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Action of a force near the planar

surface between two semi-infinite

immiscible liquids at

very low Reynolds numbers

K. Aderogba and J.R. Blake

Explicit expressions for the Green's functions due to a point

force in one of two half space fluids are presented for the case

when inertial effects of the fluid are negligible (Stokes flow)

and the interface between the two fluids is considered to be

flat due to the action of surface tension. The analytic

expressions are discussed in terms of singularity diagrams. For

the case of a force parallel to the interface a first

approximation to the interface displacement is made.

1 . Introduction

Many problems arise where we need to consider the movement of a

particle, or particles, near the material surface between two immiscible

liquids. Clearly, this problem is important in studies of surface

phenomena in colloid and suspension mechanics. In this paper we look at a

highly idealised part of this general and difficult problem. We study the

flow-fields in both half spaces due to the action of a point force in one

of them. The equations of motion used in our analysis are for very low

Reynolds number (Stokes flow) and we assume that the material surface

between the two liquids is almost flat due to the action of surface

tension. For the case of the force acting parallel to the interface we can
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obtain a first order approximation to the interface shape.

We suppose there is a distinct,sharp boundary between the two fluids

even though in reality there will be a "mixed" region a few molecules thick

where there will be continuous variation in the physical properties. In

this paper we assume the interface is not surface active, so the properties

of the surface can be characterised by a constant surface tension. Thus we

have a benign, well-behaved, sharp interface between the liquids, a

situation which we clearly do not attain in many problems in colloid

science or membrane physiology.

A vast amount of literature has been published in recent years on

colloid science, suspension mechanics, and membrane physiology, but very

much less material on the more esoteric topic of this paper. In the next

section, a review of some of the recent literature on the subject of this

paper is presented. Later sections concentrate on analytic expressions for

the Green's function, a description of the resulting expression in terms of

singularity diagrams, and a first order approximation to interface shape

for the case of a force parallel to the zeroth-order approximation to the

interface (that is the plane a; = 0 ) .

2. Review of earlier work

Most studies of flow fields around particles at very low Reynolds

numbers have been concerned with infinite fluids, that is infinite in all

directions. Semi-infinite or half-space fluids have attracted a more

restricted attention (for an excellent review of older material, see

Happel, Brenner [5]). Recently there have been several studies on the

motion of slender bodies in a semi-infinite fluid (de Mestre [9],

Blake [2], de Mestre, Russell [JO], Lighthill [8], Katz, Blake and Paveri-

Fontana [6]). All of these have been based on the Green's function for a

point force in Stokes flow near a plane no-slip boundary which was stated

explicitly by Blake [2], and reproduced here for a fluid in the negative

half space (x_ < 0) ,
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and

where i , j , and k can take values of 1, 2 , or 3 , a is restricted

to 1 or 2 and the summation convention is assumed. We use the

notation: u representing the velocity vector, p the pressure , and F

the point force located at (0, 0, -h) . The no-slip boundary condition is

at x, = 0 , so that R is the distance from the image point (0, 0, h) .

So far this review has centred on no-slip boundaries and this is

principally because so little analysis has been concerned with the inter-

face between two fluids. Blake [3] stated the fundamental singularity plus

image system (that is Green's function) for a point force in a semi-

infinite fluid (a; < 0) bounded by a planar free surface (at x_ = 0 ) as

F .

ui ~ 8TTU
(2a)

(2b)

Here we are supposing that surface tension is sufficiently large that the

free surface is approximately flat.

Recently Aderogba [/] has obtained the solution for the velocity and

pressure in two adjoining half-space fluids in terms of a set of

differential operators on the infinite fluid solution. He used the method
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of Papkovitch-Neuber potentials to obtain the differential operator form of

the solution. However, in his model he used the matching conditions that

the velocities be continuous across the interface and not the additional

condition that the normal velocity also be equated to zero. This is the

case if we have surface tension acting on the interface, and will be the

case in the theory developed in this paper.

3. Equations of motion and boundary conditions

To model the flow-fields in Regions I and II due to the action of a

point force in fluid I (see Figure 1) we will consider the following

equations.

Fluid interface

Zeroth-order
approximation

FIGURE 1. Illustrates the two half spaces used in analysis and some of

the notation used in the text.

In Region I

(3) VP
(1) F6(x-h) ,

=0 ,
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where h = (0 , 0, -h) and where the subsc r ip t or supe r sc r i p t ( l ) r e f e r s t o

Region I .

In Region II

CO V p ( 2 ) = u 2 V 2 U ( 2 )

V.U(2) = 0 .

In (3) and (h), p refers to pressure, u the velocity vector, F6(x-h)

the point force, and y the viscosity. We assume that the displacement of

the interface a:_ = Z,{x , xA is small in comparison to h , the only

other length scale in the problem. Thus we can obtain the zeroth order

solution by equating the boundary conditions on the planar surface x- = 0 .

The conditions are:

(5a) a = 1, 2 ,

(5b)

:5c)
•du
(1)

3a:- 3x = U,
du
(2) 2)

dx -
a = 1, 2 .

Equations (5a) and (5b) are the kinematic conditions, with (5b) coming from

the condition that x~ = t,{x-,, xj) be a material surface and the

subsequent small amplitude approximation to obtain the zeroth order

solution. Equation (5c) is the dynamic condition that the tangential

stresses are continuous. The first order approximation for the interface

displacement Z, comes from the balance of normal stresses at the

interface, that is the jump in normal stress must be balanced by surface

tension. Thus, for small displacements, the equation becomes (see Landau

and Lifshitz [7]),

(6)
,,(2)
3

3x.

where T is the surface tension and V~ is the two dimensional laplacian
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in x and a; .

The analysis i s straightforward and may be obtained in several ways,

either by Fourier transform methods (see Blake [2 ] ) , or by using

Papkovitch-Neuber methods (see Aderogba [ I ] ) .

4. Solutions and interpretat ion

Using the notation of (la), (lb), (2a), (2b), the analytic

expressions for the velocity and pressure are as follows:

In Region I (x^ < 0 , includes forcing stokeslet)

» • >

[x r> T» r
L_ \-il + lili + [izi x

(7b) p (1)

In Region II (x, > 0)

(8a) u{.2)

Is

Here 6 = r an<i S have been defined previously in (la) and

(lb). For the limiting cases of 9 -»• °° and 9 •+• 0 we obtain the results

for the rigid no-slip wall (la), (lb), and free surface (2a), (2b),

respectively. The case 9 = 1 does not reproduce the infinite fluid

solution because we have a distribution of normal stress over the surface

specified by x_ = 0 , such that the normal velocity is zero (the imposed

boundary condition).

It is perhaps easiest to understand the influence of the interface on
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the velocity and pressure fields to use the singularity diagrams of Blake

[2] . The arrangement of the arrows for forces, couples, and doublets are

reproduced in Figure 2. The analytic solutions given in (7a), (fb), and

(8a), (8t>) are illustrated in the singularity diagrams of Figure 3. The

results are shown for Region I and Region II and in each case we consider

singularity diagrams for tangential and normal forces. We will describe

each case individually corresponding to the headings used in Figure 3.

Singularity Representation Order of magnitude

Stokeslet • • o{-)

asymmetric — ^ _ 4—7—, _ , . '4 Ax_X 1 CD + CDStokes-doublet
Rotlet Stresslet

(circular (Radial
streamlines) streamlines)

Stokes-doublet -• • » = stresslet o\—

Symmetric

ublet -• • » =
(no r o t l e t ) ^ •

Stokes-quadrupole (combinations of above) 01—

Source-doublet • • (special case of fi
Stokes-quadrupole) (~3

FIGURE 2. Vector and tensor graphs of some singularities of the Stokes

flow equations.

REGION I (« < 0 , the lower half space)

(a) Tangential Force [F , a = 1 or 2 )

In this case, the image system required to satisfy the 'boundary

conditions consists of a stokeslet of strength F^il-Q)/(l+6) , a stokes-

doutlet of strength -2QhF /(l+6) (in the figure a negative stokes-
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REGION 1 I

1-9 20 , 26 2
1+9 1+9 1+6

+ I • I + • •t ' l

(a)

Image: Stokeslet Stokes- Source-
doublet doublet

-Stokeslet

Far-field (i) 0 < 9 < °°, 9 # 1; J|Q-^ (stokeslet)

(ii) 9 -»• <*> (rigid wall); stresslet

Image; stokeslet stresslet source-doublet

+ • 7 " ' ~ " - - •> -

(b)

Stokeslet

2 hy
Far-field (i) 0 £ 9 < «>, 9 / 1; f-̂ - , stresslet

(ii) 9 •+ °° (rigid wall); stokes-quadrupole/
source doublet
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Region II

Far-field: stokeslet

(a)

26
1+6

1-1
29
1+6

hF
29
T+T

stokeslet stokes-
doublet

source-
doublet

Far-field: stresslet

(b)

29 hF
1+6

stresslet

26 h2F
1+6

source-
doublet

FIGURE 3. Singularity diagrams for Region I and Region II for tangential

and normal force in Region I. The diagrams are explained in

detail in the text. The far-fields in each case are shown on

the diagram.
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doublet is illustrated) and a potential source doublet of strength

-2Qh F /(l+6) . The far-field for 0 < 9 < °° , 9 # 1 , consists of a

stokeslet of strength 2F /(l+6) located at the origin. For the limiting

case of a rigid, no-slip wall (9 -»• °°) the far-field consists of a

stresslet, as discussed previously by Blake [2] and Blake and Chwang [4].

(b) Normal Force [F )

The image system consists of an equal and opposite stokeslet (-F_) ,

a symmetric stokes-doublet (stresslet) of strength 2QhF /(l+9) , and a

source-doublet of strength 297z F /(l+9) for 0 < 9 < °° , 6 * 1 . For

the rigid wall case (9 -*• °°) the far-field becomes a combination of a

stokes-quadrupole and a source-doublet.

REGION II [x > 0 , the upper half space)

In this region there are no singularities within the half-space.

(a) Tangential Force

The singularities at the image point (0, 0, -h) consist of

(i) a stokeslet of strength 29^/(1+9) ,

(ii) a stokes doublet of strength -2QhF /(l+9) , and

(iii) a source-doublet of strength 297i2F /(l+9) .

Clearly, the far-field will behave like the stokeslet singularity except in

the case where 6 ->• °° in which case the upper fluid becomes a rigid solid.

(b) Normal Force [FA

In this case, the singularities required at the image point consist

of

(i) a symmetric stokes-doublet (stresslet) and

(ii) a potential source-doublet.

The far-field behaviour is that of a stresslet.

It should be emphasised that the far-field behaviour for a point force
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parallel to the wall is that of a stokeslet \O(l/r) behaviour) in both

lower and upper fluids (0 5 9 < °° , 9 # 1) .whereas in the case of a

normal force i t is a symmetric stokes-doublet (o(l/r ) behaviour) . In

the case of a rigid wall (9 -*• °°) , this changes to

(i) a stresslet far-field for the parallel stokeslet case, and

(ii) a stokes-quadrupole/source-doublet far-field for the normal

force.

5. First order approximation to interface shape

To obtain the first-order approximations to the interface shape we

have to solve the two-dimensional Poisson equation defined in (6). The

logarithmic singularity prevents us obtaining a meaningful solution in the

case of the normal force (another paradox in Stokes flow!), but for the

case of a tangential force we obtain the expression for the interface shape

% '

2 2 . 2
where p = x + x .

For the case of a positive force, the fluid interface is depressed in

the negative direction and increased on the positive side. The distortion

of the interface is very important in helping us understand some of the

possible surface changes that may occur when a particle approaches close to

the interface. This is a surprising result because the surface shape is

independent of 9 . However, we note that the total force acting on the

free surface (the sum of the respective image forces) is equal to 1 .

In conclusion, this paper has presented the explicit expressions for

the Green's functions due to a point force in one of the two half-space

fluids in the case when inertial effects of the fluid are entirely

negligible. The analytic expressions are discussed in terms of singularity

diagrams and for the case of the tangential force a first approximation to

the interface displacement is made.
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