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Logan’s problem for Jacobi transforms
Dmitry Gorbachev , Valerii Ivanov, and Sergey Tikhonov
Abstract. We consider direct and inverse Jacobi transforms with measures

dμ(t) = 22ρ(sinh t)2α+1(cosh t)2β+1 dt

and

dσ(λ) = (2π)−1∣ 2ρ−i λ Γ(α + 1)Γ(iλ)
Γ((ρ + iλ)/2)Γ((ρ + iλ)/2 − β)

∣
−2

dλ,

respectively. We solve the following generalized Logan problem: to find the infimum

inf Λ((−1)m−1 f ), m ∈ N,

where Λ( f ) = sup{λ > 0∶ f (λ) > 0} and the infimum is taken over all nontrivial even entire
functions f of exponential type that are Jacobi transforms of positive measures with supports
on an interval. Here, if m ≥ 2, then we additionally assume that ∫ ∞0 λ2k f (λ) dσ(λ) = 0 for k =
0, . . . , m − 2.

We prove that admissible functions for this problem are positive-definite with respect to the
inverse Jacobi transform. The solution of Logan’s problem was known only when α = β = −1/2. We
find a unique (up to multiplication by a positive constant) extremizer fm . The corresponding Logan
problem for the Fourier transform on the hyperboloid H

d is also solved. Using the properties of the
extremizer fm allows us to give an upper estimate of the length of a minimal interval containing not
less than n zeros of positive definite functions. Finally, we show that the Jacobi functions form the
Chebyshev systems.

1 Introduction

In this paper, we continue the discussion of the generalized Logan problem for entire
functions of exponential type, that are, functions represented as compactly supported
integral transforms. In [13], we investigated this problem for the Fourier, Hankel, and
Dunkl transforms. Here, we consider the new case of the Jacobi transform, which is
closely related to the harmonic analysis on the real hyperbolic spaces [25].

The one-dimensional Logan problem first appeared as a problem in the number
theory [22]. Its multidimensional analogs (see, e.g., [26]) are also connected to the

Received by the editors October 20, 2022; revised February 18, 2023; accepted April 17, 2023.
Published online on Cambridge Core April 24, 2023.
The work of the first and second authors was supported by the RSF grant 18-11-00199

(https://rscf.ru/project/18-11-00199/). The work of the third author was partially supported by grants
PID2020-114948GB-I00, 2021 SGR 00087, and AP09260223 by the CERCA Programme of the Gener-
alitat de Catalunya and by the Spanish State Research Agency, through the Severo Ochoa and María de
Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M).

AMS subject classification: 42A82, 42A38.
Keywords: Logan’s problem, positive definite functions, bandlimited functions, Jacobi transform on

the half-line, Fourier transform on the hyperboloid.

https://doi.org/10.4153/S0008414X23000275 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008414X23000275
https://orcid.org/0000-0003-0866-6598
https://rscf.ru/project/18-11-00199/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008414X23000275&domain=pdf
https://doi.org/10.4153/S0008414X23000275


916 D. Gorbachev, V. Ivanov, and S. Tikhonov

Fourier-analytical method used by Selberg to prove a sharp form of Linnik’s large
sieve inequality. Considering various classes of admissible functions in the multivari-
ate Logan’s problem gives rise to the so-called Delsarte extremal problems, which
have numerous applications to discrete mathematics and metric geometry (see the
discussion in [13]). At present, Logan’s and Delsarte’s problems can be considered as
an important part of uncertainty type extremal problems, where conditions both on a
function and its Fourier transform are imposed [6, 11, 12] (see also [3, 4, 17]).

Typically, the main object in such questions is the classical Fourier transform in
Euclidean space. However, similar questions in other symmetric spaces, especially in
hyperbolic spaces, are of great interest (see, e.g., [7, 16]). Harmonic analysis in these
cases is built with the help of the Fourier–Jacobi transform (see [19, 25]). A particular
case of the Jacobi transform is the well-known Mehler–Fock transform [27].

We would like to stress that since the classes of admissible functions and corre-
sponding functionals in the multidimensional Logan’s problem (see Problem E for
hyperboloid in Section 5) are invariant under the group of motions, the problem
reduces to the case of radial functions. Thus, it is convenient to start with the one-
dimensional case (Problem D) and then find a solution in the whole generality.

Positive definiteness of the extremizer in the generalized Logan problem for the
Hankel transform (see Problem C) turns out to be crucial to obtain lower bounds
for energy in the Gaussian core model [5]. We will see that the extremizer in the
generalized Logan problem for the Jacobi transform is also positive definite (with
respect to Jacobi transform).

1.1 Historical background

Logan stated and proved [22, 23] the following two extremal problems for real-
valued positive definite bandlimited functions on R. Since such functions are even,
we consider these problems for functions on R+ ∶= [0,∞).

Problem A Find the smallest λ1 > 0 such that

f (λ) ≤ 0, λ > λ1 ,

where f is entire function of exponential type at most 2τ satisfying

f (λ) = ∫
2τ

0
cos λt dν(t), f (0) = 1,(1.1)

where ν is a function of bounded variation, nondecreasing in some neighborhood of the
origin.

Logan showed that admissible functions are integrable, λ1 = π/2τ, and the unique
extremizer is the positive definite function

f1(λ) =
cos2(τλ)

1 − λ2/(π/2τ)2 ,

satisfying ∫
∞

0 f1(λ) dλ = 0.

https://doi.org/10.4153/S0008414X23000275 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000275


Logan’s problem for Jacobi transforms 917

Recall that a function f defined on R is positive definite if for any integer N

N
∑

i , j=1
c i c j f (x i − x j) ≥ 0, ∀ c1 , . . . , cN ∈ C, ∀ x1 , . . . , xN ∈ R.

Let Cb(R+) be the space of continuous bounded functions f onR+ with norm ∥ f ∥∞ =
sup

R+
∣ f ∣. For an even function f ∈ Cb(R+), by Bochner’s theorem, f is positive

definite if and only if

f (x) = ∫
∞

0
cos λt dν(t),

where ν is a nondecreasing function of bounded variation (see, e.g., [8, 9.2.8]). In
particular, if f ∈ L1(R+), then its cosine Fourier transform is nonnegative.

Problem B Find the smallest λ2 > 0 such that

f (λ) ≥ 0, λ > λ2 ,

where f is an integrable function satisfying (1.1) and having mean value zero.

It turns out that admissible functions are integrable with respect to the weight λ2,
and λ2 = 3π/2τ. Moreover, the unique extremizer is the positive definite function

f2(λ) =
cos2(τλ)

(1 − λ2/(π/2τ)2)(1 − λ2/(3π/2τ)2) ,

satisfying ∫
∞

0 λ2 f2(λ) dλ = 0.
Let m ∈ N. Problems A and B can be considered as special cases of the generalized

m-Logan problem.

Problem C Find the smallest λm > 0 such that

(−1)m−1 f (λ) ≤ 0, λ > λm ,

where, for m = 1, f satisfies (1.1) and, for m ≥ 2, additionally

f ∈ L1(R+ , λ2m−4 dλ), ∫
∞

0
λ2k f (λ) dλ = 0, k = 0, . . . , m − 2.

If m = 1, 2, we recover Problems A and B, respectively. We solved Problem C in [13].
It turns out that the unique extremizer is the positive definite function

fm(λ) =
cos2(τλ)

(1 − λ2/(π/2τ)2)(1 − λ2/(3π/2τ)2) ⋅ ⋅ ⋅ (1 − λ2/((2m − 1)π/2τ)2) ,

satisfying fm ∈ L1(R+, λ2m−2 dλ) and ∫
∞

0 λ2m−2 fm(λ) dλ = 0.
Moreover, we have solved a more general version of the problem C when f is the

Hankel transform of a measure, that is,

f (λ) = ∫
2τ

0
jα(λt) dν(λ), f (0) = 1,
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where ν is a function of bounded variation, nondecreasing in some neighborhood of
the origin, and for m ≥ 2,

f ∈ L1(R+ , λ2m+2α−3 dλ), ∫
∞

0
λ2k+2α+1 f (λ) dλ = 0, k = 0, . . . , m − 2.

Here, α ≥ −1/2 and jα(t) = (2/t)α Γ(α + 1)Jα(t) is the normalized Bessel function.
The representation (1.1) then follows for α = −1/2. Note that jα(λt) is the eigenfunc-
tion of the following Sturm–Liouville problem:

(t2α+1u′λ(t))′ + λ2 t2α+1uλ(t) = 0, uλ(0) = 1, u′λ(0) = 0, t, λ ∈ R+ .

1.2 m-Logan problem for the Jacobi transform

In this paper, we solve the analog of Problem C for the Jacobi transform with the kernel
φλ(t) being the eigenfunction of the Sturm–Liouville problem

(Δ(t)φ′λ(t))′ + (λ2 + ρ2)Δ(t)φλ(t) = 0,
φλ(0) = 1, φ′λ(0) = 0,

(1.2)

with the weight function given by

Δ(t) = Δ(α ,β)(t) = 22ρ(sinh t)2α+1(cosh t)2β+1 , t ∈ R+,

where

α ≥ β ≥ −1/2, ρ = α + β + 1.

The following representation for the Jacobi function is known

φλ(t) = φ(α ,β)
λ (t) = F( ρ + iλ

2
, ρ − iλ

2
; α + 1;−(sinh t)2),

where F(a, b; c; z) is the Gauss hypergeometric function.
For the precise definitions of direct and inverse Jacobi transforms, see the next

section. In the case α = β = −1/2, we have Δ(t) = 1 and the Jacobi transform is reduced
to the cosine Fourier transform.

Set, for a real-valued continuous function f on R+,

Λ( f ) = Λ( f ,R+) = sup{λ > 0∶ f (λ) > 0}

(Λ( f ) = 0 if f ≤ 0) and

Λm( f ) = Λ((−1)m−1 f ).

Consider the class Lm(τ,R+), m ∈ N, τ > 0, of real-valued even functions
f ∈ Cb(R+) such that:

(1) f is the Jacobi transform of a measure

f (λ) = ∫
2τ

0
φλ(t) dν(t), λ ∈ R+ ,(1.3)

where ν is a nontrivial function of bounded variation nondecreasing in some neigh-
borhood of the origin.
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(2) If m ≥ 2, then, additionally, f ∈ L1(R+ , λ2m−4 dσ) and there holds

∫
∞

0
λ2k f (λ) dσ(λ) = 0, k = 0, 1, . . . , m − 2,(1.4)

where σ is the spectral measure of the Sturm–Liouville problem (1.2), that is,

dσ(λ) = dσ(α ,β)(λ) = s(λ) dλ,(1.5)

where the spectral weight

s(λ) = s(α ,β)(λ) = (2π)−1∣ 2ρ−i λΓ(α + 1)Γ(iλ)
Γ((ρ + iλ)/2)Γ((ρ + iλ)/2 − β) ∣

−2
.

This class Lm(τ,R+) is not empty. In particular, we will show that it contains the
function

fm(λ) = φλ(τ)Fm(λ),(1.6)

where

Fm(λ) =
φλ(τ)

(1 − λ2/λ2
1 (τ)) ⋅ ⋅ ⋅ (1 − λ2/λ2

m(τ))
(1.7)

and 0 < λ1(t) < ⋅ ⋅ ⋅ < λk(t) < ⋅ ⋅ ⋅ are the positive zeros of φλ(t) as a function in λ.
The m-Logan problem for Jacobi transform on the half-line is formulated as

follows.

Problem D Find

Lm(τ,R+) = inf{Λm( f )∶ f ∈ Lm(τ,R+)}.

Remark 1.1 In the case α = β = −1/2, Problem D becomes Problem C. Even though
the ideas to solve Problem D are similar to those we used in the solution of Problem C,
the proof is far from being just a generalization. In more detail, considering the cosine
Fourier transform or, more generally, the Hankel transform, we note that its kernel,
i.e., the normalized Bessel function jα(λt), is symmetric with respect to the arguments
t and λ. Moreover, in this case, the Sturm–Liouville weight t2α+1 coincides, up to
constant, to the spectral weight λ2α+1, so the direct and inverse Hankel transforms also
coincide (see [13]). In the case of the Jacobi transform, there is no such symmetry for
the kernel φλ(t) and weights Δ(t) and s(λ), which gives rise to new, both conceptual
and technical difficulties. In particular, the crucial part of our technique to attack the
main problem is to obtain growth estimates of φλ(t) and s(λ) showing that extremal
functions belong to suitable function classes. To prove these facts, we rely on the
properties of the general Sturm–Liouville problem, whereas for the normalized Bessel
function, they were proved directly.

1.3 The main result

Theorem 1.2 Let m ∈ N, τ > 0. Then

Lm(τ,R+) = λm(τ),
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and the function fm is the unique extremizer up to multiplication by a positive constant.
Moreover, fm is positive definite with respect to the inverse Jacobi transform and

∫
∞

0
λ2k fm(λ) dσ(λ) = 0, k = 0, 1, . . . , m − 1.(1.8)

Remark 1.3 We note the inverse Jacobi transform gm(t) = J−1 fm(t) ≥ 0. Further-
more, the function Fm given by (1.7) is positive definite since Gm(t) = J−1Fm(t) is
nonnegative and decreases on [0, τ], and it has zero of multiplicity 2m − 1 at t = τ.
The relationship between gm(t) and Gm(t) is given by gm(t) = T τGm(t), where T τ

is the generalized translation operator (see Section 2).

1.4 Structure of the paper

The presentation follows our paper [13]. Section 2 contains some facts on the Jacobi
harmonic analysis as well as a Gauss quadrature formula with zeros of the Jacobi func-
tions as nodes. In Section 3, we prove that the Jacobi functions form the Chebyshev
systems, which is used in the proof of Theorem 1.2.

In Section 4, we give the solution of the generalized Logan problem for the Jacobi
transform. Using Theorem 1.2, in Section 5, we solve the multidimensional Logan
problem for the Fourier transform on the hyperboloid.

Finally, Section 6 is devoted to the problem on the minimal interval containing
n zeros of functions represented by the Jacobi transform of a nonnegative bounded
Stieltjes measure. Originally, such questions were investigated by Logan in [24] for
the cosine transform. It is worth mentioning that extremizers in this problem and
Problem D are closely related.

2 Elements of Jacobi harmonic analysis

Below we give some needed facts (see [9, 10, 14, 18, 19]).
Let Eτ be the class of even entire functions g(λ) of exponential type at most τ > 0,

satisfying the estimate ∣g(λ)∣ ≤ cg eτ∣Im λ∣, λ ∈ C.
The Jacobi function φλ(t) is an even analytic function of t on R and it belongs to

the class E∣t∣ with respect to λ. Moreover, the following conditions hold:

∣φλ(t)∣ ≤ 1, φ0(t) > 0, λ, t ∈ R.(2.1)

From the general properties of the eigenfunctions of the Sturm–Liouville problem
(see, for example, [21]), one has that, for t > 0, λ ∈ C,

φλ(t) = φ0(t)
∞

∏
k=1
(1 − λ2

λ2
k(t)

) ,(2.2)

where 0 < λ1(t) < ⋅ ⋅ ⋅ < λk(t) < ⋅ ⋅ ⋅ are the positive zeros of φλ(t) as a function of λ.
We also have that λk(t) = t−1

k (t), where tk(λ) are the positive zeros of the function
φλ(t) as a function of t. The zeros tk(λ), as well as the zeros λk(t), are continuous and
strictly decreasing [21, Chapter I, Section 3].
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2.1 Properties of some special functions

In what follows, we will need the asymptotic behavior of the Jacobi function and
spectral weight (see [14]:

φλ(t) =
(2/π)1/2

(Δ(t)s(λ))1/2 (cos(λt − π(α + 1/2)
2

) + e t∣Im λ∣O(∣λ∣−1)) ,

∣λ∣ → +∞, t > 0,(2.3)

s(λ) = (2ρ+α Γ(α + 1))−2 λ2α+1(1 + O(λ−1)), λ → +∞.(2.4)

From (2.3) and (2.4), it follows that, for fixed t > 0 and uniformly on λ ∈ R+,

∣φλ(t)∣ ≲
1

(λ + 1)α+1/2 ,(2.5)

where as usual F1 ≲ F2 means F1 ≤ CF2. Also, we denote F1 ≍ F2 if C−1F1 ≤ F2 ≤ CF1
with C ≥ 1.

In the Jacobi harmonic analysis, an important role is played by the function

ψλ(t) = ψ(α ,β)
λ (t) =

φ(α ,β)
λ (t)

φ(α ,β)
0 (t)

= φλ(t)
φ0(t)

,(2.6)

which is the solution of the Sturm–Liouville problem

(Δ∗(t)ψ′λ(t))′ + λ2Δ∗(t)ψλ(t) = 0, ψλ(0) = 1, ψ′λ(0) = 0,(2.7)

where Δ∗(t) = φ2
0(t)Δ(t) is the modified weight function.

The positive zeros 0 < λ∗1 (t) < ⋅ ⋅ ⋅ < λ∗k(t) < ⋅ ⋅ ⋅ of the function ψ′λ(t) of λ alternate
with the zeros of the function φλ(t) [14]:

0 < λ1(t) < λ∗1 (t) < λ2(t) < ⋅ ⋅ ⋅ < λk(t) < λ∗k(t) < λk+1(t) < ⋅ ⋅ ⋅ .(2.8)

For the derivative of the Jacobi function, one has

(φ(α ,β)
λ (t))′t = −

(ρ2 + λ2) sinh t cosh t
2(α + 1) φ(α+1,β+1)

λ (t).(2.9)

Moreover, according to (1.2),

{Δ(t)(φμ(t)φ′λ(t) − φ′μ(t)φλ(t))}
′

t = (μ
2 − λ2)Δ(t)φμ(t)φλ(t),

and therefore

∫
τ

0
Δ(t)φμ(t)φλ(t) dt =

Δ(τ)(φμ(t)φ′λ(t) − φ′μ(τ)φλ(τ))
μ2 − λ2 .(2.10)
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Lemma 2.1 For the Jacobi functions, the following recurrence formula

(λ2 + (α + β + 3)2)(sinh t cosh t)2

4(α + 1)(α + 2) φ(α+2,β+2)
λ (t)

= (α + 1) cosh2 t + (β + 1) sinh2 t
α + 1

φ(α+1,β+1)
λ (t) − φ(α ,β)

λ (t)(2.11)

and the formula for derivatives

((sinh t)2α+3(cosh t)2β+3φ(α+1,β+1)
λ (t))′t = 2(α + 1)(sinh t)2α+1(cosh t)2β+1φ(α ,β)

λ (t)
(2.12)

are valid.

Proof Indeed, (2.11) and (2.12) are easily derived from (1.2) and (2.9). To prove (2.11),
we rewrite (1.2) as

Δ(t)φ′′λ(t) + Δ′(t)φ′λ(t) + (λ2 + ρ2)Δ(t)φλ(t) = 0,

and then we replace the first and second derivatives by the Jacobi functions using (2.9).
To show (2.12), we use (2.9) and (2.11). ∎

Many properties (e.g., inequality (2.1)) of the Jacobi function follow from the
Mehler representation

φλ(t) =
cα

Δ(t) ∫
t

0
Aα ,β(s, t) cos (λs) ds, Aα ,β(s, t) ≥ 0,(2.13)

where cα = Γ(α+1)
Γ(1/2) Γ(α+1/2) and

Aα ,β(s, t) = 2α+2β+5/2 sinh (2t) coshβ−α t(cosh (2t) − cosh (2s))α−1/2

× F(α + β, α − β; α + 1
2

; cosh t − cosh s
2 cosh t

).

We will need some properties of the following functions:

ηε(λ) = ψλ(ε) =
φλ(ε)
φ0(ε)

, ε > 0, λ ≥ 0,

ηm−1,ε(λ) = (−1)m−1(ηε(λ) −
m−2
∑
k=0

η(2k)
ε (0)
(2k)! λ2k), m ≥ 2,

ρm−1,ε(λ) =
(2m − 2)! ηm−1,ε(λ)
(−1)m−1η(2m−2)

ε (0)
.

(2.14)

Lemma 2.2 For any ε > 0, m ≥ 2, λ ∈ R+,

ηm−1,ε(λ) ≥ 0, (−1)m−1η(2m−2)
ε (0) > 0,

ρm−1,ε(λ) ≥ 0, lim
ε→0

ρm−1,ε(λ) = λ2m−2 .
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Proof Using the inequality

(−1)m−1(cos λ −
m−2
∑
k=0

(−1)k λ2k

(2k)! ) ≥ 0

and (2.13), we get

ηm−1,ε(λ) ≥ 0, (−1)m−1η(2m−2)
ε (0) = cα

Δ(ε)φ0(ε) ∫
ε

0
Aα ,β(s, ε)s2m−2 ds > 0.

Hence, ρm−1,ε(λ) ≥ 0. For any λ ∈ R+,

ηε(λ) =
∞

∑
k=0

η(2k)
ε (0)
(2k)! λ2k .

By differentiating equality (2.2) in λ and substituting λ = 0, we obtain

(−1)k η(2k)
ε (0) = 2k

∞

∑
i1=1

1
λ2

i1
(ε)

∞

∑
i2≠i1

1
λ2

i2
(ε) ⋅ ⋅ ⋅

∞

∑
ik≠i1 , . . . , ik−1

1
λ2

ik
(ε) .

Hence,

∣η′′ε (0)∣ = 2
∞

∑
i=1

1
λ2

i (ε)
,

and for k ≥ m,

∣ η(2k)
ε (0)

η(2m−2)
ε (0)

∣ ≤ ∣η′′ε (0)∣k−m+1 .

Therefore,

∣ρm−1,ε(λ) − λ2m−2∣
(2m − 2)! = ∣ ηm−1,ε(λ)

η(2m−2)
ε (0)

− λ2m−2

(2m − 2)! ∣ = ∣
ηm ,ε(λ)

η(2m−2)
ε (0)

∣

≤
∞

∑
k=m
∣ η(2k)

ε (0)
η(2m−2)

ε (0)
∣ λ2k

(2k)! ≤ ∣η
′′
ε (0)∣

∞

∑
k=m
∣η′′ε (0)∣k−m λ2k

(2k)! .

It remains to show that

lim
ε→0
∣η′′ε (0))∣ = 0.

Zeros λk(ε) monotonically decrease on ε and, for any k, lim
ε→0

λk(ε) = ∞. In view of
(2.3), we have λk(1) ≍ k as k →∞. Finally, the result follows from

∣η′′ε (0))∣ ≤
N
∑
k=1

1
λ2

k(ε)
+

∞

∑
k=N+1

1
λ2

k(1)
≲

N
∑
k=1

1
λ2

k(ε)
+ 1

N
. ∎

2.2 Jacobi transforms, translation, and positive definiteness

As usual, if X is a manifold with the positive measure ρ, then by Lp(X , dρ), p ≥ 1, we
denote the Lebesgue space with the finite norm ∥ f ∥p,d ρ = (∫X ∣ f ∣p dρ)1/p . For p = ∞,
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Cb(X) is the space of continuous bounded functions with norm ∥ f ∥∞ = supX ∣ f ∣. Let
supp f be the support of a function f.

Let t, λ ∈ R+, dμ(t) = Δ(t) dt and dσ(λ) be the spectral measure (1.5). Then
L2(R+ , dμ) and L2(R+ , dσ) are Hilbert spaces with the inner products

(g , G)μ = ∫
∞

0
g(t)G(t) dμ(t), ( f , F)σ = ∫

∞

0
f (λ)F(λ) dσ(λ).

The main concepts of harmonic analysis in L2(R+ , dμ) and L2(R+ , dσ) are the
direct and inverse Jacobi transforms, namely,

Jg(λ) = J(α ,β)g(λ) = ∫
∞

0
g(t)φλ(t) dμ(t)

and

J−1 f (t) = (J(α ,β))−1 f (t) = ∫
∞

0
f (λ)φλ(t) dσ(λ).

We recall a few basic facts. If g ∈ L2(R+, dμ), f ∈ L2(R+ , dσ), then Jg ∈ L2(R+, dσ),
J−1 f ∈ L2(R+, dμ) and g(t) = J−1(Jg)(t), f (λ) = J(J−1 f )(λ) in the mean square
sense and, moreover, the Parseval relations hold.

In addition, if g ∈ L1(R+ , dμ), then Jg ∈ Cb(R+) and ∥Jg∥∞ ≤ ∥g∥1,d μ . If
f ∈ L1(R+, dσ), then J−1 f ∈ Cb(R+) and ∥J−1 f ∥∞ ≤ ∥ f ∥1,dσ .

Furthermore, assuming g ∈ L1(R+ , dμ) ∩ Cb(R+), Jg ∈ L1(R+, dσ), one has, for
any t ∈ R+,

g(t) = ∫
∞

0
Jg(λ)φλ(t) dσ(λ).

Similarly, assuming f ∈ L1(R+ , dσ) ∩ Cb(R+), J−1 f ∈ L1(R+ , dμ), one has, for any
λ ∈ R+,

f (λ) = ∫
∞

0
J−1 f (t)φλ(t) dμ(t).

Let Bτ
1 , τ > 0, be the Bernstein class of even entire functions from Eτ , whose

restrictions toR+ belong to L1(R+ , dσ). For functions from the classBτ
1 , the following

Paley–Wiener theorem is valid.

Lemma 2.3 [15, 18] A function f belongs to Bτ
1 if and only if

f ∈ L1(R+, dσ) ∩ Cb(R+) and suppJ−1 f ⊂ [0, τ].

Moreover, there holds

f (λ) = ∫
τ

0
J−1 f (t)φλ(t) dμ(t), λ ∈ R+ .

Let us now discuss the generalized translation operator and convolution. In view
of (2.1), the generalized translation operator in L2(R+, dμ) is defined by [9, Section 4]

T t g(x) = ∫
∞

0
φλ(t)φλ(x)Jg(λ) dσ(λ), t, x ∈ R+ .
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If α ≥ β ≥ −1/2, α > −1/2, the following integral representation holds:

T t g(x) = ∫
t+x

∣t−x ∣
g(u)K(t, x , u) dμ(u),(2.15)

where the kernel K is nonnegative and symmetric. Note that, for α = β = −1/2, we
arrive at T t g(x) = (g(t + x) + g(∣t − x∣))/2.

Using representation (2.15), we can extend the generalized translation operator
to the spaces Lp(R+ , dμ), 1 ≤ p ≤ ∞, and, for any t ∈ R+, we have ∥T t∥p→p = 1
[9, Lemma 5.2].

The operator T t possesses the following properties:
(1) If g(x) ≥ 0, then T t g(x) ≥ 0.
(2) T t φλ(x) = φλ(t)φλ(x), J(T t g)(λ) = φλ(t)Jg(λ).
(3) T t g(x) = T x g(t), T t1 = 1.
(4) If g ∈ L1(Rd

+, dμ), then ∫
∞

0 T t g(x) dμ(x) = ∫
∞

0 g(x) dμ(x).
(5) If supp g ⊂ [0, δ], then supp T t g ⊂ [0, δ + t].
Using the generalized translation operator T t , we can define the convolution and

positive-definite functions. Following [9], we set

(g ∗G)μ(x) = ∫
∞

0
T t g(x)G(t) dμ(t).

Lemma 2.4 [9, Section 5] If g , G ∈ L1(R+ , dμ), then J(g ∗G)μ = Jg JG. Moreover,
if supp g ⊂ [0, δ], supp G ⊂ [0, τ], then supp (g ∗G)μ ⊂ [0, δ + τ].

An even continuous function g is called positive-definite with respect to Jacobi
transform J if for any N

N
∑

i , j=1
c i c j T x i g(x j) ≥ 0, ∀ c1 , . . . , cN ∈ C, ∀ x1 , . . . , xN ∈ R+ ,

or, equivalently, the matrix (T x i g(x j))N
i , j=1 is positive semidefinite. If a continuous

function g has the representation

g(x) = ∫
∞

0
φλ(x) dν(λ),

where ν is a nondecreasing function of bounded variation, then g is positive definite.
Indeed, using the property (2) for the operator T t , we obtain

N
∑

i , j=1
c i c j T x i g(x j) = ∫

∞

0

N
∑

i , j=1
c i c j T x i φλ(x j) dν(λ)

= ∫
∞

0

N
∑

i , j=1
c i c j φλ(x i)φλ(x j) dν(λ) = ∫

∞

0
∣

N
∑
i=1

c i φλ(x i)∣
2

dν(λ) ≥ 0.

If g ∈ L1(R+ , dμ), then a sufficient condition for positive definiteness of g is Jg(λ) ≥ 0.
We can also define the generalized translation operator in L2(R+ , dσ) by

Sη f (λ) = ∫
∞

0
φη(t)φλ(t)J−1 f (t) dμ(t), η, λ ∈ R+ .
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Then, for α ≥ β ≥ −1/2, α > −1/2, the following integral representation holds:

Sη f (λ) = ∫
∞

0
f (ζ)L(η, λ, ζ) dσ(ζ),(2.16)

where the kernel

L(η, λ, ζ) = ∫
∞

0
φη(t)φλ(t)φζ(t) dμ(t), ∫

∞

0
L(η, λ, ζ) dσ(ζ) = 1,

is nonnegative continuous and symmetric [10]. Using (2.16), we can extend the
generalized translation operator to the spaces Lp(R+ , dσ), 1 ≤ p ≤ ∞, and, for any
η ∈ R+, ∥Sη∥p→p = 1 [10].

One has:
(1) If f (λ) ≥ 0, then Sη f (λ) ≥ 0.
(2) Sηφλ(t) = φη(t)φλ(t), J−1(Sη f )(t) = φη(t)J−1 f (t).
(3) Sη f (λ) = Sλ f (η), Sη1 = 1.
(4) If f ∈ L1(Rd

+ , dσ), then ∫
∞

0 Sη f (λ) dσ(λ) = ∫
∞

0 f (λ) dσ(λ).
The function ζ ↦ L(η, λ, ζ) is analytic for ∣Im ζ ∣ < ρ. Hence, the restriction of this

function to R+ has no compact support, in contrast with the function x ↦ K(t, s, x)
in (2.15).

Similarly to above, we define

( f ∗ F)σ(λ) = ∫
∞

0
Sη f (λ)F(η) dσ(η).

If f , F ∈ L1(R+, dσ), then J−1( f ∗ F)σ = J−1 f J−1F.
An even continues function is called positive definite with respect to the inverse

Jacobi transform J−1 if
N
∑

i , j=1
c i c j Sλ i f (λ j) ≥ 0, ∀ c1 , . . . , cN ∈ C, ∀ λ1 , . . . , λN ∈ R+,

or, equivalently, the matrix (Sλ i f (λ j))N
i , j=1 is positive semidefinite. If a continuous

function f has the representation

f (λ) = ∫
∞

0
φλ(t) dν(t),

where ν is a nondecreasing function of bounded variation, then f is positive definite.
If f ∈ L1(R+ , dσ), then a sufficient condition for positive definiteness is J−1 f (t) ≥ 0.

2.3 Gauss quadrature and lemmas on entire functions

In what follows, we will need the Gauss quadrature formula on the half-line for entire
functions of exponential type.

Lemma 2.5 [14] For an arbitrary function f ∈ B2τ
1 , the Gauss quadrature formula with

positive weights holds

∫
∞

0
f (λ) dσ(λ) =

∞

∑
k=0

γk(τ) f (λk(τ)).(2.17)

The series in (2.17) converges absolutely.

https://doi.org/10.4153/S0008414X23000275 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000275


Logan’s problem for Jacobi transforms 927

Lemma 2.6 [13] Let α > −1/2. There exists an even entire function ωα(z) of exponen-
tial type 2, positive for z > 0, and such that

ωα(x) ≍ x2α+1 , x → +∞,
∣ωα(iy)∣ ≍ y2α+1e2y , y → +∞.

The next lemma is an easy consequence of Akhiezer’s result [20, Appendix VII.10].

Lemma 2.7 Let F be an even entire function of exponential type τ > 0 bounded on R.
Let Ω be an even entire function of finite exponential type, let all the zeros of Ω be zeros
of F, and let, for some m ∈ Z+,

lim inf
y→+∞

e−τ y y2m ∣Ω(iy)∣ > 0.

Then the function F(z)/Ω(z) is an even polynomial of degree at most 2m.

3 Chebyshev systems of Jacobi functions

Let I be an interval on R+. By NI(g), we denote the number of zeros of a continuous
function g on interval I, counting multiplicity. A family of real-valued functions
{φk(t)}∞k=1 defined on an interval I is a Chebyshev system (T-system) if for any n ∈ N
and any nontrivial linear combination

p(t) =
n
∑
k=1

Ak φk(t),

there holds NI(p) ≤ n − 1 (see, e.g., [1, Chapter II]).
Our goal is to prove that some systems, constructed with the help of Jacobi

functions, are the Chebyshev systems. We will use the convenient for us version of
Sturm’s theorem on zeros of linear combinations of eigenfunctions of the Sturm–
Liouville problem (see [2]).

Theorem 3.1 [2] Let {uk}∞k=1 be the system of eigenfunctions associated with eigenval-
ues ξ1 < ξ2 < . . . of the following Sturm–Liouville problem on the interval [0, τ]:

(wu′)′ + ξwu = 0, u′(0) = 0, cos θ u(τ) + sin θ u′(τ) = 0,(3.1)

where ξ = λ2 + λ2
0, ξk = λ2

k + λ2
0, w ∈ C[0, τ], w ∈ C1(0, τ), w > 0 on (0, τ), θ ∈

[0, π/2].
Then for any nontrivial real polynomial of the form

p =
n
∑
k=m

akuk , m, n ∈ N, m ≤ n,

we have

m − 1 ≤ N(0,τ)(p) ≤ n − 1.

In particular, every kth eigenfunction uk has exactly k − 1 simple zeros.
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As above, we assume that τ > 0, α ≥ β ≥ −1/2, α > −1/2, φλ(t) = φ(α ,β)
λ (t), ψλ(t) =

ψ(α ,β)
λ (t), λk(t) = λ(α ,β)

k (t), and λ∗k(t) = λ∗(α ,β)
k (t) for k ∈ N. Let 0 < μ1(t) <

μ2(t) < . . . be the positive zeros of the function φ′λ(t) of λ.

Theorem 3.2 (i) The families of the Jacobi functions

{φλk(τ)(t)}
∞
k=1 , {φμk(τ)(t)}

∞
k=1(3.2)

form Chebyshev systems on [0, τ) and (0, τ), respectively.
(ii) The families of the Jacobi functions

{φ′μk(τ)(t)}
∞
k=1 , {φ′λk(τ)(t)}

∞
k=1 , {φμk(τ)(t) − φμk(τ)(τ)}

∞
k=1

form Chebyshev systems on (0, τ).

Proof The families (3.2) are the systems of eigenvalues for the Sturm–Liouville
problem (3.1) when λ0 = ρ = α + β + 1, w(t) = Δ(t), and θ = 0, π/2. Then, by
Theorem 3.1, the statement of part (i) is valid for the interval (0, τ). In order to include
the endpoint t = 0 for the family {φλk(τ)(t)}∞k=1, we first take care of part (ii).

Since

φ′λ(t) = −
(λ2 + ρ2) sinh t cosh t

2(α + 1) φ(α+1,β+1)
λ (t), ρ > 0,

it is sufficiently to prove that the families {φ(α+1,β+1)
μk(τ)

(t)}∞k=1 and {φ(α+1,β+1)
λk(τ)

(t)}∞k=1
are the Chebyshev systems on (0, τ).

For the family {φ(α+1,β+1)
μk(τ)

(t)}∞k=1, this again follows from Theorem 3.1 since it is
the system of eigenvalues of the Sturm–Liouville problem (3.1) with λ0 = ρ, w(t) =
Δ(α+1,β+1)(t), and θ = 0.

For the second family {φ(α+1,β+1)
λk(τ)

(t)}∞k=1, let us assume that the polynomial

p(t) =
n
∑
k=1

ak φ(α+1,β+1)
λk(τ)

(t)

has n zeros on (0, τ). We consider the function g(t) = (sinh t)2α+2(cosh t)2β+2 p(t).
It has n + 1 zeros including t = 0. By Rolle’s theorem, for a smooth real function g, one
has N(0,τ)(g′) ≥ N(0,τ)(g) − 1 ≥ n (see [2]). In light of (2.13), we obtain

g′(t) = 2(α + 1)(sinh t)2α+2(cosh t)2β+2
n
∑
k=1

ak φλk(τ)(t).

This contradicts the fact that {φλk(τ)(t)}∞k=1 is the Chebyshev system on (0, τ).
To show that {φμk(τ)(t) − φμk(τ)(τ)}∞k=1 is the Chebyshev system on (0, τ), assume

that p(t) = ∑n
k=1 ak(φμk(τ)(t) − φμk(τ)(τ)) has n zeros on (0, τ). Taking into account

the zero t = τ, its derivative p′(t) = ∑n
k=1 ak φ′μk(τ)(t) has at least n zeros on (0, τ).

This cannot be true because {φ′μk(τ)(t)}
∞
k=1 is the Chebyshev system on (0, τ).

Now we are in a position to show that the first system in (3.2) is Chebyshev on [0, τ).
If p(t) = ∑n

k=1 ak φλk(τ)(t) has n zeros on [0, τ), then always p(0) = 0. Moreover,
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p(τ) = 0. Therefore, p′(t) has at least n zeros on (0, τ), which is impossible since
p′(t) = ∑n

k=1 ak φ′λk(τ)(t) and {φ′λk(τ)(t)}
∞
k=1 is the Chebyshev system on (0, τ). ∎

Theorem 3.3 (i) The families of the Jacobi functions

{ψλk(τ)(t)}
∞
k=1 , {1} ∪ {ψλ∗k (τ)(t)}

∞
k=1(3.3)

form Chebyshev systems on (0, τ) and [0, τ], respectively.
(ii) The families of the Jacobi functions

{ψ′λ∗k (τ)(t)}
∞
k=1 , {ψλ∗k (τ)(t) − ψλ∗k (τ)(τ)}

∞
k=1

form Chebyshev systems on (0, τ).

Proof The families (3.3) are the systems of eigenvalues for the Sturm–Liouville prob-
lem (3.1) in the case λ0 = 0, Δ∗(t) = φ2

0(t)Δ(t), and θ = 0, π/2. Then the statement of
part (i) is valid for the interval (0, τ). In order to include the endpoints, we first prove
part (ii).

Let w(t) = Δ∗(t) = φ2
0(t)Δ(t), W(t) = ∫

t
0 w(s) ds, w0(t) =W2(t)w−1(t). It is

known [14] that vλ(t) = −w(t)W−1(t)λ−2ψ′λ(t) is the eigenfunction of the Sturm–
Liouville problem

(w0v′)′ + λ2w0v = 0, v′(0) = 0.

Hence, the family {v′λ∗k (τ)(t)}
∞
k=1 is the system of eigenvalues for the Sturm–Liouville

problem

(w0v′)′ + λ2w0v = 0, v′(0) = 0, v(τ) = 0.

By Theorem 3.1, the family {v′λ∗k (τ)(t)}
∞
k=1 and the family {ψ′λ∗k (τ)(t)}

∞
k=1 are the

Chebyshev systems on (0, τ).
To prove that {ψλ∗k (τ)(t) − ψλ∗k (τ)(τ)}

∞
k=1 forms the Chebyshev system on (0, τ),

we assume that p(t) = ∑n
k=1 ak(ψλ∗k (τ)(t) − ψλ∗k (τ)(τ)) has n zeros on (0, τ). Taking

into account the zero t = τ, its derivative p′(t) = ∑n
k=1 akψ′λ∗k (τ)(t) has at least n zeros

on (0, τ). This contradicts the fact that {ψ′λ∗k (τ)(t)}
∞
k=1 is the Chebyshev system on

(0, τ).
Now we are in a position to show that the second system in (3.3) is Chebyshev

on [0, τ]. If p(t) = ∑n−1
k=0 akψλ∗k (τ)(t) (we assume λ∗0(τ) = 0) has n zeros on [0, τ],

then one of the endpoints is zero. Then p′(t) = ∑n−1
k=1 akψ′λ∗k (τ)(t) has at least n − 1

zeros on (0, τ), which is impossible for Chebyshev system {ψ′λ∗k (τ)(t)}
∞
k=1. ∎

4 Proof of Theorem 1.2

Below we give a solution of the generalized m-Logan problem for the Jacobi transform.
As above, let m ∈ N and τ > 0. For brevity, we denote

λk = λk(τ), γk = γk(τ).

We need the following lemma.
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Lemma 4.1 Let f (λ) be a nontrivial function from Lm(τ,R+) such that Λm( f ) < ∞.
Then

f ∈ L1(R+, λ2m−2 dσ), (−1)m−1 ∫
∞

0
λ2m−2 f (λ) dσ(λ) ≥ 0,(4.1)

Proof Let m = 1. Let ε > 0, χε(t) be the characteristic function of the interval [0, ε],

Ψε(t) = c−2
ε (χε ∗ χε)μ(t), cε = ∫

ε

0
dμ.

By Lemma 2.4, supp Ψε ⊂ [0, 2ε]. According to the properties (1)–(4) of the general-
ized translation operator T t and Lemma 2.4, we have

Ψε(t) ≥ 0, JΨε(λ) = c−2
ε (Jχε(λ))2 ,

∫
∞

0
Ψε(t) dμ(t) = c−2

ε ∫
∞

0
χε(x)∫

∞

0
T x χε(t) dμ(t) dμ(x) = 1.

Since χε ∈ L1(R+, dμ) ∩ L2(R+ , dμ), Jχε ∈ L2(R+ , dσ) ∩ Cb(R+), and

∣Jχε(λ)∣ ≤ cε , lim
ε→0

c−1
ε Jχε(λ) = lim

ε→0
c−1

ε ∫
ε

0
φλ(t) dμ(t) = 1,

we obtain

JΨε ∈ L1(R+, dσ) ∩ Cb(R+), 0 ≤ JΨε(λ) ≤ 1, lim
ε→0

JΨε(λ) = 1.

The fact that L1(τ,R+) ⊂ L1(R+, dνα) can be verified with the help of Logan’s
method from [23, Lemma]. Indeed, let f ∈ L1(τ,R+) be given by (1.5). Taking into
account that dν ≥ 0 in some neighborhood of the origin, we derive, for sufficiently
small ε > 0, that

0 ≤ ∫
2ε

0
Ψε(t) dν(t) = ∫

∞

0
Ψε(t) dν(t) = ∫

∞

0
f (λ)JΨε(λ) dσ(λ)

= ∫
λ1( f )

0
f (λ)JΨε(λ)(λ) dσ(λ) − ∫

∞

λ1( f )
∣ f (λ)∣JΨε(λ) dσ(λ).

This gives

∫
∞

λ1( f )
∣ f (λ)∣JΨε(λ) dσ(λ) ≤ ∫

λ1( f )

0
f (λ)JΨε(λ) dσ(λ) ≤ ∫

λ1( f )

0
∣ f (λ)∣ dσ(λ).

Letting ε → 0, by Fatou’s lemma, we have

∫
∞

λ1( f )
∣ f (λ)∣ dσ(λ) ≤ ∫

λ1( f )

0
∣ f (λ)∣ dσ(λ) < ∞.

Let m ≥ 2. In light of the definition of the class Lm(τ,R+), we have f ∈ L1(R+, dσ)
and dν(t) ≥ 0 on segment [0, ε], therefore dν(t) = J−1 f (t)dμ(t) and J−1 f (ε) ≥ 0 for
sufficiently small ε.

Consider the function ρm−1,ε(λ) defined by (2.14). Using Lemma 2.2, the orthogo-
nality property (1.4), and the equality (−1)m f (λ) = ∣ f (λ)∣ for λ ≥ Λm( f ), we arrive at
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(−1)m−1 ∫
∞

0
ρm−1,ε(λ) f (λ) dσ(λ)

= (2m − 2)!
(−1)m−1φ0(ε)ψ(2m−2)

ε (0)
∫
∞

0
f (λ)φλ(ε) dσ(λ)

= (2m − 2)!
(−1)m−1φ0(ε)ψ(2m−2)

ε (0)
J−1 f (ε) ≥ 0.(4.2)

Thus,

(−1)m ∫
∞

Λm( f )
ρm−1,ε(λ) f (λ) dσ(λ) ≤ (−1)m−1 ∫

Λm( f )

0
ρm−1,ε(λ) f (λ) dσ(λ).

Taking into account (4.2), Lemma 2.2, and Fatou’s lemma, we have

(−1)m ∫
∞

Λm( f )
λ2m−2 f (λ) dσ(λ) = (−1)m ∫

∞

Λm( f )
lim
ε→0

ρm−1,ε(λ) f (λ) dσ(λ)

≤ lim inf
ε→0

(−1)m ∫
∞

Λm( f )
ρm−1,ε(λ) f (λ) dσ(λ)

≤ lim inf
ε→0

(−1)m−1 ∫
Λm( f )

0
ρm−1,ε(λ) f (λ) dσ(λ)

= (−1)m−1 ∫
Λm( f )

0
lim
ε→0

ρm−1,ε(λ) f (λ) dσ(λ)

= (−1)m−1 ∫
Λm( f )

0
λ2m−2 f (λ) dσ(λ) < ∞.

Therefore, we obtain that f ∈ L1(R+, λ2m−2 dσ) and, using (4.2), the condition
(−1)m−1 ∫

∞
0 λ2m−2 f (λ) dσ(λ) ≥ 0 holds and (4.1) follows. ∎

Proof of Theorem 1.2 The proof is divided into several steps. ∎

4.1 Lower bound

First, we establish the inequality

Lm(τ,R+) ≥ λm .

Consider a function f ∈ Lm(τ,R+). Let us show that λm ≤ Λm( f ). Assume the
converse, i.e., Λm( f ) < λm . Then (−1)m−1 f (λ) ≤ 0 for λ ≥ Λm( f ). Using (4.1) implies
λ2m−2 f (λ) ∈ B2τ

1 . Therefore, by Gauss’ quadrature formula (2.17) and (1.4), we obtain

0 ≤ (−1)m−1 ∫
∞

0
λ2m−2 f (λ) dσ(λ) = (−1)m−1 ∫

∞

0

m−1
∏
k=1
(λ2 − λ2

k) f (λ) dσ(λ)

= (−1)m−1
∞

∑
s=m

γs f (λs)
m−1
∏
k=1
(λ2

s − λ2
k) ≤ 0.(4.3)

Therefore, λs for s ≥ m are zeros of multiplicity 2 for f. Similarly, applying Gauss’
quadrature formula for f, we derive that
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0 = ∫
∞

0

m−1
∏
k=1
k≠s

(λ2 − λ2
k) f (λ) dσ(λ) = γs

m−1
∏
k=1
k≠s

(λ2
s − λ2

k) f (λs), s = 1, . . . , m − 1.

(4.4)

Therefore, λs for s = 1, . . . , m − 1 are zeros of f.
From f ∈ L1(R+, dσ) and asymptotic behavior of s(λ) given by (2.4) it follows that

f ∈ L1(R+, λ2α+1 dλ). Consider the function ωα(λ) from Lemma 2.6 and set

W(λ) = ωα(λ) f (λ), Ω(λ) = ωα(λ)φ2
λ(τ)

∏m−1
k=1 (1 − λ2/λ2

k)
.

Then functions W and Ω are even and have exponential type 4. Since ωα(λ) ≍ λ2α+1,
λ → +∞, then W ∈ L1(R) and W is bounded on R.

From (2.3) and Lemma 2.6, we have

∣Ω(iy)∣ ≍ y−2m+2e4y , y → +∞.

Taking into account that all zeros of Ω(λ) are also zeros of F(λ) and Lemma 2.7, we
arrive at

f (λ) = φ2
λ(τ)∑

m−1
k=0 ck λ2k

∏m−1
k=1 (1 − λ2/λ2

k)
,

where ck ≠ 0 for some k. By (2.3), φ2
λ(τ) = O(λ−2α−1) as λ → +∞, and by (2.4)

φ2
λ(τ) ∉ L1(R+, dσ). This contradicts f ∈ L1(R+, λ2m−2 dσ). Thus, Λm( f ) ≥ λm and

Lm(τ,R+) ≥ λm .

4.2 Extremality of fm

Now we consider the function fm given by (1.6). Note that by (2.5) we have the estimate
fm(λ) = O(λ−2α−1−2m) as λ → +∞ and hence fm ∈ L1(R+ , λ2m−2 dσ). Moreover, fm
is an entire function of exponential type 2τ and Λm( fm) = λm .

To verify facts that fm(λ) is positive definite with respect to the inverse Jacobi
transform and the property (1.8) holds, we first note that Gauss’ quadrature formula
implies (1.8). From the property (2) of the generalized translation operator T t , one has
that gm(t) = T τGm(t) (see Remark 1.3). Since T t is a positive operator, to show the
inequality gm(t) ≥ 0, it is enough to prove Gm(t) ≥ 0. This will be shown in the next
subsection.

Thus, we have shown that fm is the extremizer. The uniqueness of fm will be proved
later.

4.3 Positive definiteness of Fm

Our goal here is to find the function Gm(t) such that Fm(λ) = JGm(λ) and show that
it is nonnegative.

For fixed μ1 , . . . , μk ∈ R, consider the polynomial

ωk(μ) = ω(μ, μ1 , . . . , μk) =
k
∏
i=1
(μ i − μ), μ ∈ R.

https://doi.org/10.4153/S0008414X23000275 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000275


Logan’s problem for Jacobi transforms 933

Then

1
ωk(μ)

=
k
∑
i=1

1
ω′k(μ i)(μ i − μ) .

Setting k = m, μ = λ2, μ i = λ2
i , i = 1, . . . , m, we have

1
∏m

i=1(1 − λ2/λ2
i )
=

m
∏
i=1

λ2
i

1
ωm(λ2) =

m
∏
i=1

λ2
i

m
∑
i=1

1
ω′m(λ2

i )(λ2
i − λ2) =

m
∑
i=1

A i

λ2
i − λ2 ,

(4.5)

where

ω′m(λ2
i ) =

m
∏
j=1
j≠i

(λ2
j − λ2

i ) and A i =
∏m

j=1 λ2
j

ω′m(λ2
i )

.(4.6)

Note that

sign A i = (−1)i−1 .(4.7)

For simplicity, we set

Φ i(t) ∶= φλ i (t), i = 1, . . . , m,

and observe that Φ i(t) are eigenfunctions and λ2
i + ρ2 are eigenvalues of the following

Sturm–Liouville problem on [0, 1]:

(Δ(t)u′(t))′ + (λ2 + ρ2)Δ(t)u(t) = 0, u′(0) = 0, u(τ) = 0.(4.8)

Let χ(t) be the characteristic function of [0, τ]. In light of (2.10) and Φ i(τ) = 0, we
have

∫
∞

0
Φ i(t)φλ(t)χ(t)Δ(t) dt = ∫

τ

0
Φ i(t)φλ(t)Δ(t) dt = −Δ(τ)Φ′i(τ)φλ(τ)

λ2
i − λ2 ,

or, equivalently,

J(− Φ i χ
Δ(τ)Φ′i(τ)

)(λ) = φλ(τ)
λ2

i − λ2 .(4.9)

It is important to note that

sign Φ′i(τ) = (−1)i .(4.10)

Now we examine the following polynomial in eigenfunctions Φ i(t):

pm(t) = −
1

Δ(τ)
m
∑
i=1

A i

Φ′i(τ)
Φ i(t) =∶

m
∑
i=1

B i Φ i(t).(4.11)

By virtue of (4.7) and (4.10), we derive that B i > 0, pm(0) > 0, and pm(τ) = 0.
Furthermore, because of (4.5) and (4.9),

J(pm χ)(λ) = φλ(τ)
∏m

i=1(1 − λ2/λ2
i )
=∶ Fm(λ).(4.12)
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Hence, it suffices to verify that pm(t) ≥ 0 on [0, τ]. Define the Vandermonde deter-
minant Δ(μ1 , . . . , μk) = ∏k

1≤ j<i≤k(μ i − μ j), then

Δ(μ1 , . . . , μk)
ω′k(μ i)

= (−1)i−1Δ(μ1 , . . . , μ i−1 , μ i+1 , . . . , μk).

From (4.5) and (4.6), we have

pm(t) = −c1
m
∑
i=1
(−1)i−1Δ(λ2

1 , . . . , λ2
i−1 , λ2

i+1 , . . . , λ2
m)

Φ i(t)
Φ′i(τ)

= −c1

&&&&&&&&&&&&&&&&&&&&&&&&

Φ1(t)
Φ′1(τ)

. . . Φm(t)
Φ′m(τ)

1 . . . 1
λ2

1 . . . λ2
m

. . . . . . . . . . . . . .
λ2m−4

1 . . . λ2m−4
m

&&&&&&&&&&&&&&&&&&&&&&&&

, c1 =
∏m

j=1 λ2
j

Δ(λ2
1 , . . . , λ2

m)
> 0.(4.13)

Here and in what follows, if m = 1, we consider only the (1, 1) entries of the matrices.
We now show that

&&&&&&&&&&&&&&&&&&&&&&&&

Φ1(t)
Φ′1(τ)

. . . Φm(t)
Φ′m(τ)

1 . . . 1
λ2

1 . . . λ2
m

. . . . . . . . . . . . . .
λ2m−4

1 . . . λ2m−4
m

&&&&&&&&&&&&&&&&&&&&&&&&

= (−1)
(m−1)(m−2)

2

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Φ1(t)
Φ′1(τ)

. . . Φm(t)
Φ′m(τ)

1 . . . 1
Φ(3)

1 (τ)
Φ′1(τ)

. . . Φ(3)
m (τ)

Φ′m(τ)
. . . . . . . . . . . . . . . . . . .
Φ(2m−3)

1 (τ)
Φ′1(τ)

. . . Φ(2m−3)
m (τ)
Φ′m(τ)

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

.(4.14)

Using (4.8), we get

Φ′′i (t) + Δ′(t)Δ−1(t)Φ′i(t) + (λ2
i + ρ2)Φ i(t) = 0.

By Leibniz’s rule,

Φ(s+2)
i (t) + Δ′(t)Δ−1(t)Φ(s+1)

i (t) + (s(Δ′(t)Δ−1(t))′ + λ2
i + ρ2)Φ(s)i (t)

+
s−1
∑
j=1
( s

j − 1
)(Δ′(t)Δ−1(t))(s+1− j)Φ( j)

i (t),

which implies for t = τ that

Φ(s+2)
i (τ) = −Δ′(τ)Δ−1(τ)Φ(s+1)

i (τ) − (s(Δ′(τ)Δ−1(τ))′ + λ2
i + ρ2)Φ(s)i (τ)

−
s−1
∑
j=1
( s

j − 1
)(Δ′(τ)Δ−1(τ))(s+1− j)Φ( j)

i (τ), Φ(0)i (τ) = Φ i(τ) = 0.

Assuming s = 0, 1 we obtain

Φ′′i (τ) = −Δ′(τ)Δ−1(τ)Φ′i(τ),

Φ′′′i (τ) = ((Δ′(τ)Δ−1(τ))2 − (Δ′(τ)Δ−1(τ))′ + ρ2 + λ2
i )Φ′i(τ).
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By induction, we then derive, for k = 0, 1, . . . ,

Φ(2k+1)
i (τ) = Φ′i(τ)

k
∑
j=0

ak j λ2 j
i , Φ(2k+2)

i (τ) = Φ′i(τ)
k
∑
j=0

bk j λ2 j
i ,

where ak j , bk j depend on α, β, τ and do not depend of λ i , and, moreover, akk = (−1)k .
This yields, for k = 1, 2, . . . , that

Φ(2k)
i (τ)

Φ′i(τ)
=

k
∑
s=1

c0s
Φ(2s−1)

i (τ)
Φ′i(τ)

(4.15)

and

Φ(2k+1)
i (τ)
Φ′i(τ)

=
k
∑
s=1

c1s
Φ(2s−1)

i (τ)
Φ′i(τ)

+ (−1)k λ2k
i ,(4.16)

where c0s , c1s do not depend of λ i . The latter implies (4.14) since

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Φ1(t)
Φ′1(τ)

. . . Φm(t)
Φ′m(τ)

1 . . . 1
Φ(3)

1 (τ)
Φ′1(τ)

. . . Φ(3)
m (τ)

Φ′m(τ)
. . . . . . . . . . . . . . . . . . .
Φ(2m−3)

1 (τ)
Φ′1(τ)

. . . Φ(2m−3)
m (τ)
Φ′m(τ)

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

=

&&&&&&&&&&&&&&&&&&&&&&&&

Φ1(t)
Φ′1(τ)

. . . Φm(t)
Φ′m(τ)

1 . . . 1
(−1)λ2

1 . . . (−1)λ2
m

. . . . . . . . . . . . . . . . . . . . . . . . .
(−1)m−2 λ2m−4

1 . . . (−)m−2 λ2m−4
m

&&&&&&&&&&&&&&&&&&&&&&&&

.

Further, taking into account (4.13) and (4.14), we derive

p(1)m (τ) = p(3)m (τ) = ⋅ ⋅ ⋅ = p(2m−1)
m (τ) = 0.(4.17)

Therefore, by (4.11) and (4.15), we obtain for j = 1, . . . , m − 1 that

p(2 j)
m (τ) = − 1

Δ(τ)
m
∑
i=1

A i
Φ(2 j)

i (τ)
Φ′1(τ)

= − 1
Δ(τ)

m
∑
i=1

A i

j

∑
s=1

c0s
Φ(2s−1)

i (τ)
Φ′1(τ)

= − 1
Δ(τ)

j

∑
s=1

c0s
m
∑
i=1

A i
Φ(2s−1)

i (τ)
Φ′1(τ)

=
j

∑
s=1

c0s p(2s−1)(τ) = 0.

Together with (4.17) this implies that the zero t = τ of the polynomial pm(t) has
multiplicity 2m − 1. Then taking into account (4.12), the same also holds for Gm(t).

The next step is to prove that pm(t) does not have zeros on [0, τ) and hence
pm(t) > 0 on [0, τ), which implies that Gm(t) ≥ 0 for t ≥ 0. We will use the facts that
{Φ i(t)}m

i=1 is the Chebyshev system on the interval (0, τ) (see Theorem 3.2) and any
polynomial of degree m on (0, τ) has at most m − 1 zeros, counting multiplicity.
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We consider the polynomial

p(t, ε) =

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Φ1(t)
Φ′1(τ)

. . . Φm(t)
Φ′m(τ)

Φ1(τ−ε)
(−ε)Φ′1(τ)

. . . Φm(τ−ε)
(−ε)Φ′m(τ)

Φ1(τ−2ε)
(−2ε)3 Φ′1(τ)

. . . Φm(τ−2ε)
(−2ε)3 Φ′m(τ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Φ1(τ−(m−1)ε)

(−(m−1)ε)2m−3 Φ′1(τ)
. . . Φm(τ−(m−1)ε)

(−(m−1)ε)2m−3 Φ′m(τ)

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

.(4.18)

For any 0 < ε < τ/(m − 1), it has m − 1 zeros at the points t j = τ − jε, j = 1, . . . ,
m − 1. Letting ε → 0, we observe that the polynomial lim

ε→0
p(t, ε) does not have zeros

on (0, τ). If we demonstrate that

lim
ε→0

p(t, ε) = c2 pm(t),(4.19)

with some c2 > 0, then there holds that the polynomial pm(t) is strictly positive on
[0, τ).

To prove (4.19), we use Taylor’s formula, for j = 1, . . . , m − 1,

Φ i(τ − jε)
(− jε)2 j−1Φ′i(τ)

=
2 j−2

∑
s=1

Φ(s)i (τ)
s! (− jε)2 j−1−sΦ′i(τ)

+ Φ(2 j−1)
i (τ) + o(1)
(2 j − 1)! Φ′i(τ)

.

Using formulas (4.15) and (4.16) and progressively subtracting the row j from the row
j − 1 in the determinant (4.18), we have

p(t, ε) = 1
∏m−1

j=1 (2 j − 1)!

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Φ1(t)
Φ′1(τ)

. . . Φm(t)
Φ′m(τ)

1 + o(1) . . . 1 + o(1)
Φ(3)

1 (τ)+o(1)
Φ′1(τ)

. . . Φ(3)
m (τ)+o(1)

Φ′m(τ)
. . . . . . . . . . . . . . . . . . . . . . . . . .
Φ(2m−3)

1 (τ)+o(1)
Φ′1(τ)

. . . Φ(2m−3)
m (τ)+o(1)

Φ′m(τ)

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

.

Finally, in light of (4.13) and (4.14), we arrive at (4.19).

4.4 Monotonicity of Gm

The polynomial p(t, ε) vanishes at m points: t j = τ − jε, j = 1, . . . , m − 1, and tm = τ,
thus its derivative p′(t, ε) has m − 1 zeros on the interval (τ − ε, τ).

In virtue of (2.7),

Φ′i(t) = −
(ρ2 + λ2

i ) sinh t cosh t
2(α + 1) φ(α+1,β+1)

λ i
(t), t ∈ [0, τ].

This and Theorem 3.2 imply that {Φ′i(t)}m
i=1 is the Chebyshev system on (0, τ).

Therefore, p′(t, ε) does not have zeros on (0, τ − ε]. Then, for ε → 0, we derive that
p′m(t) does not have zeros on (0, τ). Since pm(0) > 0 and pm(τ) = 0, then p′m(t) < 0
on (0, τ). Thus, pm(t) and Gm(t) are decreasing on the interval [0, τ].
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4.5 Uniqueness of the extremizer fm

We will use Lemmas 2.6 and 2.7. Let f (λ)be an extremizer and Λm( f ) = λm . Consider
the functions

F(λ) = ωα(λ) f (λ), Ω(λ) = ωα(λ) fm(λ),

where fm is defined in (1.6) and ωα is given in Lemma 2.6.
Note that all zeros of Ω(λ) are also zeros of F(λ). Indeed, we have (−1)m−1 f (λ) ≤ 0

for λ ≥ λm and f (λm) = 0 (otherwise Λm( f ) < λm , which is a contradiction). This and
(4.3) imply that the points λs , s ≥ m + 1, are double zeros of f. By (4.4), we also have
that f (λs) = 0 for s = 1, . . . , m − 1 and therefore the function f has zeros (at least, of
order one) at the points λs , s = 1, . . . , m.

Using asymptotic relations given in Lemma 2.6, we derive that F(λ) is the entire
function of exponential type, integrable on real line and therefore bounded. Taking
into account (2.3) and Lemma 2.6, we get

∣Ω(iy)∣ ≍ y−2m e4y , y → +∞.

Now using Lemma 2.7, we arrive at f (λ) = q(λ) fm(λ), where q(λ) is an even
polynomial of degree at most 2m. Note that the degree cannot be 2s, s = 1, . . . , m,
since in this case (2.3) implies that f ∉ L1(R+, λ2m−2 dσ). Thus, f (λ) = c fm(λ), c > 0.

5 Generalized Logan problem for Fourier transform on
hyperboloid

We will use some facts of harmonic analysis on hyperboloid H
d and Lobachevskii

space from [27, Chapter X].
Let d ∈ N, d ≥ 2, and suppose that Rd is d-dimensional real Euclidean space with

inner product (x , y) = x1 y1 + ⋅ ⋅ ⋅ + xd yd , and norm ∣x∣ =
√
(x , x). As usual,

S
d−1 = {x ∈ Rd ∶ ∣x∣ = 1}

is the Euclidean sphere, Rd ,1 is (d + 1)-dimensional real pseudo-Euclidean space with
bilinear form [x , y] = −x1 y1 − ⋅ ⋅ ⋅ − xd yd + xd+1 yd+1. The upper sheet of two sheets
hyperboloid is defined by

H
d = {x ∈ Rd ,1∶ [x , x] = 1, xd+1 > 0}

and

d(x , y) = arcosh [x , y] = ln ([x , y] +
√
[x , y]2 − 1)

is the distance between x , y ∈ Hd .
The pair (Hd , d(⋅, ⋅)) is known as the Lobachevskii space. Let o = (0, . . . , 0, 1) ∈

H
d , and let Br = {x ∈ Hd ∶ d(o, x) ≤ r} be the ball.
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In this section, we will use the Jacobi transform with parameters (α, β) = (d/2 −
1,−1/2). In particular,

dμ(t) = Δ(t) dt = 2d−1 sinhd−1 t dt,

dσ(λ) = s(λ) dλ = 23−2d Γ−2 (d
2
)
&&&&&&&&&&&

Γ( d−1
2 + iλ)

Γ(iλ)

&&&&&&&&&&&

2

d λ.

For t > 0, ζ ∈ Sd−1, x = (sinh t ζ , cosh t) ∈ Hd , we let

dω(ζ) = 1
∣Sd−1∣ dζ , dη(x) = dμ(t) dω(ζ)

be the Lebesgue measures on S
d−1 andH

d , respectively. Note that dω is the probability
measure on the sphere, invariant under rotation group SO(d) and the measure dη is
invariant under hyperbolic rotation group SO0(d , 1).

For λ ∈ R+ = [0,∞), ξ ∈ Sd−1, y = (λ, ξ) ∈ R+ × Sd−1 =∶ Ĥd , we let

dη̂(y) = dσ(λ) dω(ξ).

Harmonic analysis in L2(Hd , dη) and L2(Ĥd , dη̂) is based on the direct and
inverse (hyperbolic) Fourier transforms

Fg(y) = ∫
Hd

g(x)[x , ξ′]− d−1
2 −i λ dη(x),

F−1 f (x) = ∫
Ĥd

f (y)[x , ξ′]− d−1
2 +i λ dη̂(y),

where ξ′ = (ξ, 1), ξ ∈ Sd−1. We stress that the kernels of the Fourier transforms are
unbounded, which cause additional difficulties.

If f ∈ L2(Hd , dη), g ∈ L2(Ĥd , dη̂), then

Fg ∈ L2(Ĥd , dη̂), F−1( f ) ∈ L2(Hd , dη),

and g(x) = F−1(Fg)(x), f (y) = F(F−1 f )(y) in the mean-square sense. The
Plancherel formulas are written as follows:

∫
Hd
∣g(x)∣2 dη(x) = ∫

Ĥd
∣Fg(y)∣2 dη̂(y),

∫
Ĥd
∣ f (y)∣2 dη̂(y) = ∫

Hd
∣F−1 f (x)∣2 dη(x).

The Jacobi function φλ(t) = φ(d/2−1,−1/2)
λ (t) is obtained by averaging over the

sphere of Fourier transform kernels

φλ(t) = ∫
Sd−1
[x , ξ′]− d−1

2 ±i λ dω(ξ),

where x = (sinh t ζ , cosh t), ζ ∈ Sd−1, ξ′ = (ξ, 1). We note that spherical functions
g(x) = g0(d(o, x)) = g0(t) and f (y) = f0(λ) satisfy

Fg(y) = Jg0(λ), F−1 f (x) = J−1 f0(t).
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To pose m-Logan problem in the case of the hyperboloid, let f (y) be a real-valued
continuous function on Ĥ

d , y = (λ, ξ), and let

Λ( f ) = Λ( f , Ĥd) = sup{λ > 0∶ f (y) = f (λ, ξ) > 0, ξ ∈ Sd−1}

and, as above, Λm( f ) = Λ((−1)m−1 f ), m ∈ N.
Consider the class Lm(τ, Ĥd) of real-valued functions f on Ĥ

d such that:
(1) f ∈ L1(Ĥd , λ2m−2 dη̂(λ)) ∩ Cb(Ĥd), f ≠ 0, F−1 f ≥ 0, suppF−1 f ⊂ B2τ ;
(2) ∫Ĥd λ2k f (y) dη̂(y) = 0, k = 0, 1, . . . , m − 1.

Problem E Find

Lm(τ, Ĥd) = inf{Λm( f )∶ f ∈ Lm(τ, Ĥd)}.

Let us show that in the generalized Logan problem on hyperboloid, one can restrict
oneself to only spherical functions depending on λ.

If a function f ∈ Lm(τ, Ĥd) and y = (λ, ξ) ∈ Ĥd , then the function

f0(λ) = ∫
Sd−1

f (y) dω(ξ)

satisfies the following properties:
(1) f0 ∈ L1(R+, λ2m−2dσ) ∩ Cb(R+), f0 ≠ 0, J−1 f0(t) ≥ 0, suppJ−1 f0 ⊂ [0, 2τ];
(2) ∫

∞
0 λ2k f0(λ) dσ(λ) = 0, k = 0, 1, . . . , m − 1;

(3) Λm( f0 ,R+) = Λm( f , Ĥd).
By Paley–Wiener theorem (see Lemma 2.3) f0 ∈ B2τ

1 ,

f0(λ) = ∫
2τ

0
J−1 f0(t)φλ(t) dμ(t)

and f0 ∈ Lm(τ,R+). Hence, Lm(τ, Ĥd) = Lm(τ,R+), and from Theorem 1.2, we
derive the following result.

Theorem 5.1 If d , m ∈ N, τ > 0, λ1(τ) < ⋅ ⋅ ⋅ < λm(τ) are the zeros of φ(d/2−1,−1/2)
λ (τ),

then

Lm(τ, Ĥd) = λm(τ).

The extremizer

fm(y) =
(φ(d/2−1,−1/2)

λ (τ))2

(1 − λ2/λ2
1 (τ)) ⋅ ⋅ ⋅ (1 − λ2/λ2

m(τ))
, y = (λ, ξ) ∈ Ĥd ,

is unique in the class of spherical functions up to multiplication by a positive constant.

6 Number of zeros of positive definite function

In [24], it was proved that [0, πn/4τ] is the minimal interval containing not less n
zeros of functions from the class (1.1). Moreover, in this case,

Fn(x) = (cos 2τx
n
)

n

is the unique extremal function.
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Note that x = πn/4τ is a unique zero of Fn on [0, πn/4τ] of multiplicity n.
Moreover, the functions Fn(πn(x − 1/4τ)) for n = 1 and 3 coincide, up to constants,
with the cosine Fourier transform of f1 and f2 (see Introduction) on [0, 1].

In this section, we study a similar problem for the Jacobi transform J with α ≥ β ≥
−1/2, α > −1/2. For the Bessel transform, this question was investigated in [13]. We will
use the approach which was developed in Section 4. The key argument in the proof is
based on the properties of the polynomial pm(t) defined in (4.11).

Recall that NI(g) stands from the number of zeros of g on interval I ⊂ R+, counting
multiplicity and λm(t), λ∗m(t) are the zeros of functions φλ(t) (see (1.2)) and ψ′λ(t)
(see (2.6)), respectively, and, moreover, tm(λ), t∗m(λ) are inverse functions for λm(t)
and λ∗m(t).

We say that g ∈ L+γ , γ > 0, if

g(t) = ∫
γ

0
φλ(t) dν(λ), g(0) > 0,(6.1)

with a nonnegative bounded Stieltjes measure dν. Note that the function g(t) is
analytic on R but not entire.

We set, for g ∈ L+γ ,

L (g , n) ∶= inf {L > 0∶N[0,L](g) ≥ n}, n ∈ N.

Theorem 6.1 We have

inf
g∈L+γ

L (g , n) ≤ θn ,γ =
⎧⎪⎪⎨⎪⎪⎩

tm(γ), n = 2m − 1,
t∗m(γ), n = 2m.

(6.2)

Moreover, there exists a positive definite function Gn ∈ L+γ such that L (Gn , n) = θn ,γ .

Proof Put τ ∶= tm(γ). First, let n = 2m − 1. Consider the polynomial (see (4.11))

Gn(t) =
m
∑
i=1

B i(τ)φλ i(τ)(t), t ∈ R+ ,

constructed in Theorem 1.2. It has positive coefficients B i(τ) and the unique zero t = τ
of multiplicity 2m − 1 on the interval [0, τ]. Hence, Gn is of the form (6.1), positive
definite, and such that t = τ is a unique zero of multiplicity 2m − 1 on the interval
[0, τ]. Therefore,

L (Gn , 2m − 1) ≤ τ.

Second, let n = 2m, λ∗i ∶= λ∗i (τ). As in Theorem 1.2, we define numbers A∗i ∶=
A∗i (τ) from the relation

m
∑
i=1

A∗i
λ∗ 2

i − λ2 =
1

∏m
i=1(1 − λ2/λ∗ 2

i )
.(6.3)

Recall that sign A∗i = (−1)i−1. Set

Ψi(t) ∶= ψλ∗i (t) − ψλ∗i (τ), i = 1, . . . , m,
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where ψλ(t) is defined in (2.6). In view of (2.7), ψλ∗i (t) are eigenfunctions and λ∗ 2
i

are eigenvalues of the following Sturm–Liouville problem on [0, τ]:

(w(t)u′(t))′ + λ2w(t)u(t) = 0, u′(0) = 0, u′(τ) = 0,

where the weight w(t) = φ2
0(t)Δ(t). Since Ψ′i(τ) = 0, then from equation

(w(t)Ψ′i(t)(t))′ + λ2w(t)ψλ∗i (t) = 0,(6.4)

it follows Ψ′′i (τ) = −λ∗ 2
i ψλ∗i (τ).

Let us consider the polynomial

rm(t) =
m
∑
i=1

A∗i
Ψi(t)
Ψ′′i (τ)

=∶
m
∑
i=1

B∗i Ψi(t).(6.5)

By (2.8), sign ψλ∗i (τ) = (−1)i , hence, B∗i > 0, rm(0) > 0, rm(τ) = 0.
Let us show that at the point t = τ polynomial rm(t) has zero of order 2m. As in

Theorem 1.2,

rm(t) = c1
m
∑
i=1
(−1)i−1Δ(λ∗ 2

1 , . . . , λ∗ 2
i−1 , λ∗ 2

i+1 , . . . , λ∗ 2
m )

Ψi(t)
Ψ′′i (τ)

= c1

&&&&&&&&&&&&&&&&&&&&&&&&&

Ψ1(t)
Ψ′′1 (τ)

. . . Ψm(t)
Ψ′′m(τ)

1 . . . 1
λ∗ 2

1 . . . λ∗ 2
m

. . . . . . . . . . . . . . . . . .
λ∗(2m−2)

1 . . . λ∗(2m−2)
m

&&&&&&&&&&&&&&&&&&&&&&&&&

, c1 > 0.(6.6)

Show that

&&&&&&&&&&&&&&&&&&&&&&&&&

Ψ1(t)
Ψ′′1 (τ)

. . . Ψm(t)
Ψ′′m(τ)

1 . . . 1
λ∗ 2

1 . . . λ∗ 2
m

. . . . . . . . . . . . . . . . . .
λ∗(2m−2)

1 . . . λ∗(2m−2)
m

&&&&&&&&&&&&&&&&&&&&&&&&&

= (−1)
m(m−1)

2

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Ψ1(t)
Ψ′′1 (τ)

. . . Ψm(t)
Ψ′′m(τ)

1 . . . 1
Ψ(4)

1 (t)
Ψ′′1 (τ)

. . . Ψ(4)
m (t)

Ψ′′m(τ)
. . . . . . . . . . . . . . . . . . .
Ψ(2m−2)

1 (t)
Ψ′′1 (τ)

. . . Ψ(2m−2)
m (t)
Ψ′′m(τ)

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

.(6.7)

Differentiating (6.4) and substituting t = τ, we get, for s ≥ 1,

Ψ(s+2)
i (τ) = −w′(τ)w−1(τ)Ψ(s+1)

i (τ) − (s(w′(τ)w−1(τ))′ + λ′2i )Ψ
(s)
i (τ)

−
s−1
∑
j=2
( s

j − 1
)(w′(τ)w−1(τ))(s+1− j)Ψ( j)

i (τ), Ψi(τ) = Ψ′i(τ) = 0.

From this recurrence formula by induction, we deduce that, for k = 0, 1, . . . ,

Ψ(2k+2)
i (τ) = (rk

0 + rk
1 λ∗ 2

i + ⋅ ⋅ ⋅ + rk
k λ∗ 2k

i )Ψ′′i (τ),
Ψ(2k+3)

i (τ) = (pk
0 + pk

1 λ∗ 2
i + ⋅ ⋅ ⋅ + pk

k λ∗ 2k
i )Ψ′′i (τ),

(6.8)

where rk
0 , . . . , rk

k , pk
0 , . . . , pk

k depend from α, β, τ and do not depend from λ∗i .
Moreover, rk

k = (−1)k .
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From (6.8), it follows that, for k = 1, 2, . . . ,

Ψ(2k+1)
i (τ)
Ψ′′i (τ)

=
k
∑
s=1

c1
s

Ψ(2s)
i (τ)

Ψ′′i (τ)
,(6.9)

Ψ(2k+2)
i (τ)
Ψ′′i (τ)

=
k
∑
s=1

c2
s

Ψ(2s)
i (τ)

Ψ′′i (τ)
+ (−1)k λ′2k

i ,(6.10)

where c1
s , c2

s do not depend from λ∗i . Applying (6.10), we obtain (6.7)

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Ψ1(t)
Ψ′′1 (τ)

. . . Ψm(t)
Ψ′′m(τ)

1 . . . 1
Ψ(4)

1 (t)
Ψ′′1 (τ)

. . . Ψ(4)
m (t)

Ψ′′m(τ)
. . . . . . . . . . . . . . . . . . .
Ψ(2m−2)

1 (t)
Ψ′′1 (τ)

. . . Ψ(2m−2)
m (t)
Ψ′′m(τ)

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

=

&&&&&&&&&&&&&&&&&&&&&&&&&

Ψ1(t)
Ψ′′1 (τ)

. . . Ψm(t)
Ψ′′m(τ)

1 . . . 1
(−1)λ∗ 2

1 . . . (−1)λ∗ 2
m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(−1)m−1 λ∗(2m−2)

1 . . . (−)m−1 λ∗(2m−2)
m

&&&&&&&&&&&&&&&&&&&&&&&&&

.

The equalities (6.6) and (6.7) mean that

rm(τ) = r′′m(τ) = ⋅ ⋅ ⋅ = r(2m−2)
m (τ) = 0.

According to (6.9),

r(2 j+1)
m (τ) =

m
∑
i=1

A∗i
Ψ(2 j+1)

i (τ)
Ψ′′i (τ)

=
m
∑
i=1

A∗i
j

∑
s=1

c1
s(α)

Ψ(2s)
i (τ)
Ψ′i(τ)

=
j

∑
s=1

c1
s(α)

m
∑
i=1

A∗i
Ψ(2s)

i (τ)
Ψ′i(τ)

=
j

∑
s=1

c1
s(α)r(2s)(τ) = 0, j = 1, . . . , m − 1.

Since r′m(τ) = 0, then at the point t = τ the polynomial rm(t) has zero of multiplicity
2m.

We show that it has no other zeros on the interval [0, τ]. We take into account that
the system {ψ i(t)}m

i=1 is a Chebyshev system on the interval (0, τ) (see Theorem 3.3)
and any polynomial of order m on the interval (0, τ) has at most m − 1 zeros, counting
multiplicity.

We consider the following polynomial in Chebyshev system {Ψi(t)}m
i=1:

rm(t, ε) =

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Ψ1(t)
Ψ′′1 (τ)

. . . Ψm(t)
Ψ′′m(τ)

Ψ1(τ−ε)
ε2 Ψ′′1 (τ)

. . . Ψm(τ−ε)
ε2 Ψ′′m(τ)

Ψ1(τ−2ε)
(2ε)4 Ψ′′1 (τ)

. . . Ψm(τ−2ε)
(2ε)4 Ψ′′1 (τ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ψ1(τ−(m−1)ε)

((m−1)ε)2m−2 Ψ′′1 (τ)
. . . Ψm(τ−(m−1)ε)

((m−1)ε)2m−2 Ψ′′m(τ)

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

.(6.11)

For any 0 < ε < τ/(m − 1), it has m − 1 zeros at the points t j = τ − jε, j = 1, . . . , m − 1,
and has no other zeros on (0, τ). The limit polynomial as ε → 0 does not have zeros
on (0, τ).
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In order to calculate it, we apply the expansions

Ψi(τ − jε)
( jε)2 jΨ′′i (τ)

=
2 j−1

∑
s=2

Ψ(s)i (τ)
s! (− jε)2 j−s Ψ′′i (τ)

+ Ψ(2 j)
i (τ) + o(1)
(2 j)! Ψ′′i (τ)

, j = 1, . . . , m − 1,

formulas (6.9) and (6.10), and we subtract successively in the determinant (6.11) from
the subsequent rows the previous ones to obtain

rm(t, ε) = 1
∏m

j=1(2 j)!

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Ψ1(t)
Ψ′′1 (τ)

. . . Ψm(t)
Ψ′′m(τ)

1 + o(1) . . . 1 + o(1)
Ψ(4)

1 (τ)+o(1)
Ψ′′1 (τ)

. . . Ψ(4)
m (τ)+o(1)

Ψ′′m(τ)
. . . . . . . . . . . . . . . . . . . . . . . . . .
Ψ(2m−2)

1 (τ)+o(1)
Ψ′′1 (τ)

. . . Ψ(2m−2)
m (τ)+o(1)

Ψ′′m(τ)

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

.

From here and (6.6) and (6.7), it follows that

lim
ε→0

rm(t, ε) = c2rm(t), c2 > 0.

Hence, the polynomial rm(t) is positive on the interval [0, τ).
The polynomial rm(t, ε) vanishes at m points, including τ, and therefore its

derivative r′m(t, ε) has m − 1 zeros between τ − (m − 1)ε and τ. Since the system
{Ψ′i(t)}m

i=1 is the Chebyshev system on (0, τ) (see Theorem 3.3), then r′m(t, ε) does
not have zeros on (0, τ). Hence, for ε → 0, we derive that r′m(t) does not have zeros on
(0, τ). Since rm(0) > 0 and rm(τ) = 0, then r′m(t) < 0 on (0, τ). Thus, the polynomial
rm(t) decreases on the interval [0, τ].

Since Ψ′′i (τ) = −λ∗ 2
i ψλ∗i (τ), polynomial (6.5) can be written as

rm(t) =
m
∑
i=1

A∗i (τ)
λ∗ 2

i
+

m
∑
i=1

B∗i (τ)ψλ∗i (τ)(t).

Setting λ = 0 in (6.3), we obtain∑m
i=1

A∗i (τ)
λ∗ 2

i
= 1, therefore

rm(t) = 1 +
m
∑
i=1

B∗i (τ)ψλ∗i (τ)(t).

This polynomial has positive coefficients and the unique zero t = τ of multiplicity 2m
on the interval [0, τ]. Since ψλ(t) = φλ(t)/φ0(t) and φ0(t) > 0, the function

Gn(t) = φ0(t) +
m
∑
i=1

B∗i (t∗m(γ))φλ∗i (t
∗
m(γ))(t)

is of the form (6.1), positive definite, and such that t = t∗m(γ) is a unique zero of
multiplicity 2m on the interval [0, tm(γ)]. Hence,

L (Gn , 2m) ≤ t∗m(γ). ∎
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Remark 6.2 From the proof of Theorem 6.1, it follows that inequality (6.2) is also
valid for functions represented by

g(t) = ∫
γ

0
ψλ(t) dν(λ), g(0) > 0,

with a nonnegative bounded Stieltjes measure dν.
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