EXTENSIONS RELATIVE TO A SERRE CLASS

by S. CORMACK
(Received 26th April 1974)

Consider a class C of projective R-modules, where R is a commutative ring
with identity, which satisfies the conditions of (2), namely that C is closed under
the operations of direct sum and isomorphism and C contains the zero module.
Following (2) 2 module M is said to have C-cotype n (respectively C-type n)
if it has a projective resolution ...—»P,—...»Py—M—0 with P;e C for i>n
(respectively P; e C for i<n). Let S be the class of modules of C-cotype —1,
equivalently of C-type infinity. Itis assumed throughout that § is a Serre Class.
We define an abelian category & of modules with the property that C-cotype
is homological dimension in &, while in the case C = 0, S is just the category
of R-modules. It follows that all categorical results on homological dimension
also hold for cotype.

In Theorem 12 the restriction to a Serre class S is expressed in terms of the
coherence of the ring R. Some examples of such classes are given.

Repeated use is made of the following result of (2).

Theorem 1. Suppose 0—L—M— N—Q is an exact sequence of R-modules.
Then for alln =z —1,

(i) if L has cotype (n—1) and M has cotype n, then N has cotype n,
(ii) if L has cotype n and N has cotype n, then M has cotype n,
(iii) if M has cotype n and N has cotype (n+1), then L has cotype n.

Corollary. If 0—L— M—N—O is exact and any two of L, M, N belong to S
then so does the third. Also0€ S.

It follows that S is a Serre Class if and only if it is closed under submodules;
or equivalently, closed under quotient modules.

1. Definition of &

The category & has as objects all R-modules. The morphisms from 4 to
B are equivalence classes of S-homomorphisms in the sense of Serre (3). The
definitions are as follows. Let G be a submodule of A@®B and let
p: G—=A4, q: G- B be the projections. G is an S-homomorphism from A to B
if Ker p and Coker p both belong to S (that is, if p is an S-isomorphism in the
sense of (3)). A relation is defined on S-homomorphisms from 4 to B by
G~ H if and only if the inclusions GAH—G and GnH- H are S-isomorphisms;
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that is, if and only if G/GNH and H/GnH both belong to S. Hence G~H
if and only if G and H are S-equal.

Suppose G~ H and H~K. Now G/GnK is an extension of a submodule
of H/HNK by a quotient of G/GNH. Since S is a Serre class this implies that
G/GnK e S. This proves that G~ K. We therefore define Hom, (4, B) as
the set of equivalence classes of S-homomorphisms from 4 to B. For simplicity
of notation we will write G for both an S-homomorphism and its equivalence
class.

The identity of Hom, (4, A) is the diagonal subset D of 4@A with the
composition of G € Homy (4, B) and H € Homg, (B, C) defined by

HG = {(a, c) e A®C: 3be B with (a, b) € G and (b, ¢) € H}.

Lemma 2. HG is an S-homomorphism and the composition is well defined on
equivalence classes. Thus & is a category.

Proof. If
K——G

| Ll

H——B
p
is a pullback square, K—G is an S-isomorphism and hence so is the composition
K— A in the following commutative square.

K——HG

|

G——4
p
Here, K- HG is the canonical epimorphism. Hence p: HG—A4 is an S-
isomorphism.

Now suppose G~G’ and K, K’ are the corresponding pullbacks. Then
K/KnK'->G|GNG' is a monomorphism and there is an epimorphism from
K/KnK' to HG/HGNHG'. Thus HG/HGNAHG' € S and HG~ HG'.

Similar techniques may be used to prove that & is an abelian category with
the following definitions, where G, H € Hom,, (4, B).

(i) Let G+H ={(a, by+b,): (@, b))eG and (4, b,)e H}. Then
Homy (4, B) is an abelian group with zero N = {(a, 0): a € 4} and inverse
-G ={(a, b): (a, -b) G}

(if) Let X = p(GNN). X is the submodule of elements @ in A such that
(@, 0)e G. Let i: X—A4 be the inclusion and K = {(x, i(x)): xe X}. Then
K e Hom, (X, A) is a kernel of G.

(iii) Let Y = B/q(G) and let j: B»Y be the projection. Define
C = {(b, j(b)): be B}. Then CeHom, (B, Y)is a cokernel of G.
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(iv) Let Z = g(G) with inclusion k: Z—B. Define I = {(a, 2): (a, k(z)) e G}
and J = {(z, k(2)): zeZ}. Then Ie Hom, (4, Z) is an image of G and
J € Homy (Z, B) is a coimage of G.

We therefore have the following analysis of G.

K G C

> A >B.
I\ /7
z

X »Y.

Theorem 3. G € Homy, (A4, B) is a monomorphism (epimorphism) in & if and
only if q: G- B is an S-monomorphism (epimorphism).

Proof. G is a monomorphism in & if and only if K~ N as submodules of
X®A. But KnN =0s0 K~Nifand only if KeSand NeS. Kand N are
both isomorphic to X which is isomorphic to Ker(q: G—»B). Hence K€ §
and N e S if and only if Kerg €.S. The dual result is proved similarly.

It follows that 4 and B are S-isomorphic in the sense of Serre if and only
if there is an isomorphism G € Homy, (4, B). The null objects of the category &
are the modules in .S and we have

Proposition 4. Homy, (4, B) = O for all B if and only if A € S.

Proof. If Hom, (4, 4) = 0, then D~ N; but DNnN = 0and 4 is isomorphic
to N. Therefore 4e€S. Conversely if 48§ and GeHomg (4, B) then
p: G—A is an S-isomorphism so Ge §. It follows that G~ N.

Finally note that if § = 0 then & reduces to the category of R-modules and
module homomorphisms.

2. Extensions in &

The functors Ext” can be defined in any abelian category which has sufficient
projectives. We show that every projective R-module is a projective object
of &. Hence every R-module has a projective resolution in &.

Lemma 5. If A and B are S-isomorphic then they have the same cotype.

Proof. It is sufficient to prove that if f: A—B is an S-isomorphism then
A and B have the same cotype. But now let

I
0 >K >A »B——C——0

NS
1

be exact with K, Ce §. The result follows immediately from Theorem 1.

https://doi.org/10.1017/50013091500010488 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500010488

378 S. CORMACK

Theorem 6. A module A of C-cotype zero is a projective object in &.

Proof. Suppose G € Homg (4, C) and let He Homy (B, C) be an epi-
morphism is &. We must produce K € Homy (4, B) such that HK~G. The
first step reduces the problem to the case in which g: H—C is epi.

Let X = g(H) and i: X—C the inclusion. Then iis an S-isomorphism since
H is an epimorphism in & and q: H— X is epi. Also H can be considered as
H'eHomy (B, X). Let G' = {(a, x)e A®X: (a, i(x))e G}. Then G'-G
is mono and so is the map G/G'— C/i(X) induced by the projections. Hence
G'>G is an S-isomorphism; therefore so is the composition G'-+G—A.
Thus G’ € Homy, (4, X) while H' e Hom, (B, X) is such that g: H'— X is epi.
Moreover, if K e Homy (A4, B) satisfies H' K~G’, then HK = iH' K~iG' = G.
It is therefore sufficient to prove the result in the case where ¢: H—C is epi.

Now by Lemma 5, G has cotype 0 since 4 does; so by definition there is an
exact sequence 0—X —+P4G-0 with P projective and XeS. Hence there
exists a map a: P— H such that the following diagram is commutative.

Pe
P——G—4

e

H——C
qu
Pﬂl

B

For clarity the various projection maps are here distinguished by subscripts.
Let # = pep, 0 =pya and B = qgp = qyx. Now define K = AGB as
K = (n, 0)(P). The diagram

(m, 6)

P—K

N

is commutative with 7 an S-isomorphism and (m, 8) ep:.. Therefore
K e Homy (4, B).

It remains to verify that HK~G. If (a, ¢)e G, cheose xe P with
¢(x) = (a, ¢). Then a(x) = (6(x), ¢) € H and n(x) = a, so (a, 0(x)) € K. Hence
(a, c)e HK; that is G < HK. Let Y = Ker py which belongs to S. Then
qg=g¢qy| Y. Y->Cismonosoq(Y)esS Hencethe quotiertZ of g(¥Y) modulo
the subgroup g( Y)ngs(Ker pg) also belongs to S. We define a map y: HK—Z
with kernel G. This will complete the proof by showing that HK/G is isomorphic
to a subgroup of Z and hence belongs to S.

To define ¢ let (a, ¢)e HK. Choose xeP such that n(x) =a and
(0(x), c)e H. Let z = ¢c—fB(x). Since (0, z) = (0(x), ¢)—a(x), which belongs
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to H, we have zeg(Y). Define Y(a, ¢) as the equivalence class represented
by z. If x’ is another choice, then
z—z' = B(x)—P(x) and (0, B(x")—B(x)) = (x")—(x) € Ker p;.

Hence z and z’ represent the same element of Z. Finally,

(a, ©) = ¢(p)+(0, c—B(p))
so (a, ¢)eKer y if and only if (0, c—f(p)) e G. It follows that Ker y = G.
This completes the proof.

Corollary 7. & has sufficient projectives.

Proof. Every projective module has cotype zero and so is a projective object
in . Hence a projective resolution in the module category gives rise to a
projective resolution in &.

The functors Ext, are therefore defined and Ext}, (4, B) = 0 for all B if and
only if A is a projective object in &#.

Lemma 8. If A has finite cotype and Ext}, (A, B) = 0 for all B then A has
cotype 0.

Proof. Suppose A has cotype r. There is an exact sequence
0->K—>P—-A4A-0 ™
with P projective and K of cotype (r—1). A is a projective object of &; so this
sequence splits in & giving an isomorphism G € Homg, (A®K, P). Hence
A®K has cotype 0. Theorem 1 (jii) applied to the sequence
0-A—-APK->K-0
shows that (if » = 2) 4 has cotype (r—2). Hence A4 has cotype 0.

Theorem 9. If A has finite cotype, then Exty'! (4, B) =0 for all B if and
only if A has cotype n (n Z —1).

Proof. Proposition 4 gives the result forn = —1. Theorem 6 and Lemma 8
prove the result forn = 0. We use induction on n>0. Suppose A4 has cotype r.
The exact sequence (*) gives rise to a long exact sequence

—Ext, (P, B)-Ext2 (K, B)-»Ext%'! (4, B)»ExtL'! (P, B)—

forall B. Ext% (P, B) = 0 by Theorem 6 and Ext}"! (4, B) = 0 by hypothesis.
Hence Ext} (K, B) = 0; so by induction, K has cotype (n—1). It follows that
A has cotype n. Conversely, if 4 has cotype n(n = 0), then K has cotype (n—1)
so Ext% (K, B) = 0 = Ext}'! (P, B) which implies the result.

This theorem shows that, as long as modules have finite cotype, then cotype
is simply homological dimension in the category . We also see that the
C-cotype of a module depends only on the derived class S. Note that C < §;
Since C e C it has a projective resolution 0-»C—C—0. C is determined by S
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provided C is closed under direct summands, since then C = SnP where P
is the class of projective modules (2, Theorem 2). In general the following
relations hold between C and §.

Lemma 10. If C and C’ both have derived class S then for every C € C there
exists Xe SnP and C' € C’' such that C' = C®X.

To prove this, note that if CeC < § there is an exact sequence
0-»X-C'-C—-0 with XeS and C'eC’. The result follows since C is
projective.

In particular, for a given class C with derived class S, let C’ = SnP. This
is a class. Let S’ be its derived class. C< C' so § < §'. Conversely if
A e S’ there is an exact sequence

o Crr ... = Coo A0

with Cie SnP for all i. Thus if either S is Serre or the sequence is finite we
find that 4 € § (by the Corollary to Theorem 1). Hence, for a Serre class
S, SN P also has derived class S.

Corollary 11. C < SnP with equality if and only if C is closed under direct
summands. If S is Serre, then for every C' e SNP there exists X € SNP such
that C'®XeC.

3. Conditions for S to be a Serre class

The ring R is said to be (0, C)-coherent if every module of C-type 0 belongs
to S.

Theorem 12. S is a Serre class if and only if R is (0, C)-coherent.

Proof. Suppose S is Serre and 4 has C-type 0. Then A has a projective
resolution ...-»P-»C—-A4—0 with Ce C = §. Hence A4, being a quotient of C,
belongs to S. Conversely, let 4 € S and A- B epi. A has type 0, therefore by
(1, Lemma 7) B has type 0 and so belongs to S. Hence S is closed under
quotients.

The following are examples of classes for which § is Serre. For proofs
see (1).

(i) The class F of finitely generated free modules over a Noetherian ring R.
Then § is the class of finitely generated R-modules.

(iii) The class D of free graded R-modules with generators in only a finite
number of dimensions, where R is a finite dimensional ring. Then S is the
class of R-modules with generators in only a finite number of dimensions.
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