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Cryogenic imaging is a powerful technique to study the ultrastructure of biological tissues as close as 

possible to their native state, eliminating the risk of image artifacts arising from sample preparation steps 

such as dehydration, chemical fixation, and heavy metal staining. Cryogenic imaging can also be included 

in a correlative light / electron microscopy (CLEM) workflow, where the advantages over other CLEM 

workflows are the high degree of tissue structure preservation, the ability to keep and observe almost all 

fluorescent probes, and the ability to produce near to native state (CL)EM images.  

 

In the recent years cryo-correlative imaging became a popular approach to investigate proteins and cellular 

processes in high resolution with cryo-TEM [1] where cryo-FIB/SEM is used as a tool for sample 

preparation for cryo-TEM analysis. Here, we are extending the correlative workflow combining live 

imaging, 3D cryo-fluorescence microcopy and 3D cryo-FIB/SEM for high resolution 3D volume imaging, 

responding to the increasing need to visualize more and more complex systems [2],2including organoids 

[3].3 

 

The samples investigated (2D or 3D cell cultures) were grown on a high pressure carrier for the required 

time (hours to weeks) and were then imaged by live fluorescent microscopy and immediately vitrified 

using a high-pressure freezer (HPM live-µ®, CryoCapCell) [4].4The frozen sample is then imaged with 

cryo-fluorescence microscopy using a Linkam stage and a designated holder, to relocate the region of 

interest for further EM investigation.[4]4 To increase the localization accuracy between the different 

instruments, we designed a special flat top high pressure freezing carrier, with a matrix imprint, similar to 

the well-known TEM finder grids. Upon freezing, the imprint leaves a finder matrix in the upper layer of 

the vitrified ice that is easily visible both with cryo-light microscopy and cryo-SEM, providing very high 

accuracy in overlaying the information from the two instruments (figure 1).  

 

3D cryo-FIB/SEM imaging has been demonstrated for soft and hard tissues, cellular organelles, and 

complex tissue architecture as the paracellular network [5,6]. Samples up to 100 µm in depth can be easily 

imaged using this approach. Moreover, when volume imaging is completed, and higher resolution is 

required, cryo-lift-out (using a cryo-gripper, Kleindiek) for cryo-TEM imagig can be performed on the 

last slice of the investigated volume. 

 

This multiscale live-to-cryo CLEM workflow opens a new venue to CLEM imaging, free of artifacts and 

sample handling.  
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Figure 1. To facilitate the correlation during experiments, we have produced a tailor-made flat top HPF 

carrier where a matrix is molded into the top layer of the sample. The matrix is visible both in cryo-SEM 

and cryo fluorescence microscopy and helps to find the ROI with high accuracy. 
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