete valuation ring
with generic point ζ and closed point t. This will be required to apply Lemma 5.3 below.

For this, up to replacing T by an open subscheme containing t, one may assume that T =
spec(O) is affine. Let m denote the maximal ideal corresponding to t ∈ |T | and consider a chain
of prime ideals

pr = m ⊃ pr−1 ⊃ · · · ⊃ p0 = (0)

with pi of height i. Then
Oi := (O/pi)pi+1

is a one-dimensional excellent local ring. Set

Ti := spec(Oi)

and let ζi and ti denote respectively the generic and closed points of Ti. In case (B), where T is
regular, one can choose the pi in such a way that Oi is a discrete valuation ring. In that case,
set Õi := Oi. In case (A), where T is a priori not regular, let O◦i denote the normalization of
Oi. As Oi is excellent, O◦i is a semilocal ring and localizing it at any of its maximal ideals yields
a discrete valuation ring Õi. In both cases, set

T̃i := spec(Õi)

and let ζ̃i and t̃i denote respectively the generic and closed points of T̃i. By construction,
k(ζi)→̃k(ζ̃i), k(ti)→̃k(ζi+1) and, in case (B), k(ti)→̃k(t̃i) but, in case (A), k(ti) ↪→ k(t̃i) is
a finite field extension. Set ki := k(ζi) (= k(ti−1) for i > 0) and k̃i := k(t̃i) for simplicity.

As a result, one obtains the following commutative diagram of Cartesian squares:

X //

��
�

X0

��
�

X0
//oo

��
�

X1

��
�

X1
//oo

��
�

X2

��
�

· · ·oo //

�

Xr

��
�

Xroo

��
C //

��
�

C0

��
�

C0
//

��

oo

�

C1

��
�

C1
//oo

��
�

C2

��
�

· · ·oo //

�

Cr

��
�

Croo

��
Ccpt //

��

�

Ccpt0

��
�

Ccpt
0

//oo

��
�

Ccpt1

��
�

Ccpt
1

//oo

��
�

Ccpt2

��
�

· · ·oo //

�

Ccptr

��
�

Ccpt
r

oo

��
T̃0

��

spec(k̃0) //
t̃0

oo

��

T̃1

��

spec(k̃1) //
t̃1

oo

��

T̃2

��

· · · //
t̃2

oo T̃r

��

spec(k̃r)

��

t̃r

oo

spec(k)
ζ0

//

ζ̃0

;;

T0 spec(k0)
t0

oo
ζ1

//

ζ̃1

;;

T1 spec(k1)
t1

oo
ζ2

//

ζ̃2

;;

T2 · · ·
t2

oo
ζr

//

ζ̃r

>>

Tr spec(k(t))
tr=t
oo

where Xi→ Ci ↪→ Ccpt
i → T̃i (respectively Xi→ Ci ↪→ Ccpt

i → spec(k̃i)) is the pull-back of X →
C ↪→ Ccpt

→ T by the natural morphism T̃i→ T (respectively spec(k̃i)→ T ). Thus, in particular,
Xr → Cr ↪→ Ccpt

r → spec(k̃r) coincides with the base change of Xt → Ct ↪→ Ccpt
t → spec(k(t))

by the natural inclusion k(t) = kr ↪→ k̃r. Also, since ρmod
` : π1(C[1/`])→ GL(H`) factors through

π1(C[1/`]) → πt1(C[1/`]), the induced representations ρmod
`,i : π1(Ci[1/`]) → GL(H`) also factor

through π1(Ci[1/`])→ πt1(Ci[1/`]).
So, from now on, we will assume that T is the spectrum of a discrete valuation ring with

generic point ζ and closed point t with k(t) of characteristic p > 0 and that ρmod
` : π1(C) →

GL(H`) factors through π1(C)→ πt1(C) for ` 6= p.
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5.2.2 End of the proofs of (i) and (ii). Let ηt denote the generic point of Ct. For every prime
` 6= p, recall that any choice of an étale path from η to ηt defines an isomorphism

H` = Hi(Xη,F`)(j)→̃Hi(Xη,F`)(j)→̃Hi(Xηt ,F`)(j),

which is compatible with the isomorphism of étale fundamental groups π1(C, η)→̃π1(C, ηt) and
such that the induced representation

ρ`,t : π1(Ct, ηt)→ π1(C, η)→ GL(Hi(Xη,F`)(j))

identifies with the motivic representation attached to Xt→ Ct.
Now, (i) follows from the specialization theory for the tame fundamental group (of curves).

More precisely, we have the following commutative diagram:

πt1(Ck)
� � //

����

πt1(C)
ρ`

$$
GL(H`)

πt1(Ct) �
� // πt1(Ct)

ρ`,t

::

where the vertical arrow is the specialization morphism for the tame fundamental group [SGA1,
Exp. XIII, 2.10] (see also [OV00, § 4]), which, by definition of an F-model, is surjective [SGA1,
Exp. XIII, 2.8] (the 0-acyclicity assumption [SGA4, Exp. XV, 1.11] follows from the smoothness
of Ccpt

→ T ; see [SGA4, Exp. XV, Theorem 2.1]) (see also [OV00, § 4, Theorem 4.4]).
As for (ii), let us recall that gonality decreases under specialization.

Lemma 5.3. Let T be the spectrum of a (discrete) valuation ring with generic point ζ and closed
point t and let C→ T be a smooth, proper and geometrically connected curve over T . Then one
has

γk(ζ)(Cζ) > γk(t)(Ct) and γ
k(ζ)

(Cζ) > γ k(t)
(Ct).

Proof. See for instance [ACG11, ch. XXI, § 3]. There it is shown that the sublocus C(d)
r ⊂ C(d)

classifying degree-d effective divisors whose linear series has dimension > r is a closed subscheme

of the dth symmetric power C(d) of C. In particular, C(d)
2 is proper over T and the conclusion

follows from the valuative criterion of properness. 2

For every 0 6= v` ∈ H`, let Ci,v` → C denote the connected étale cover corresponding to the
open subgroup Stabπ1(C)(v`) ⊂ π1(C) if i = 1 and Stabπ1(C)(F`v) ⊂ π1(C) if i = 0. Since the
morphism πt1(C)→ πt1(C) is surjective, one has Ci,v`,η ' Ci,v` . Also, considering the morphism
πt1(Ct)→ πt1(C), we deduce that Ci,v`,t maps surjectively onto Ct,i,v` . In particular,

γk(t)(Ci,v`,t) > γk(t)(Ct,i,v`) and γ
k(t)

(Ci,v`,t) > γ k(t)
(Ct,i,v`).

As T is the spectrum of a discrete valuation ring, Lemma 5.3 implies that γk(Ci,v`) > γk(t)(Ci,v`,t)
and γ k(Ci,v`) > γ

k(t)
(Ci,v`,t). This already concludes the proof of (ii) for geometric gonality. As

for arithmetic gonality, just observe that, by construction, the degree of the field of definition of
Ct,i,v` over k(t) is smaller than the degree of the field of definition of Ci,v`,t over k(t), which, in
turn, is always smaller than the degree of the field of definition of Ci,v` over k.
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5.2.3 End of the proofs.
– Corollary 5.2(2): this follows directly from (ii), Theorem 2.6, Theorem 2.10 and Lemma 2.4.
– Corollary 5.2(1): from (i), the assumption that ρ• has big symplectic geometric monodromy

transfers to ρ•,t. In particular, ρ•,t satisfies

lim
`→+∞

min{[Ggeo
〈〈v〉〉 : Ggeo

v ] | 0 6= v ∈ H`} = +∞.

As it always satisfies Condition (U) by Theorem 2.6, the conclusion follows from
Proposition 2.9.

– Corollary 5.1: from (i), the assumption that

lim
`→+∞

min{[Ggeo
` : Ggeo

v ] | 0 6= v ∈ H`} = +∞

transfers to ρ•,t. As ρ•,t always satisfies Condition (U) and, by construction, has a point of
supersingular type, the conclusion follows from Proposition 2.7.

Appendix A. Gonality, isogonality and points of bounded degree on curves

Let k be a field of characteristic p > 0. A curve over k will always mean a smooth, separated
and geometrically integral scheme of dimension 1 over k. We fix once for all a proper curve C
over k. Given an integer d > 1, we use again the notation

C(k,6 d) := {c ∈ C | [k(c) : k] 6 d}.

The purpose of this appendix is to discuss the implication

Mordell–Lang conjecture

+

assumptions on C, d

(∗)
=⇒ finiteness of C(k,6 d)

for both p = 0 and p > 0 and under the assumption that k is finitely generated. We are looking
for ‘assumptions on C, d’ which are minimal. When p = 0, the observation goes back to [Fre94]
that the less restrictive assumption is that 2d + 1 does not exceed the geometric gonality of C
(see Corollary A.4). When p > 0, this is no longer enough (see §A.3) because of the appearance
of isotriviality phenomena. To take these phenomena into account, one has to introduce a new
strengthened variant of gonality; the isogonality. Then the less restrictive assumptions are that
2d + 1 does not exceed the geometric gonality of C and d + 1 does not exceed the geometric
isogonality of C (see Corollary A.7).

A.1 Review of gonality
The basic material for this section can be found in [Mil86].

Let d be a positive integer and D a degree-d effective (Cartier) divisor on C. Consider the
sequence of morphisms of k-schemes

P(L(D))
ιD
→ C(d) j

→ J (d), (A.1)

where J (d) denotes the degree-d part of the Picard scheme of C over k (thus, in particular,
J := J (0) is the Jacobian variety of C over k), C(d) the dth symmetric power of C and P(L(D))
the projective space on

L(D) := {f ∈ k(C) | D + div(f) > 0}.
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Note that C(d) can be regarded as the (fine) moduli space DivdC of degree-d effective divisors on

C. Then ιD : P(L(D))→ C(d) sends the class of f ∈ L(D)\{0} to the degree-d effective divisor

D + div(f), and j : C(d)
→ J (d) sends an effective degree-d divisor D′ on C to the class of

corresponding degree-d invertible sheaves on C. Furthermore, ιD : P(L(D))→ C(d) is a closed

immersion, which identifies with the scheme-theoretic fiber C
(d)
j(D) ↪→ C(d) of j : C(d)

→ J (d) at

j(D). As J (d) is a J-torsor, J (d) ' J if and only if J (d)(k) 6= ∅. In particular, J
(d)

k
' Jk.

As there is no non-trivial morphism from a projective space to an abelian variety, any

morphism Pnk → C(d) factors through ιD : P(L(D))→ C(d) for some D ∈ DivdC(k).

The above shows that, given an integer d > 1, the following assertions are equivalent:

(i) for every d′ 6 d, the map C(d′)(k)→ J (d′)(k) is injective;

(ii) for every d′ 6 d, there is no non-constant morphism P1
k → C(d′);

(iii) for every d′ 6 d, L(D) = k for every D ∈ Divd
′
C (k);

(iv) there is no f ∈ k(C)\k such that [k(C) : k(f)] 6 d;

(v) there is no non-constant morphism C → P1
k of degree 6d.

The k-gonality γk(C) of C is then defined as γk(C) := d + 1, where d is the largest integer

>1 satisfying the equivalent conditions (i)–(v).

The k-gonality is an arithmetic invariant. However, over an algebraically closed field, it has

the following more geometric interpretation.

Lemma A.1. If d+ 1 6 γ k(C), then j : C(d)
→ J (d) is a closed immersion.

Proof. By [Mil86, Lemma 2.4 and Theorem 5.1(b)] plus the fact that being a closed immersion

descends along spec(k)→ spec(k), it is enough to show that j : C(d)
→ J (d) induces an injective

map on k-points. But this is precisely what the assumption d+ 1 6 γ k(C) says. 2

When k is infinite, from the definition of k-gonality, a necessary condition for C(k,6 d) to

be finite is that d + 1 6 γk(C). In the sequel, our purpose will be to find sufficient conditions

for C(k,6 d) to be finite when k is finitely generated. Showing the finiteness of C(k,6 d)

amounts to showing the finiteness of C(d′)(k) for every d′ 6 d; hence, under the assumption that

d+1 6 γk(C), the finiteness of the image of C(d′)(k) in J (d′)(k). Actually, we will need a stronger

assumption, namely that 2d+1 6 γ k(C). Let Wd ↪→ J denote the image of the closed immersion

j : C(d) ↪→ J (d). We are to show that Wd(k) is finite or, equivalently, that the Zariski closure

W d of Wd(k) in Wd is. This will follow from the Mordell–Lang conjectures and the following

elementary lemma.

Lemma A.2. If 2d+1 6 γ k(C), then Wd(k) contains no subset of the form a+∆ with a ∈ J (d)(k)

and ∆ ⊂ J(k) an infinite subgroup.

Proof. Let a ∈ J (d)(k) and ∆ ⊂ J(k) be a subgroup such that a+ ∆ ⊂Wd(k). As d+ 1 6 γ k(C),

for every δ ∈ ∆ there exists a unique Dδ ∈ DivdC(k) such that j(Dδ) = a + δ. In particular,

j(Dδ +D−δ) = 2a = j(2D0) in J (2d). But, as 2d+ 1 6 γ k(C) and Dδ +D−δ, 2D0 ∈ Div2d
C (k); this

forces Dδ +D−δ = 2D0. As Dδ +D−δ and 2D0 are both effective, the equality Dδ +D−δ = 2D0

is possible for only finitely many values of Dδ (hence of δ). 2
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A.2 Points of bounded degree
A.2.1 Statement of Mordell–Lang conjectures. The statement of Mordell–Lang conjectures

differs slightly when p = 0 and p > 0; this is due to the appearance of isotriviality phenomena
when p > 0. More precisely, let F be an algebraically closed field of characteristic p > 0, A an
abelian variety over F , W ↪→ A an integral closed subscheme and Γ ⊂ A(F ) a subgroup. Let
AW ↪→ A denote the reduced translation stabilizer of W (note that the identity component A◦W
of AW is automatically an abelian variety) [SGA3, Exp. VIII, § 6] and, if p > 0, let

Γ(p′) :=
⋃

n>1, p-n

[n]−1(Γ)

denote the prime-to-p divisible hull of Γ.

Theorem A.3 (Mordell–Lang conjectures). (1) [Fal91] If p = 0, dimQ(Γ⊗Q) is finite and Γ∩W
is Zariski-dense in W , then there exists γ ∈ Γ ∩W such that

W = γ +AW

(or, equivalently, W/AW is reduced to one point).10

(2) [Hru96] If p > 0, Γ is finitely generated and Γ(p′)∩W is Zariski-dense in W , then W/AW is
‘almost isotrivial’, that is, there exist γ ∈ Γ∩W , a finite field F0 ⊂ F , an abelian subvariety A′ ↪→
A, containing AW , an abelian variety B0 over F0, a closed geometrically irreducible subscheme
Z0 ↪→ B0 and a purely inseparable isogeny ϕ : A′/AW → B0 ×F0 F such that

W = γ + (ϕ ◦ pAW )−1(Z0 ×F0 F ),

where pAW : A′→ A′/AW is the natural surjective homomorphism of abelian varieties.

Before going further, observe that for every w ∈ W one has AW ⊂ W − w. In particular,
assuming that 2d+ 1 6 γ k(C), it follows from Lemma A.2 that for every irreducible component
W ↪→Wd,k, the reduced stabilizer of W in Jk is finite.

If we assume furthermore that k is finitely generated, then the Lang–Néron theorem [LN59]
asserts that the group of k-rational points of an abelian variety over k is always finitely generated.
Also, by construction, W d(k) is Zariski-dense in W d. This implies that every irreducible
component W ↪→ W d is geometrically irreducible and that W(k) = Wk ∩ J(k) is Zariski-dense
in Wk.

11

10 In particular, AW is connected.
11 Indeed, if W1, . . . ,Wr denote the irreducible components of W d, then

W d(k) =
⋃

16i6r

Wi(k)

and hence ⋃
16i6r

Wi = W d = W d(k) =
⋃

16i6r

Wi(k) =
⋃

16i6r

Wi(k).

So, Wi = Wi(k)
⋃

16j 6=i6rWj(k) ∩ Wi. As Wj(k) ∩ Wi ⊂ Wj ∩ Wi, it has dimension strictly smaller than the

dimension of Wi. So, Wi(k) ⊂Wi has the same dimension as Wi, which forces Wi(k) =Wi. As the set of singular
points is a proper closed subset in Wi, one can find a regular point c ∈ Wi(k), which is automatically a smooth
(i.e. geometrically regular) point. Let Wi,1, . . . ,Wi,s denote the irreducible components of Wi,k. As c is a regular
point inWi,k, it belongs to a unique irreducible component, sayWi,1, ofWi,k, which is then automatically defined
over k. Thus, Wi,k =Wi,1.
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A.2.1.1 Finiteness of C(k,6 d) when p = 0. If p = 0, then Theorem A.3(1) implies that
Wk = γ + AWk

(for some γ ∈ W(k)). In particular, AWk
is connected and hence trivial from

the above. Since W d has only finitely many irreducible components, we have just shown the
following.

Corollary A.4. Assume that k is a finitely generated field of characteristic 0 and that C is a
proper curve over k. Then

2d+ 1 6 γ k(C) =⇒ |C(k,6 d)| < +∞.

A.2.1.2 Finiteness of C(k,6 d) when p > 0. If p > 0 and without any further assumption
on C, Theorem A.3(2) only implies that Wk is ‘almost isotrivial’, which is not enough to ensure
the finiteness of W(k). To obtain an analogue of Corollary A.4 when p > 0, we introduce a new
strengthened notion of gonality; the k-isogonality, which is in general smaller than the k-gonality.

– k-isogonality. Let k be a field of characteristic p > 0. We say that a scheme S over k is
isotrivial over k if there exist a finite field F0 ⊂ k and a scheme S0 over F0 such that S0×F0 k
and S ×k k are isomorphic over k.

Lemma A.5. Let K be any field extension of k and let S be a scheme of finite type over k. Then
S is isotrivial over k if and only if S ×k K is isotrivial over K.

Proof. The ‘only if’ implication is straightforward. For the ‘if’ implication, let F0(⊂ k ⊂K) be a
finite subfield and let S0 be a scheme over F0 such that S0×F0K and S×kK are isomorphic over
K. Then K can be written as the inductive limit of its finitely generated k-subalgebras. From
[EGAIV, Theorem (8.8.2)], there exists a finitely generated k-subalgebra R ⊂ K such that the
K-isomorphism between S0×F0 K and S×kK descends to an R-isomorphism between S0×F0 R
and S ×k R. This isomorphism specializes to a k-isomorphism between S0 ×F0 k and S ×k k at
any closed point of spec(R). 2

Lemma A.6. Given an integer d > 1, consider the following assertions:

(i) for every d′ 6 d, there is no non-constant k-morphism B→ C(d′) with B an isotrivial curve
over k;

(ii) there is no diagram C ← C ′
f
→ B of non-constant k-morphisms of proper curves over k

with B an isotrivial curve over k and deg(f) 6 d.

Then one always has (1) =⇒ (2). If, moreover, k = k, then one also has (2) =⇒ (1).

Proof. More precisely, given an integer d> 1 and a curve B over k, we prove that (2, B) =⇒ (1, B)
and, if moreover k = k, (1, B) =⇒ (2, B), where:

– (1, B) there are an integer d′ 6 d and a non-constant k-morphism B→ C(d′);

– (2, B) there is a diagram C ← C ′
f
→ B of non-constant k-morphisms of proper curves over

k with deg(f) 6 d.
To prove that (2, B) =⇒ (1, B), let C← C ′→ B be a diagram of non-constant k-morphisms

of proper curves over k with B an isotrivial curve over k and d′ := deg(f) 6 d. Then graph(f) ↪→
C ′×kB defines an injective k-morphism B→ (C ′)(d′). As the natural k-morphism (C ′)(d′)

→ C(d′)

is finite, the composite k-morphism B→ C(d′) is also non-constant.
To prove that (1, B) =⇒ (2, B) under the extra assumption that k = k, let B → C(d′)

be a non-constant k-morphism with d′ 6 d and B an isotrivial curve over k. We take d′ to be
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minimal. Consider the natural k-morphism C × C(d′−1)
→ C(d′) corresponding to the addition

map Div1
C × Divd

′−1
C → Divd

′
C , which is finite flat of degree d′. Let C1 → C be the pull-back of

C × C(d′−1)
→ C(d′) by B → C(d′). Take any irreducible component C2 of C1 and let C ′ be the

normalization of C2. As C1 → B is finite flat of degree d′, C ′ → B is finite flat of degree 6 d′.
On the other hand, consider the composite of the natural k-morphism C ′→ C×C(d′−1) and the
projection C × C(d′−1)

→ C. If this composite morphism is constant and its image is denoted
by c ∈ C, then the image of the non-constant morphism B→ C(d′) is contained in the injective
image of C(d′−1)

→̃{c} × C(d′−1) in C(d′). It follows from this that there exists a non-constant
morphism B→ C(d′−1), which contradicts the minimality of d′. 2

The k-isogonality γiso
k (C) of C is then defined as γiso

k (C) := d + 1, where d is the largest
integer > 1 satisfying condition (1) of Lemma A.6.

– Finiteness of C(k,6 d) when p > 0. Having introduced the k-isogonality, we can now state
an analogue of Corollary A.4.

Corollary A.7. Assume that k is a finitely generated field of characteristic p > 0 and that C
is a proper curve over k. Then

2d+ 1 6 γ k(C) and d+ 1 6 γiso
k

(C) =⇒ |C(k,6 d)| < +∞.

Proof. Otherwise, W d has at least one (geometrically) irreducible component W ↪→ W d of
dimension > 1. Then Theorem A.3(2) implies that there exist an abelian subvariety J ′ ⊂ Jk,
containing AWk

, a finite subfield F0 ⊂ k, an abelian variety J ′0 over F0, a geometrically irreducible

closed subscheme Z0 ↪→ J ′0, a purely inseparable isogeny ϕ : J ′/AWk
→ J ′0 ×F0 k and a k-point

a ∈ W(k) such that
Wk = a+ (pAW

k
◦ ϕ)−1(Z0 ×F0 k).

Further, AWk
is finite by Lemma A.2 and hence AWk

= AWk
/A◦Wk

is finite étale. As dim(Z0) =

dim(Wk) > 1, one can fix a one-dimensional geometrically integral closed subscheme S0 ↪→ Z0.
Set S := a+ (pAW

k
◦ ϕ)−1(S0 ×F0 k) ↪→Wk and S1 := pAW

k
(S) = pAW

k
(a) + ϕ−1(S0 ×F0 k) ↪→

pAW
k
(Wk) = pAW

k
(a) + ϕ−1(Z0 ×F0 k), and write S̃0 → S0, S̃1 → S1 and S̃ → S for the

normalizations of S0, S1 and S, respectively. By the universal property of normalization, S →
S1→ S0×F0 k lifts to finite morphisms S̃→ S̃1→ S̃0×F0 k. Further, S̃→ S̃1 is finite étale and
S̃1 → S̃0 ×F0 k is purely inseparable. By construction, S̃1 and S̃0 ×F0 k are projective, normal
one-dimensional geometrically integral schemes and hence every purely inseparable morphism
between them is a composition of Frobenius iterates. In particular, S̃1 is isotrivial. Further, as
S̃ → S̃1 is finite étale, every connected component S̃2 of S̃ is an isotrivial curve over k. As
d+ 1 6 γ k(C), the morphism j : C(d)

→Wd is an isomorphism. Thus, we obtain a non-constant

morphism S̃2→ C(d), which contradicts the assumption that d+ 1 6 γiso
k

(C). 2

A.3 Concluding remarks about isogonality

A.3.1 The ‘good arithmetic invariant’. The property of k-isogonality is the ‘good’ arithmetic
invariant to measure the finiteness of C(k,6 d) in the sense that for any curve C over a finitely
generated field k of characteristic p > 0 with k-isogonality d, one can always construct a finitely
generated field extension K of k such that C(K,6 d) is infinite. Indeed, consider any curve B0

over a finite field F0 ⊂ k such that one has a non-constant morphism B0 ×F0 k → (C ×k k)(d).
Up to replacing k by a finite extension, one may assume that F0 ⊂ k and B0×F0 k→ (C×k k)(d)
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is defined over k. Let K denote the function field of B0 ×F0 k and let η ∈ B0 ×F0 k denote its
generic point. Then, writing Fr for the base change of the Frobenius endomorphism from B0 to
B0×F0 k, one obtains an infinite12 sequence of K-rational points Frn(η), n > 0 in B0×F0 k and
hence in C(d)(K).

A.3.2 Gonality and isogonality. By definition, γiso
k (C) 6 γk(C), and a sufficient condition

for γiso
k (C) = γk(C) is that J admits no non-trivial isotrivial isogeny factor.13 Also, an upper

bound for γiso
k (C) is given by

γ̃iso
k (C) := min{deg(f) | C f

→ B non-constant, B isotrivial curve over k},

which also does not exceed γk(C). But it is not clear whether, in general, the inequality γiso
k (C) 6

γ̃iso
k (C) is strict or not.14 Note that showing the equality γiso

k (C) = γ̃iso
k (C) amounts to showing

that for every finite morphism of curves C ′→ C, one has γ̃iso
k (C) 6 γ̃iso

k (C ′).
It is easy to construct examples where γiso

k (C)(6 γ̃iso
k (C)) � γk(C). First, as the set of

curves with maximal (geometric) gonality b(g + 3)/2c in the moduli space Mg,Fp is open, for
any integer γ > 1, one can always find a finite field F0 of characteristic p > 0 and a curve C0 over
F0 with Fp-gonality > γ. Thus, C0 has Fp-gonality > γ and Fp-isogonality 1. More generally, one
can construct for any integer d > 2 a non-isotrivial curve C over a finitely generated field k of
characteristic p > 0 with k-gonality > 2d+ 1 and k-isogonality 6 d. Indeed, consider any curve
C0 over some finite field F0 ⊂ Fp with Fp-gonality > 2d + 1 and an elliptic curve E1 over some
finitely generated field k1 of characteristic p with j-invariant jE1 /∈ Fp. Take a finitely generated
field k containing both F0 and k0 and consider the canonical degree-2 cover E1 → P1

k1
and any

non-constant morphism C0→ P1
F0

(necessarily of degree > 2d+ 1). Write

C

��

//

�

C0 ×F0 k

��
E1 ×k1 k // P1

k

Then, since E1 is non-isotrivial, the normalization of C (which is smooth over k, up to replacing
k by a finite extension if necessary) is non-isotrivial as well [Tam02, Lemma 1.32]. Now, C has
k-gonality > 2d+ 1 but k-isogonality 2 6 d.
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Cad12 A. Cadoret, Note on the gonality of abstract modular curves, in The arithmetic of fundamental
groups – PIA 2010, MATCH–HGS Contributions in Mathematical and Computational Science,
vol. 2, ed. J. Stix (Springer, 2012), 89–106.

CT09 A. Cadoret and A. Tamagawa, Torsion of abelian schemes and rational points on moduli spaces,
in Algebraic number theory and related topics, RIMS Kôkyûroku Bessatsu, vol. B12, eds M.
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Del71 P. Deligne, Théorie de Hodge, II, Publ. Math. Inst. Hautes Études Sci. 40 (1971), 5–57.

Del80 P. Deligne, La conjecture de Weil II, Publ. Math. Inst. Hautes Études Sci. 52 (1980), 137–252.

EEHK09 J. Ellenberg, C. Elsholtz, C. Hall and E. Kowalski, Non-simple abelian varieties in a family:
algebraic and analytic approaches, J. Lond. Math. Soc. (2) 80 (2009), 135–154.
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