Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-20T17:20:24.466Z Has data issue: false hasContentIssue false

Initial Buffer Layers on the Growth of InGaP on Si by MBE

Published online by Cambridge University Press:  10 February 2011

H. Kawanami
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, JAPAN.
S. Ghosh
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, JAPAN.
I. Sakata
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, JAPAN.
T. Sekigawa
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, JAPAN.
Get access

Abstract

Single domain InxGa(1-x)P (x=0.3) films were successfully grown on Si(001) misoriented substrates by molecular beam epitaxy with a solid phosphorous source. The effects of interfacial buffer layers such as InGaP (i.e. direct growth without buffer layer), GaP, AlP, and GaAs were examined. Also a Si epitaxial buffer layer was tried to control the Si surface structure. Mirror like surfaces were obtained for all films with RHEED patterns of (2×1) single domain surface structure. PL intensities for all films indicated almost the same values except for the films with a Si epitaxial buffer layer. The films with a Si epitaxial buffer layer had almost three times larger PL intensities than the films without Si epitaxial buffer layer. The results suggest incomplete cleaning of the Si surface by the high temperature (1000 °C) treatment and possibility of surface structure control for Si substrates by a Si epitaxial buffer layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Fan, J. C. C., Tsaur, B-Y., and Palm, B. J., Proc. 16th IEEE Photovoltaic Specialist Conf., Florida, p. 693 (1982).Google Scholar
[2] Nell, M. E. and Barnett, A. M., Proc. 18th IEEE Photovoltaic Specialist Conf., Las Vegas, p. 116 (1985).Google Scholar
[3] Komatsu, Y., Hosotani, K., Fuyuki, T., and Matsunami, H., Solar Energy Materials and Solar Cells 35, 33 (1994).Google Scholar
[4] Nishi, S., Inomata, H., Akiyama, M. and Kaminishi, K., Jpn. J. Appl. Phys. 24, L391 (1984).Google Scholar
[5] Fisher, R., Masselink, W. T., Klem, J., Henderson, T., McGlinn, T. C., Klein, M. V., Morkoq, H., Mazur, J. H., and Washborn, J., J. Appl. Phys. 58, 374 (1985).Google Scholar
[6] Sugo, M. and Yamaguchi, M., Appl. Phys. Lett. 54, 1754 (1989).Google Scholar
[7] Kondo, S., Nagai, H., Itoh, Y., and Yamaguchi, M., Appl. Phys. Lett. 55, 1961 (1989).Google Scholar
[8] Kawanami, H. and Sekigawa, T. in Evolution of Epitaxial Structure and Morphology, edited by Zangwill, A., Jesson, D., Chambliss, D., and Clarke, R. (Mat. Res. Soc. Proc. 399, Pittsburgh, PA 1996), p. 147.Google Scholar
[9] Kawanami, H., Sakamoto, T., Takahashi, T., Suzuki, E., and Nagai, K., Jpn. J. Appl. Phys. 21, L68 (1982).Google Scholar
[10] Wright, S. L., Kroemer, H., and Inada, M., J. Appl. Phys. 55, 2916 (1984).Google Scholar
[11] Kawanami, H. and Hayashi, Y., J. Crystal Growth 95, 117 (1989).Google Scholar
[12] Kawanami, H., Ishihara, S., Nagai, K. and Hayashi, Y., Jpn. J. Appl. Phys. 25, L419 (1986).Google Scholar
[13] Kobayashi, H. and Kawabe, M., Jpn. J. Appl. Phys. 29, L1342 (1990).Google Scholar
[14] Kitahara, K., Ohtsuka, N., and Ozeki, M., J. Vac. Sci. & Technol. B7, 700 (1989)Google Scholar
[15] Mori, H., Tachikawa, M., Sogo, M., and Itoh, Y., Appi. Phys. Lett. 63, 1963 (1993).Google Scholar