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Consider a class C of projective /^-modules, where R is a commutative ring
with identity, which satisfies the conditions of (2), namely that C is closed under
the operations of direct sum and isomorphism and C contains the zero module.
Following (2) a module M is said to have C-cotype n (respectively C-type n)
if it has a projective resolution ...-*.?„->•...->.Po->M->0 with /",-eC for i>n
(respectively P, e C for i^ri). Let S be the class of modules of C-cotype - 1 ,
equivalently of C-type infinity. It is assumed throughout that S is a Serre Class.
We define an abelian category Sf of modules with the property that C-cotype
is homological dimension in y, while in the case C = 0, S is just the category
of /^-modules. It follows that all categorical results on homological dimension
also hold for cotype.

In Theorem 12 the restriction to a Serre class 5 is expressed in terms of the
coherence of the ring R. Some examples of such classes are given.

Repeated use is made of the following result of (2).

Theorem 1. Suppose 0-+L->M->N-*0 is an exact sequence of R-modules.
Then for all n ^ - 1 ,

(i) ifL has cotype (« — 1) and M has cotype n, then N has cotype n,

(ii) ifL has cotype n and N has cotype n, then M has cotype n,

(iii) if M has cotype n and N has cotype (n +1), then L has cotype n.

Corollary. 7f0-+L-+M->N->0 is exact and any two of L, M, N belong to S
then so does the third. Also 0 e S.

It follows that S is a Serre Class if and only if it is closed under submodules;
or equivalently, closed under quotient modules.

1. Definition of Sf

The category y has as objects all /{-modules. The morphisms from A to
B are equivalence classes of 5-homomorphisms in the sense of Serre (3). The
definitions are as follows. Let G be a submodule of A@B and let
p: G-*A, q: G->B be the projections. G is an S-homomorphism from A to B
if Ker/? and Cokerp both belong to S (that is, if/? is an 5-isomorphism in the
sense of (3)). A relation is defined on 5-homomorphisms from A to B by
G~H if and only if the inclusions Gr\H-+G and GnH-*H are 5-isomorphisms;
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that is, if and only if G/Gr\H and H/GnH both belong to S. Hence G~H
if and only if G and H are S-equal.

Suppose G~H and H~K. Now G/GnK is an extension of a submodule
of H/HnK by a quotient of G/Gr\H. Since 5" is a Serre class this implies that
G/GnKeS. This proves that G~K. We therefore define Honv(4 , 5) as
the set of equivalence classes of S-homomorphisms from A to B. For simplicity
of notation we will write G for both an S-homomorphism and its equivalence
class.

The identity of Hom^ {A, A) is the diagonal subset D of A® A with the
composition of G e Hom^ {A, B) and He Honrj. (B, C) denned by

HG = {{a, c) 6 A®C: 3b e 5 with (a, l>)eG and (ft, c) e # } .

Lemma 2. HG is an S-homomorphism and the composition is well defined on
equivalence classes. Thus y is a category.

Proof. If

H
PP

is a pullback square, K->G is an 5-isomorphism and hence so is the composition
K-^A in the following commutative square.

K *HG

G *A
P

Here, K->HG is the canonical epimorphism. Hence p: HG-*A is an S-
isomorphism.

Now suppose G~G' and K, K' are the corresponding pullbacks. Then
K/KnK'^G/GnG' is a monomorphism and there is an epimorphism from
K/KnK' to HG/HGnHG'. Thus HG/HGnHG' e S and HG~HG'.

Similar techniques may be used to prove that Sf is an abelian category with
the following definitions, where G, HeUomy (A, B).

(i) Let G+H = {(a, ^ + 6 2 ) : (a, bt)eG and (a, b2)eH}. Then
Homy(A, B) is an abelian group with zero N = {{a, 0): aeA) and inverse
-G = {(a,b): (a, -b)eG}.

(ii) Let X = p(GnN). X is the submodule of elements a in A such that
(a, 0) e G. Let i: X-*A be the inclusion and K = {(x, i(x)): x e X). Then
KB Hom^ (X, A) is a kernel of G.

(iii) Let Y = 5/g(G) and let j : B-* Y be the projection. Define
C = {(b, j(b)): 6 € B}. Then C 6 Hom^ (B, Y) is a cokernel of G.
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(iv) Let Z = q(G) with inclusion k: Z^B. Define / = {(a, 2): (a, k(z)) eG}
and J = {(z, k(z)): zeZ}. Then Ie¥lom^(A, Z) is an image of G and
/ e Hom^. (Z, E) is a coimage of G.

We therefore have the following analysis of G.

Theorem 3. G e Hom^ (A, B) is a monomorphism {epimorphism) in y if and
only if q: G->5 is an S-monomorphism {epimorphism).

Proof. G is a monomorphism in Sf if and only if K~N as submodules of
X®A. But KnN = 0 so K~N if and only if .£e S and AT e 5. K and iV are
both isomorphic to X which is isomorphic to Ker(g: G->B). Hence KeS
and Ne S if and only if Ker 9 e 5. The dual result is proved similarly.

It follows that A and B are 5-isomorphic in the sense of Serre if and only
if there is an isomorphism G e Hom^ {A, B). The null objects of the category SP
are the modules in S and we have

Proposition 4. Hom^. (A, B) = Ofor all B if and only if Ae S.

Proof. If Honv {A, A) = 0, then D~N; but DnN = 0 and A is isomorphic
to N. Therefore AeS. Conversely if A e S and G e Hom^ (A, B) then
p: G-+A is an 5-isomorphism s o G e 5 . It follows that G~N.

Finally note that if S — 0 then Sf reduces to the category of i?-modules and
module homomorphisms.

2. Extensions in if

The functors Ext" can be denned in any abelian category which has sufficient
projectives. We show that every projective J?-module is a projective object
of y . Hence every .R-module has a projective resolution in y .

Lemma 5. If A and B are S-isomorphic then they have the same cotype.

Proof. It is sufficient to prove that if/: A-*B is an .S-isomorphism then
A and B have the same cotype. But now let

be exact with K, CeS. The result follows immediately from Theorem 1.
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Theorem 6. A module A of C-cotype zero is a projective object in Sf.

Proof. Suppose G e Hom^ (A, C) and let H e Honv (B, C) be an epi-
morphism is 6f. We must produce KeHomy (A, B) such that HK~G. The
first step reduces the problem to the case in which q: H-*C is epi.

Let X = q{H) and i: X->C the inclusion. Then i is an ^-isomorphism since
H is an epimorphism in £f and q: H-+X is epi. Also H can be considered as
H'eHomy(B, X). Let G' = {{a, x)eA®X: (a, i(x))eG}. Then G'->G
is mono and so is the map G/G'-*C/i(X) induced by the projections. Hence
G'-*G is an 5-isomorphism; therefore so is the composition G'-*G-+A.
Thus G' e Horn,, (A, X) while H' 6 Honv (B, X) is such that q: H'-*Xis epi.
Moreover, if Ke Honv (A, B) satisfies H'K~G', then HK = iH'K~iG' = G.
It is therefore sufficient to prove the result in the case where q: H^C is epi.

Now by Lemma 5, G has cotype 0 since A does; so by definition there is an
exact sequence 0-*X-*P^*G-*0 with P projective and XeS. Hence there
exists a map a: P-*H such that the following diagram is commutative.

For clarity the various projection maps are here distinguished by subscripts.
Let 7i = pG4>, 6 = pHcc and /? = qG<j) = qH<x. Now define K £ A®B as
K = (TC, 6){P). The diagram

(n,0)
P

A
is commutative with n an 5-isomorphism and (rc, 6) cp',. Therefore
KeBomy(A, B).

It remains to verify that HK~G. If (a, c)eG, ch<?ose xeP with
<Kx) = (a, c). Then a(x) = (6(x), c)eH and n(x) = a, so (a, 0(») e K. Hence
(a, c)eHK; that is G £ # £ . Let 7 = Ker^H which belongs to S. Then
q — qH | y: 7-»C is mono so ̂ (7) 6 5". Hence the quotient Z of q{Y) modulo
the subgroup q( Y)nqG(Ker pc) also belongs to S. We define a map \j/: HK-+Z
with kernel G. This will complete the proof by showing that HK/G is isomorphic
to a subgroup of Z and hence belongs to S.

To define \}/ let (a, c)eHK. Choose xeP such that n(x) = a and
(0(x), c) e # . Let z = c-j5(x). Since (0, z) = (d(x), c)-<x(x), which belongs
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to H, we have zeq( Y). Define \j/(a, c) as the equivalence class represented
by z. If x' is another choice, then

z-z' = PW-ftx) and (0, /?(*')-j?(x)) = <K*')-<K*) e Ker/>G.

Hence z and z' represent the same element of Z. Finally,

(a, c) = <«/>) +(0, c-P(p))

so (a, c) G Ker \j/ if and only if (0, c-p(p)) e G. It follows that Ker ^ = G.
This completes the proof.

Corollary 7. Sf has sufficient projectives.

Proof. Every projective module has cotype zero and so is a projective object
in Sf. Hence a projective resolution in the module category gives rise to a
projective resolution in ff.

The functors Exty are therefore defined and Exty (A, B) = 0 for all B if and
only if A is a projective object in £f.

Lemma 8. If A has finite cotype and Ext^ {A, B) = 0 for all B then A has
cotype 0.

Proof. Suppose A has cotype r. There is an exact sequence

with P projective and K of cotype (r — 1). 4̂ is a projective object of Sf; so this
sequence splits in ¥ giving an isomorphism GeYlomy{A@K, P). Hence

cotype 0. Theorem 1 (iii) applied to the sequence

shows that (if r ^ 2) A has cotype (r—2). Hence .4 has cotype 0.

Theorem 9. If A has finite cotype, then Ext̂ 1"1 (A, B) = 0 /or a// 5 j / and
only if A has cotype n (n ^ -1) .

Proof. Proposition 4 gives the result for n — — 1. Theorem 6 and Lemma 8
prove the result for n = 0. We use induction on n > 0. Suppose /4 has cotype r.
The exact sequence (*) gives rise to a long exact sequence

... ->Ext£, (P, £)->Ext£ (K, J3)->Ext2,+ 1 (4, B)->Ext£.+ 1 (P, B)~> ...

for all 5. ExtJ. (P, £) = 0 by Theorem 6 and ExtJ,+ 1 (A, B) = 0 by hypothesis.
Hence Ext2» (X, B) = 0; so by induction, K has cotype (n—1). It follows that
.4 has cotype n. Conversely, if A has cotype n(n ̂  0), then K has cotype («—1)
so Ext3» (K, £) = 0 = Ext£>+1 (P, B) which implies the result.

This theorem shows that, as long as modules have finite cotype, then cotype
is simply homological dimension in the category Sf. We also see that the
C-cotype of a module depends only on the derived class S. Note that C S S;
Since C e C it has a projective resolution 0->C-»C-»0. C is determined by S
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provided C is closed under direct summands, since then C = SnP where P
is the class of projective modules (2, Theorem 2). In general the following
relations hold between C and S.

Lemma 10. If C and C both have derived class S then for every CeC there
exists Xe SnP and C e C such that C = C@X.

To prove this, note that if CeC £ S there is an exact sequence
0->X^C'-+C^0 with XeS and CeC. The result follows since C is
projective.

In particular, for a given class C with derived class S, let C" = SnP. This
is a class. Let 5" be its derived class. C s C" so S £ S'. Conversely if
A e 5" there is an exact sequence

with C'teSnP for all /. Thus if either S is Serre or the sequence is finite we
find that A e S (by the Corollary to Theorem 1). Hence, for a Serre class
S, SnP also has derived class S.

Corollary 11. C £ SnP with equality if and only ifCis closed under direct
summands. If S is Serre, then for every C e SnP there exists Xe SnP such
thatC'@XeC.

3. Conditions for S to be a Serre class

The ring R is said to be (0, C)-coherent if every module of C-type 0 belongs
to S.

Theorem 12. S is a Serre class if and only if R is (0, C)-coherent.

Proof. Suppose S is Serre and A has C-type 0. Then A has a projective
resolution ...->P-+C-+A-*0 with CeC £ S. Hence A, being a quotient of C,
belongs to S. Conversely, let A e S and A-*B epi. A has type 0, therefore by
(1, Lemma 7) B has type 0 and so belongs to S. Hence S is closed under
quotients.

The following are examples of classes for which S is Serre. For proofs
see (1).

(i) The class F of finitely generated free modules over a Noetherian ring R.
Then S is the class of finitely generated 2?-modules.

(iii) The class D of free graded .R-modules with generators in only a finite
number of dimensions, where R is a finite dimensional ring. Then S is the
class of .R-modules with generators in only a finite number of dimensions.

REFERENCES

(1) J. F. ADAMS, Lectures on generalised cohomology, lecture 5. Lecture notes
vol. 99 (Springer-Verlag, Berlin, 1969).

https://doi.org/10.1017/S0013091500010488 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500010488


EXTENSIONS RELATIVE TO A SERRE CLASS 381

(2) S. CORMACK, An analogue of homological dimension using a general class of
projective modules, / . London Math. Soc. (2) 1 (1969), 760-764.

(3) J. P. SERRE, Groupes d'homotopie et classes de groupes abeliens, Ann. of Math.
58 (1953), 258-294.

UNIVERSITY OF EDINBURGH

https://doi.org/10.1017/S0013091500010488 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500010488

