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Summary

A challenge when predicting total genetic values for complex quantitative traits is that an unknown
number of quantitative trait loci may affect phenotypes via cryptic interactions. If markers are
available, assuming that their effects on phenotypes are additive may lead to poor predictive ability.
Non-parametric radial basis function (RBF) regression, which does not assume a particular form of
the genotype—phenotype relationship, was investigated here by simulation and analysis of body
weight and food conversion rate data in broilers. The simulation included a toy example in which an
arbitrary non-linear genotype—phenotype relationship was assumed, and five different scenarios
representing different broad sense heritability levels (0-1, 0-25, 0-5, 0-75 and 0-9) were created.

In addition, a whole genome simulation was carried out, in which three different gene action modes
(pure additive, additive + dominance and pure epistasis) were considered. In all analyses, a training
set was used to fit the model and a testing set was used to evaluate predictive performance. The
latter was measured by correlation and predictive mean-squared error (PMSE) on the testing data.
For comparison, a linear additive model known as Bayes A was used as benchmark. Two RBF
models with single nucleotide polymorphism (SNP)-specific (RBF I) and common (RBF II) weights
were examined. Results indicated that, in the presence of complex genotype—phenotype relationships
(i.e. non-linearity and non-additivity), RBF outperformed Bayes A in predicting total genetic values
using SNP markers. Extension of Bayes A to include all additive, dominance and epistatic effects
could improve its prediction accuracy. RBF I was generally better than RBF II, and was able to
identify relevant SNPs in the toy example.

1. INTRODUCTION 2008). Since QTL genotypes are not usually observ-
able, molecular markers such as single nucleotide
polymorphisms (SNPs) are used as proxies.

Standard linear parametric models that assume
linear relationships between phenotypes and markers
may have poor predictive ability in the presence of
interaction. To take into account non-additive gene
action (e.g. epistasis), interaction effects can be added
to some additive linear model. However, in a whole-
genome analysis, this usually produces an over-
saturated model, due to the large number of markers
(p) and a small sample size (N), with N <p. One sol-

A challenge when predicting future phenotypes (or
total genetic values) for complex quantitative traits is
that phenotypic variation often reflects the concerted
action of a large number of genes (quantitative trait
loci (QTLs)) with small allelic effects (Risch, 2000).
QTLs acting together may affect the trait in a cryptic
manner, inducing non-additivity in relationships
between phenotypes and QTLs (Gianola & de los
Campos, 2008; Mackay, 2008; Yamamoto et al.,
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ution is using random-effects models with a Bayesian
treatment. For example, Xu & Jia (2007) used an
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empirical Bayes method to estimate main effects of
127 markers and interactions between all marker pairs
simultaneously. If more markers and higher order
interactions are considered, a large sample is needed
for these parametric linear models to produce stable
estimates (e.g. of additive and epistatic effects).

For phenotypic prediction under cryptic forms of
epistasis, model-free non-parametric approaches have
been proposed by Gianola et al. (2006), Gianola &
van Kaam (2008), Gianola & de los Campos (2008)
and de los Campos et al. (2009 a). In non-parametric
regression, no assumption is made regarding the form
of the genotype—phenotype relationship. Rather, this
relationship is described by a smoothing function and
driven primarily by the data. For example, non-
parametric methods based on reproducing kernel
Hilbert spaces (RKHS) regression require finding a
suitable kernel, a semi-positive definite matrix that is
used instead of the standard incidence matrix X in
regression. Recently, Bennewitz et al. (2009) applied
non-parametric additive models to evaluate breeding
value (BV) prediction with simulated data, and found
that their accuracy was moderate to high, and in some
cases slightly higher than BLUP.

Another non-parametric approach is radial basis
function (RBF) regression (Powell, 1987). RBF re-
gression uses a linear combination of a set of RBFs,
each of them centred at a training data point. Because
of its capability of approximating complex non-linear
functions, RBF regression has been used in signal
processing Hu & Hwang, 2001). The genotype—
phenotype relationship is expected to be complex as
well, which makes this method appealing.

In this study, RBF regression methods for predict-
ing genetic values of quantitative traits were devel-
oped and examined. Two types of RBF models were
considered: one had a common weight parameter for
all SNPs, and the other one had SNP-specific para-
meters and was thus more general. For comparison, a
method known as Bayes A (Meuwissen et al., 2001)
was used as a benchmark. First, a toy example was
developed, in which an arbitrary non-linear relation-
ship between eight SNPs and the phenotype was
created. Then, two chicken datasets representing
body weight (BW) and food conversion rate (FCR,
the ratio of BW gain to the amount of feed fed) were
used in a real data analysis. Finally, a large-scale
whole genome simulation was carried out to compare
RBF and Bayes A under three different gene action
modes: pure additive, additive + dominance and pure
epistasis.

The paper is organized as follows. Section 2 is
methodological and provides a description of RBF
regression methods and related techniques. Two RBF
models are proposed and a Bayesian implementation
is formulated. Section 3 describes briefly the Bayes A
model. Criteria used for checking model predictive
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ability and a principal component analysis (PCA) for
SNP dimension reduction are described in sections 4
and 5, respectively. Simulation and data analysis are
presented in sections 6 and 7, followed by a discussion
of implications, limitations and scope for RBF re-
gression in section 8. Concluding remarks are given in
section 9.

2. RBF REGRESSION MODELS

RBF regression is an approach to approximation
problems in high-dimensional spaces (Powell, 1987;
Broomhead & Lowe, 1988; Poggio & Girosi, 1990).
The expectation function (given x) in a RBF re-
gression model takes the form

Fx)= Y k(|lx—xlDa, M
j=1
where {k(||x—x|)lj=1, 2,..., m} is a set of m

RBFs, which are fixed and non-linear on x, and |||
denotes the Euclidean norm. Each x;eR’ is a
training point (e.g. a vector of SNP covariates on
individual j) taken as centre of the RBFs, and p is
the dimension of the input, e.g., the number of SNPs.
A regression coefficient a;is associated with each basis
function. The functions k() are called ‘radial’ because
their value depends only on the distance () from the
origin (x) to the centre point x;, ie., r=|x—xj].
Examples are the multiquadric k(r)=+/c?+r? for
some ¢ =0, the thin-plate-spline k(r) =% log r, and the
Gaussian k(r) =exp(— 0r?) for some 6=0.

(1) k-medoids clustering algorithm for finding centres

Given N observations or training data points, one
possibility is using each training data point x; as a
centre in (1), so N=m. This can be computationally
expensive for a large number of observations, since
computation grows polynomially with N (Haykin,
1999). Besides, this may produce over-fitting unless
regularization is imposed (Ripley, 1996; Haykin,
1999). Therefore, a number (m) of representative
centres smaller than N is often used, to reduce model
complexity. Moody & Darken (1989) used k-means
clustering for selecting centres, which chooses m< N
centres or centroids in the input space such that the
sum of squared distances from each training point to
its nearest centroid is minimum. In k-means cluster-
ing, a centroid’s coordinates are the mean of co-
ordinates of the points in the cluster. This is not
suitable for discrete coordinates, such as SNPs, be-
cause SNP covariates are coded using the number of
allele copies, and thus cannot be a fractional number
as it would be if means were taken. To overcome this
restriction, a variant called the k-medoids algorithm
(Kaufman & Rousseeuw, 1990) chooses an existing
data point, or medoid, for each cluster. The objective
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function to be minimized is the sum of distances from
each data point to its closest medoid.

(i1) Bayesian Gaussian RBF models

In this study, phenotypes were approximated with a
RBF regression model incorporating SNP infor-
mation. A Bayesian analysis was adopted to infer all
parameters in model (1) simultaneously. The RBF
chosen was Gaussian, expressed as

kg(x,-,xj)=exp[ Z 0, ( k) _ k) }
= exp[_(xi_xj)/z l(xi_xj)]- 2

Here 0=(0,, 0, ..., 0,) is a vector of unknown and
non-negative weights and p is the number of SNPs.
Genotypes at each SNP were coded as x=0, 1 and
2 for AyA,, A.A; and A;A,, respectively, and x;

Ky=

k=1

contained the p codes for genotypes of individual i.
The weights @ can be viewed as inverse variances for
each input SNP, and the ‘covariance’ matrix X, which
was common to all centres, was diag(e, ...,—) The
larger the value of a particular 6, the more relevant
the associated input (SNP) is to the outcome.
Conversely, zero or a very small value of 8, implicitly
excludes that SNP from the basis functions. When p is
large, as in the case of genome-wide association stu-
dies involving tens of thousands of SNPs, only a small
portion is expected to be relevant. While it may be
necessary to assume different weights for each SNP a
priori, p distinct 6 values may lead to an exceedingly
greedy specification when p is large, as discussed later.

If an equal weight (variance) is assumed for all
SNPs, the RBF reduces to

0% (- “‘)], 0>0.  (3)

ko(x;, x;) = exp [
k=1

In this case, only a single 6 needs to be estimated.
RBFs that take the forms of (2) and (3) will be de-
noted as RBF I and RBF II, respectively, in what
follows.

Given N observations with p SNPs each, a linear
model with m (m< N) RBFs is

m

yi=wiB+ Y ke(xi, x)a;+e;,
=1

i=1,2, ...,N. (4
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Here,

f: nuisance parameter vector

w;: incidence vector linking 8 to observation i

x;: px 1 input vector for observation i

a={ajj=1,2, ..., m}: mx1 vector of non-parametric
regression coefficients

ke¢(x;, x;): RBF based on x;, x;

0={0k=1,2,...,p}: px1vector of weights

and e~ N(0, I02) is a vector of residuals, where o2 is
the residual variance. It is important to note that this
model is linear in & but not in 6. In matrix notation,

y=Wp+Kya+e, (5)

where y={yli=1, 2, ..., N} is a vector of phenotypic
values, W={w/|i=1, 2, ..., N}, and the radial basis
matrix Kg of order N x m is

Al)_ exprgl‘( x[k]):

L k=1

(6)

] ool § o)

The above formulation is for RBF I; RBF 1II is
obtained by replacing the weight vector 0 by a scalar
variable 6, which is common to all input SNPs.

The conditional likelihood for the Bayesian hier-
archical model is

N
piB.a.0.0)=]] N
i=1

X (y,-; wiB+ D ko(xi, x)a, 02> 7
j=1

Park & Casella (2008) suggested assigning a double
exponential prior to each of the regression coeffi-
cients, a;, in (1), due to its equivalence to regulariza-
tion with an /; norm penalty as in the (least absolute
shrinkage and selection operator LASSO) method
(Tibshirani, 1996). Specifically, & was assigned a
product of double exponential distributions with

density
u A Alay|

plali, o%) = ( d ) , ®)
v

where 4 is a positive parameter. Since 0, (k=1, 2, ...,
p), 1s non-negative, this parameter was assigned an
exponential prior with parameter p, i.e.

p®lp)= H Expon (»)= [ pexp (— pf). ©)

k=1
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Priors for all parameters and fully conditional dis-
tributions are provided in Appendix A.

3. BENCHMARK MODEL: BAYES A

Bayes A poses the linear model
y=Wp+Xg+e, (10)

where W and f are as in (5); matrix X links additive
SNP effects to the phenotypes, with element X;; being
the genotype code (as for the RBF models) of indi-
vidual i at SNP locus j (j=1, 2, ..., p); g is a vector of
additive SNP effects. Bayes A assumes a priori that
g ~ N(0, 0 )(]—1 2,...,p) are independent, and
that the varlance of marker effect (o ) differs for every
locus j. Further, the prior dlstrlbutlon assigned to 0
in Bayes A is a scaled inverted chi-square dlstrlbutlon
¥ %(v, S), for all SNPs, where S and v are the scale
and degrees of freedom, respectively. In our Bayes A
implementation, instead of using a scaled inverted
chi-square distribution, a uniform (0, ) distribution
was assigned to each a . The value of u was deter-
mined using 1nf0rmat10n on phenotypic variance,
number of SNP loci and allele frequency at each locus
(see Appendix C). It was found that the two priors
(scaled inverted chi-square and uniform) resulted in
virtually the same predictive performance on a toy
example and the two chicken data sets (see Appendix
D). For B, a flat prior was used, and an Inverse
Gamma (0-001, 0-001) distribution was assigned to
the residual variance o2.

4. PREDICTIVE ABILITY

Predictive performance on a test data set (i.e. a sample
not used for model training) was used to compare
models. Given M posterior samples of the parameter
vector obtained with the training data set, M pre-
dicted values of the response variable were obtained
for each test individual. Given the mth (m=1, 2, ...,
M) posterior draw of the parameter vector (8, &,,,
0, etc.), the two RBF models generate a predicted
value for test individual i as

A(test—>tram)

yllﬂ_wﬂ + 0 aﬂﬂ (11)

mi

where w;’ is a nuisance covariate vector pertaining to
individual i, and Iz(tesmmm) is the ith row of the rec-
tangular radial Bglg?rd%atrlx linking test and training
observations, . For Bayes A, the predicted

response value was

)A/i)n:wf/ﬁm_'—xi/gm' (12)

Here, w;/ and f8, are as in (11) and x; is the geno-
type coding of individual i. After (11) or (12) was
computed for each test individual , its final predicted
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response, y;, was the average of M predicted values,
which were used for computing the following cri-
teria.

Correlations. Two types of correlations were of in-
terest. (1) Correlation between expected phenotype
E(y|x, w) using true values of the parameters, and its
predicted value y. This correlation is denoted as
corr(E(y), ¥) hereinafter. In the absence of nuisance
covariates, the expected phenotype can be regarded
as true genomic value, and corr(E(y), y) represents
accuracy of marker-assisted prediction of genomic
value. (2) Correlation between observed and predicted
phenotype, denoted by corr(y, y). When E(y) is
known, corr(E(y), y) is a better measure than
corr(y, y), for the observed phenotype (y) is a noisy
version of the expected phenotype E(y). Since only
in a simulation study one knows E(y), the measure
corr(E(y), ¥) was used only in simulation settings, and
corr(y, ¥) used only in the real data analysis.

Predictive mean squared errors (PMSE). Two
different PMSE measures were used, depending on
whether y (observed phenotype) or E(y) (expected
phenotype) was the target. The two PMSE criteria
were: PMSEl=n 1" (E(y;)—§;)* and PMSE2=

Ry (i — )7, where ey is the number of ob-
servatlons in the testing set. PMSE1 was used for the
simulation study and PMSE2 was used for the real
data analysis.

5. PCA FOR REDUCING SNP
DIMENSIONALITY

In the BW and FCR datasets, the number (thousands)
of SNPs made RBF I implementation computation-
ally intensive, because weights (6's) need to be sam-
pled from a non-standard distribution for every SNP
and Ky has to be reconstructed accordingly. For
Bayes A, computational burden was also heavy but
less so because X is fixed in the course of iteration.
For RBF 11, this was not an issue, because only one 6
needs to be estimated, regardless of the number of
SNPs. To alleviate computations, SNP dimension-
ality was reduced prior to applying the three methods
(RBF I, RBF II and Bayes A). This was done by
means of a PCA, where principal components of the
original SNP incidence matrix X were found and
used to form a number of ‘mega-SNPs’, which was
much smaller than the number of SNPs. PCA as a
data reduction technique has been widely used in
population genetics (e.g. McVean, 2009) and genetic
association studies (e.g. Price et al., 2006). For ex-
ample, principal components can be used to represent
ancestry differences among individuals in a case-
control study, and adjusting for them is necessary
prior to association tests. Procedures of PCA-based
modelling and prediction in the current study are
given below.
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(1) PCA-based modelling of RBF I, RBF II and
Bayes A

The method of PCA (Manly, 2005; Varmuza &
Filzmoser, 2009) used is described briefly here. Let X
be the N x p SNP incidence matrix, where each col-
umn (x4, ..., Xx,) represents genotypes of an SNP
locus over N individuals. Performing PCA on matrix
X gives

T=XP. (13)

Here, P (p x p) is a loading matrix containing in its
columns all eigenvectors (i.e., principal components)
of the covariance matrix of X. T is the score matrix
(N x p) whose columns are uncorrelated score vectors.
Each score vector in T can be regarded as a regressor
for a given mega-SNP. Note that for each eigenvector
in P, its associated eigenvalue corresponds to the
variance of the associated score vector in 7. Usually
columns of P are ordered in a way that the eigen-
values decrease. Since the primary aim of PCA is di-
mension reduction, the number of mega-SNPs used in
PCA regressions is as small as possible, provided that
a large proportion of the total variance of X can be
explained. The score matrix containing the first a
mega-SNPs is

Ta:XPm (14)

where P, consists of the first ¢ columns in P.
Therefore, the dimension of SNP inputs is reduced
from p to a, where a (number of mega-SNPs) can be
much less than p. Subsequent modelling (RBF I, RBF
IT and Bayes A) was based on this mega-SNP inci-
dence matrix 7, rather than on the original SNP
matrix X.

For RBF models, the k-medoids algorithm used to
reduce the number of basis functions from N to m was
applied to T, instead of X; each entry in the radial
basis matrix Ky in (6) was computed using mega-SNP
distance between two individuals. In Bayes A, X
in (10) was replaced with T,, and the vector of SNP
effects g was replaced with a vector of mega-SNP ef-
fects, denoted by m. This yields a principal compo-
nent regression, but cast in a Bayesian framework.

(1)) Mega-SNP grouping for RBF I

As noted, assigning SNP-specific weights as in RBF 1
is appealing but greedy. An alternative consists
of grouping SNPs first, and then assigning group-
specific weights. In the context of mega-SNPs, a
natural grouping criterion is the variances accounted
for by them. To do this, eigenvalues corresponding to
each of the mega-SNPs were ordered and cut-points
were chosen to divide them into a few groups, with the
range of eigenvalues in each group being roughly
equal. Then, a common 6-parameter was assigned to
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mega-SNPs within a group. Thus, the number of
weights to be inferred reduced to the number of
groups, which was arbitrarily set to four for both BW
and FCR data.

(iii) Prediction using mega-SNPs

RBF models. Observations from the test data were
first projected onto the space of principal components
obtained from the training data to form a score ma-
trix for the test data. That is,

TLCSL:XlCSle (15)

where P, is the loading matrix defined previously,
computed using training data; X is the SNP inci-
dence matrix for the test data. Based on the training
and testing score matrices (7, and Tyy), a test-to-
training radial basis matrix (e.g. (11)) can be built for
prediction using RBF models.

Bayes A. For Bayes A-based prediction, a modifi-
cation was needed. Bayes A becomes (for simplicity
nuisance covariates are omitted here)

y=Tm+e, (16)

where m is a vector of mega-SNP effects defined
earlier. Note that 7,= XP, as in (14), so that

y=XP,m+e, (17)
:Xg+e, (18)

where g =P, m. Hence, g = Pn. This means that SNP
effects (g) can be estimated by transforming estimates
of mega-SNP effects (m) using the loading matrix
(P,). Therefore, predictions on testing observations
can be made using the original SNP genotypes
directly.

6. Data analysis
(i) Outline

The Bayesian analysis was performed using the R
package R2WinBUGS (Sturtz et al., 2005), which
provides functions to call WinBUGS from R. The
study consisted of three parts. First, a toy example
with eight SNPs was used to illustrate the behaviour
of RBF I and RBF II, as compared to Bayes A, under
a hypothetical non-linear genotype—phenotype re-
lationship. Subsequently, the three models were ap-
plied to two chicken datasets (provided by Aviagen
Ltd) for BW and FCR, respectively. In the chicken
data analysis, predictors in each model were not the
original thousands of SNPs, but a smaller number of
mega-SNPs derived from PCA. This was so because
handling thousands of SNPs in our current im-
plementation of RBF 1 with WinBUGS was too
computationally intensive, so some reduction in input
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dimension was required. Although RBF II and Bayes
A did not face this issue, mega-SNPs were used
as predictors, to keep consistency between methods.
A third part of the data analysis was a simulation-
based whole genome marker-assisted prediction of
genetic value. As with the chicken data, dense mar-
kers (about 2000) were used for prediction. In the
simulation, total genetic value was determined by
QTL in different manners, and model comparison was
made correspondingly. In this part, the two models
being compared were RBF II and Bayes A.

In the toy example and chicken data analysis, the
number of basis functions was fixed at about 1/6 of
training sample size; this was unlikely to produce
overfitting according to our experience. The effect of
the number of basis functions on RBF’s predictive
performance was investigated further in the whole
genome simulation study, where RBF II was fitted
using different numbers of basis functions.

(ii) A toy example

The simulated training data set had 300 unrelated in-
dividuals. Each observation consisted of two nuisance
covariates (w; and w,), eight SNP covariates (x;,
X,, ..., Xg) and a phenotypic value. Only three SNPs
had effects on the phenotype. The phenotype for in-
dividual i (y;) was generated as

Yi=wi+ 2w+ e sin (xy —0-5) x5 +e¢;,
i=1,2,...,300. (19)

Here, regression coefficients on w; and w;, are 1 and 2,
respectively; x;, x;, and x;3 are the genotypic codes
for the three relevant SNPs among all eight SNPs,
with a non-linear effect on phenotype, and ¢; is a re-
sidual, distributed as N(0, o2). The covariates were
drawn by independent sampling from w;~uni-
form(—1, 1), w ~uniform(0, 2), and x,, was sampled
independently with equal probability (1/3) from {0, 1,
2}, for p=1, 2, ..., 8. Hence, the cight SNPs were in
linkage equilibrium, and five SNPs were completely
uninformative about the genetic signal in the pheno-
type.

The residual variance was specified such that the
ratio of genetic variance (caused by signal SNP var-
iations) to residual variance, o%: 02, would take the
following five different values: 1:9 (scenario 1); 1:3
(scenario 2); 1:1 (scenario 3); 3:1 (scenario 4) and
9:1 (scenario 5). These scenarios correspond to broad
sense heritabilities of about 0-10, 0-25, 0-50, 0-75 and
0-90, respectively. To assess 0%, the variance of the
term involving x;, X,, x3 in (19), which is a non-linear
function over the space of (x;, X,, X3), was calculated.
Parameter 0% was estimated empirically, by generat-
ing a large number (100000) of realizations of e*
sin(x;; —0-5) x%, and their variance was taken as an
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indication of genetic variance in the population.
Subsequently, o2 was adjusted accordingly. A testing
data set with sample size n..; =500 was simulated for
each of the five scenarios under the same data gener-
ating distribution as for the training set.

Predictors in all three models were the eight SNPs
(X1, X9, ..., Xxg) and the two nuisance covariates
(w1, wy). RBF 1 assigned a specific 6 to each of the
eight SNPs, whereas RBF II assigned a common 6
to them. The number of basis functions chosen by the
k-medoids clustering algorithm was 50. The Bayes A
was fitted in three different ways: (1) containing only
additive effects of the eight SNPs (Bayes A%); (2)
containing additive and dominance effects of each
SNP locus (Bayes AAP); and (3) containing additive
and dominance effects at each SNP locus, and their
pair-wise epistatic interactions (Bayes A“PF). The
latter two were an enrichment to the first one by in-
troducing non-additive marker effects. Bayes A* was
as in (10); Bayes AAP and Bayes A“PE were obtained
by expanding the columns of the X matrix to rep-
resent all additive, dominance and epistasis terms
needed. For example, in the case of two loci, the
genetic value assumed by Bayes AAPE can be re-
presented as (Cordell, 2002)

g=1 X1 +dy 21+ as Xy + doyzg + iy X1 X9 + IggX125

4 i 4421 X9 + igyz122. (20)

Here, x; and z; are dummy variables coding additive
and dominant effects at locus 7, respectively. One can
set x;=1, z;=—0'5 for one homozygote, x;=—1,
z;= —0-5 for the other homozygote and x;=0, z;=0-5
for a heterozygote. Coefficients a and d represent ad-
ditive and dominance effects, respectively; i q, lugs ida
and iy, correspond to epistatic effects. Following as-
sumptions of Bayes A, all coefficients were assigned
normal priors with heterogeneous variances.

For the toy example data, the length of the Markov
chain was 20000, and the first half was discarded as
burn-in. Chains were then thinned at a rate of 5, such
that 2000 samples were saved for inference.

(ii1) BW and FCR data analysis

BW control is a key factor in rearing meat-type
poultry and efficiency of food conversion is economi-
cally important in poultry production (Bell & Weaver,
2002). Heritability is 0-3 for BW and 0-2 for FCR, as
used in the genetic evaluation program in Aviagen
Ltd. Both datasets contained information on whole
genome SNPs and these were used to predict the two
traits.

BW data consisted of mean 42-day BWs of the
progeny of each of 200 sires. Birds were raised in a
low-hygiene environment, representing a commercial
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production setting. Phenotypic values of each sire
were adjusted progeny means. Specifically, for each
progeny of a sire, its phenotype was adjusted with
estimates of fixed effects, maternal environmental
random effects and of dam’s BV, using best linear
unbiased prediction. That is, adjusted phenotype=
phenotype —fixed effect —maternal random effect —
1/2 dam’s BV. Then, a sire’s phenotype was the aver-
age of its offspring’s adjusted phenotypes. To make
the analysis more reliable, sires with less than 20
progeny records were removed, leaving 192 sires.
These 192 sires were further partitioned into a train-
ing set (143 sires) and testing set (49 sires), such that
sires in the testing set were sons of those in the train-
ing set. Phenotypic means (standard deviations) of
the training and testing sets were 4-43 (6-00) and
5-57 (6-45), respectively. SNPs with monomorphic
genotypes or minor allele frequency (MAF) less
than 0-05 were removed, leaving 6947 SNPs for each
sire.

FCR data were adjusted progeny means of FCR
records of 394 sires from a commercial broiler
line. The adjustment procedure was as for the BW
records. The FCR data have been used by Gonzalez-
Recio et al. (2009), where predictive ability of Bayes
A was compared against that of RKHS. Training
data contained 333 sires and the test data contained
61 sires that were sons of sires in the training set.
SNPs with monomorphic genotypes or MAF less
than 0-05 were removed, leaving 3481 SNPs. Means
(standard deviations) of sire phenotypes in the train-
ing and testing sets were 1-23 (0-10) and 1:21 (0-08),
respectively.

For both datasets, PCA was applied to the SNP
incidence matrix (143 x 6947 for BW and 333 x 3481
for FCR) of the training set, and mega-SNPs were
formed after extracting the minimum number of
principal components that could explain about 90 %
of the total variance. The RBF models and Bayes
A (the one that assumes additivity only) fitted to the
training data were based on mega-SNPs, and a mega-
SNP grouping strategy was adopted for RBF I, as
described earlier. Since phenotypic values were pre-
adjusted for other effects, only an intercept was in-
cluded in each model along with SNP genotypes. For
RBF I and RBF II, the number of basis functions
was set to 25 for BW data (training sample size = 143),
and 50 for FCR data (training sample size=333).
Residuals in each model were assumed to be inde-
pendently distributed normal random variables, with
zero mean and different variances depending on the
number of progeny of each sire. That is, for sire i with
N; progeny that were used to compute its mean, its
residual variance was 0%/N,. As before, the length of
Markov chain was 20 000, with the first half as burn-
in. Chains were thinned at a rate of 5, giving 2000
samples for inference.
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(iv) Whole genome simulation

The simulation basically followed that of Meuwissen
et al. (2001) and Solberg et al. (2008). The simulated
genome contained 10 chromosomes, each of 1
Morgan length. Along each chromosome, there were
in total 302 loci (202 SNP markers and 100 putative
QTLs) equi-distantly spaced. Markers (M) and QTL
(Q) were positioned as

MI_MZ_QI_M3_M4_Q2_ e _M199_M200
QIOO_MZOI_M202~

The population evolved during 1000 generations of
random mating and random selection, with a popu-
lation size of 100 (50 males and 50 females) in each
generation. Mutation rates at QTL and SNP markers
were 2:5x 1072 and 2:5x 1073, respectively. After
1000 generations, the population size was increased
to 1000 at generation = 1001 by mating each sire with
20 dams, with one offspring per mating pair. In =
1002, 1000 offspring were born from random mating
of individuals in t=1001. This resulted in 57 segre-
gating QTL (5:7% of the total number of QTLs) and
2004 segregating SNP markers (99 % of the total num-
ber of markers) in generations z=1001 and = 1002.

The total genetic values resulting from the QTL
were generated for individuals in generations t=1001
and r=1002. Three hypothetical gene action scenarios
were considered.

(1) Purely additive: each QTL locus had an additive
effect only, without dominance or epistasis.

(2) Additive +dominance: each QTL had an additive
as well as a dominance effect, and there was no
epistasis between QTLs.

(3) Pure epistasis: there was no additive or domi-
nance effects at any of the individual QTLs.
Epistasis existed only between pairs of QTLs. The
forms of epistasis included additive x dominance
(a x d), dominance x additive (dxa) and dom-
inance x dominance (dxd). Additive and axa
epistasis effects were excluded, to prevent the ad-
ditive variance from dominating the total genetic
variance.

Given the genetic values and the genetic variance
(estimated empirically from the genetic values gener-
ated), the error variance was chosen to keep herita-
bility (in a broad sense) at 0-37 for each scenario. In
scenario 1, the total genetic variance was completely
additive. In scenario 2, 38 % of the genetic variance
was additive and the remaining 62% was due to
dominance. In scenario 3, 42% of the variance was
additive, 36 % was dominance and 22 % was epistatic.
Note that there was additive genetic variance even
though gene action was completely non-additive.
Details of this simulation as well as variance compo-
nent estimation are in Appendix B.
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Table 1. Correlation and PMSEI on test data in the toy example. Five scenarios (1-5) of broad sense heritability
are 0-1, 0-25, 0-5, 0-75 and 0-9, respectively. corr (E(y), ¥): correlation between expected and predicted
phenotype; PMSEI =n_2Y"" (E(y;)— $,)?, where n,.q =500 is sample size in the testing set. Bayes A", Bayes

testlui=1

AP and Bayes APF represent a Bayes A model that contains additive marker effects only, additive +
dominance effects and additive + dominance + pair-wise epistatic effects, respectively.

Scenario RBF I RBF II Bayes AA Bayes AAP Bayes AAPE
corr(E(y), ¥)
1 0-72 0-59 0-50 0-56 0-52
2 0-86 0-56 0-53 0-51 0-70
3 0-95 0-74 0-54 0-55 0-80
4 0-99 0-79 0-55 0-57 0-85
5 0-99 0-83 0-56 0-58 0-87
PMSE1
1 23-50 32-50 43-14 49-06 87-27
2 11-32 30-26 3391 37-60 3663
3 4-54 19-84 31-53 32-24 20-22
4 091 16-24 30-42 30-43 14-04
5 0-35 13-84 29-94 29-58 11-73

The training set was formed by randomly picking
300 individuals from generation t=1001. The testing
set was formed by randomly picking 500 individuals
from r=1002. The training (testing) set was repeatedly
sampled from 7=1001 (z=1002) 50 times and, for each
replicate, RBF II and Bayes A (assuming additivity)
were used to predict genetic values of individuals in the
testing set using SNP markers. Specifically, RBF II
was fitted with a varying number of basis functions
(50, 100, 150, 200, 250 and 300) to allow for an exam-
ination of its effect on model’s prediction accuracy.
Results of the 50 replications were averaged for a final
evaluation of each method. This procedure was per-
formed for each of the three gene action scenarios de-
scribed earlier. The Markov chain in the Bayesian
implementation of the two models was run for 100 000
iterations, with the first half as burn-in. Thinning rate
was 10, yielding 5000 samples for inference.

7. RESULTS
(1) Toy example

Table 1 shows correlation (corr(E(y), ¥)) and PMSEI1
on the test data (sample size =500) for the five com-
peting models (RBF I, RBF II, Bayes A*, Bayes AAP
and Bayes AAPE). RBF I presented the best predictive
ability in the five heritability scenarios. Even at low
heritability (scenarios 1 and 2 with heritability of 0-1
and 0-25, respectively), RBF I attained large predic-
tion correlations (0-72 and 0-86). RBF II was worse
than RBF 1, indicating that assigning SNP-specific
weights improved ability to infer non-linear signals
and enhanced prediction accuracy. Bayes A” and
Bayes AAP were similar in correlation and PMSEI,
indicating that introducing dominance effects in ad-
dition to additive effects was not helpful. Prediction
correlation was improved by Bayes AAPE, especially
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for moderate to high heritability (>0-25). There, cor-
relations of Bayes AAPF increased by about 4050 %
over those of Bayes A® and Bayes AP, and were
about 5-25% higher than RBF II. Concerning
PMSE, RBF I was clearly superior and RBF 1I was
better than any of the Bayes A versions except when
heritability was 0.75 and 0.9.

Overall, Bayes A® and Bayes AAP seemed inad-
equate for dealing with the datasets used in the toy
example, which were generated in a non-linear and
interactive manner. Bayes AAPE further accom-
modated interaction effects and improved Bayes A’s
predictive ability considerably, but it was still inferior
to RBF L.

Absolute values of estimates of SNP effects g in
Bayes A can be regarded as signal intensities of each
SNP. A larger absolute value implies a greater rel-
evance to the phenotype. Similarly, values of € in
RBF I can be used as relevance measure also. Figure 1
shows ‘signals’ of the eight SNPs, as inferred by RBF 1
and Bayes A*. RBF I was able to pick the three truly
relevant SNPs (1-3) and to flag the other five as irrel-
evant, especially in scenarios 3-5, where the signal:
noise ratio was large. Even in the two noisiest scenarios
(1 and 2), SNPs 1-3 still stood out. For Bayes A%,
ambiguity existed due to large absolute values of esti-
mates of some irrelevant SNPs. For example, SNP 7
appeared to be ‘relevant’ across scenarios 2 through 5.
This indicated that Bayes A was not able to infer SNP
effects accurately when the underlying relationship
between genotype and phenotype was not additive.
This is consistent with its poorer predictive ability.

(i) BW and FCR data

In the BW analysis, about 90 % of the total variance
of the SNP training incidence matrix (143 x 6947) was


https://doi.org/10.1017/S0016672310000157

RBF regressions using SNPs 217

RBF | (Scen. 1) Bayes A (Scen. 1)
0-8 6

0-6 4 4

@ 0.4 c~n2" ‘
0

" R | RS

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
SNP SNP
RBF | (Scen. 2) Bayes A (Scen. 2)
4 4
0-6 1
4 3 )
041 27
==} ] > 9
0-2 ] 0 [ I \ T
00 L+ I vt 1] ] ‘
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
SNP SNP
RBF I (Scen. 3) Bayes A (Scen. 3)
4
0-6 1 3 1
2 4
0-4 -
@ > 4
1
0-2 1 0 1 T
]
0-0 ] L] ? Q L]
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
SNP SNP
RBF I (Scen. 4) Bayes A (Scen. 4)
1.5 4 4
3 4
1.0 1 2
@ SIP
0-5 1 o
0 1 l T
1
00 : : : = : : : : : : : : : . :
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
SNP SNP
RBF | (Scen. 5) Bayes A (Scen. 5)
1.5 1 4
3 4
1-0 1 2
@ > 1 ]
0-5 1
° LD '
1
040 T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
SNP SNP

Fig. 1. Posterior means of @ in RBF I and of SNP effects g in Bayes A in the toy example. The five scenarios correspond
to different ratios between the genetic and residual variances (1-1:9;2-1:3;3-1:1;4-3:1 and 5-9:1).

explained by 105 principal components, resulting in  division of mega-SNPs (for RBF I) were 32, 56 and

105 mega-SNPs. The range of their eigenvalues was 80, resulting in four groups and, therefore, 4 6’s.
8:2-102-6. Cut-points for a roughly ‘equal-interval’ Using the 105 mega-SNPs, all three models were fitted
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Table 2. Correlation and PMSE?2 in the testing
sets of BW and FCR data. corr(y, y): correlation
between observed and predicted phenotype. PMSE2
=n, 7’=’1 (vi—3,)°, where g, is the sample size in
the testing set.

BW FCR

corr(y, ¥) PMSE2 corr(y, ¥) PMSE2
RBF I 0-49 32-49 0-23 0-0059
RBF II 0-45 3549 0-18 0-0063
Bayes A 0-35 35-86 0-18 0-0067

to the training data (143 sires). Predictive perform-
ance on the testing data (49 sires) is summarized in
Table 2. The highest predictive correlation (corr(y, ¥))
was achieved by RBF I (0-49), followed by RBF II
(0-45). Bayes A produced the lowest correlation
(0-35). PMSE2 was smallest with RBF I (32-5) and
larger in RBF 1I (35-5) and Bayes A (35:9). Overall,
RBF I and RBF II were better than Bayes A.

In the FCR analysis, 220 mega-SNPs (explaining
90% of the total variance of the training set
333 x 3481 X matrix) were formed; the range of the
associated eigenvalues was 1-7-35-4. Cut-points for a
roughly ‘equal-interval’ division (for RBF I) were 10,
20 and 30, yielding four groups and therefore 4 6’s, as
in the BW data. Prediction results on the testing data
(61 sires) are given in Table 2. RBF I had the best
performance (corr(y, »)=0-23, PMSE2=0-0059).
RBF II and Bayes A were the same in correlation
(0-18) but RBF II had a slightly smaller value for
PMSE2 (0-0063) than Bayes A (0-0067).

(iii) Whole genome simulation

As in the toy example, corr(E(y), ¥) and PMSE1 were
used, and the former can be interpreted as accuracy of
marker-assisted prediction of total genetic value. Both
metrics were summarized from all 50 replications, and
density plots are presented in Figs 2 and 3 for pre-
diction accuracy and PMSEI, respectively. The cor-
responding summaries are given in Table 3.

In the scenario of pure additivity, Bayes A had an
average accuracy of 0-44, whereas RBF II with 300
basis functions (i.e. using each observation as the
centre of a basis function) achieved an average accu-
racy of 0-43. Increasing the number of basis functions
in RBF II gradually from 50 to 300 increased accu-
racy from 0-28 to 0-43. The improvement was rela-
tively large from 50 to 100 basis functions. Beyond
that, the change was small. The PMSE1 of Bayes A
was 0-82; RBF II attained a PMSEI1 from 0-86 with 50
basis functions moving down to 0-75 with 300 basis
functions. Using an appropriate number of basis
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functions, RBF II can be as accurate as Bayes A or
even better than Bayes A in PMSE.

In additive + dominance scenario, there was no
major difference between Bayes A and RBF II in ac-
curacy. Both were able to make predictions with an
average accuracy of 0-13-0-14. Increasing the number
of basis functions increased RBF II’s accuracy some-
how, but not much. PMSE1 was larger in Bayes A
than in RBF II: PMSE 1 was 7-25 for Bayes A,
whereas it ranged from 5-:36 (50 basis functions) to
5-61 (300 basis functions) with RBF II. The overall
performance of RBF 11 was therefore better than that
of Bayes A.

In the scenario of pure epistasis, the accuracy of
Bayes A was 0-14. For RBF II with 50 basis functions,
the accuracy was 0-15, and increased to 0-19 and 0-:20
with 100 and 150 basis functions, respectively. Then,
accuracy stabilized at 0-21 with 200, 250 and 300 basis
functions. The PMSE]1 was clearly smaller for RBF 11
(about 1) than for Bayes A (3-23). In short, RBF II
was superior to Bayes A in predictive ability.

8. DISCUSSION

The Bayes A method of Meuwissen et al. (2001) is a
linear model that assumes additive marker effects
with each marker assigned a different variance, a
priori. This produces heterogeneous shrinkage of
marker effects, which may be more realistic than as-
suming equal variances and homogenous shrinkage
for all markers, e.g., a BLUP model (Meuwissen
etal.,2001; de los Campos et al., 2009 b). However, an
additive model may not work well in the presence
of non-linear phenotype—genotype relationships (e.g.
dominance or epistasis), in which case a substantial
portion of genetic variance might be non-additive. In
theory, one can include all possible forms of gene ac-
tions (additive, dominance and epistasis) in a Bayes A
model but this becomes infeasible with hundreds of
thousands of markers as model dimensionality is in-
tractable. On the other hand, as pointed out by
Gianola et al. (2006), non-parametric regression on
marker genotypes does not make strong assumptions
about the form of the marker—phenotype relation-
ships and is expected to capture all possible forms of
interaction. In the toy example where an arbitrary
non-linear function was used to model genotype—
phenotype relationship, RBFs attained a reasonably
high accuracy whereas Bayes A was useful only
when it contained additive, dominant and epistatic
effects. In the analysis of two chicken datasets (off-
spring—parent settings), RBFs also outperformed a
Bayes A that assumed additivity. Notably, model di-
mension of RBF II is independent of the number of
markers, an important advantage over Bayes A.

In order to assess the value of RBF in various sce-
narios of gene action including pure additivity, a high
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Fig. 2. Density of prediction accuracy of Bayes A and RBF II in the whole genome simulation (based on 50 replications),
for each of the three scenarios (pure additive, additive + dominance and pure epistasis). Prediction accuracy is corr(E(y), 7).
RBF50-RBF300 indicate RBF II with 50-300 basis functions, respectively.

level of dominance and pure epistasis, a whole gen-
ome simulation study was carried out. The training
data simulated contained 2000 SNPs and 300 in-
dividuals so as to make it a ‘large p small n’ problem.
Genetic value was generated by QTL but was pre-
dicted using SNP markers, relying on linkage dis-
equilibrium (LD) between QTL and markers. Due to
computational reasons discussed below, RBF I could
not be considered so the comparison was between
RBF II and Bayes A. It was found that RBF II, which
makes no assumption of additivity of marker effects,
was competitive for genetic value prediction relative
to Bayes A (which assumed additivity) even when
genetic values were purely additive. When dominance
plus additive effects were considered (leading to 38 %
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of the total genetic variance being additive and 62 %
being due to dominance), RBF II showed some ad-
vantage over Bayes A, especially in PMSE. Further-
more, when epistatic effects were simulated (42%
additive variance, 36 % dominance variance and 22 %
epistasis variance), RBF II was clearly better than
Bayes A.

Increasing the number of SNPs increases comput-
ing time for RBF I because SNP-specific weights need
to be estimated. When sampling from their con-
ditional posterior distribution, every time a single
weight is updated, the entire radial basis matrix has
to be recomputed, making the process more time-
consuming than RBF II. For example, with
WinBUGS, RBF I with 50 basis functions and eight
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Fig. 3. Density of PMSEI1 of Bayes A and RBF II in the whole genome simulation (based on 50 replications), for each of
the three scenarios (pure additive, additive + dominance and pure epistasis). PMSE1 =n_} ;l‘:l (E(vi)— j/,-)z, where
nest = 500 is sample size in the testing set. RBFS0-RBF300 indicate RBF II with 50-300 basis functions, respectively.

SNPs required 11h for running 20000 iterations,
while RBF II spent only 4:9 h. It must be noted that
this software is not tailored for large-scale calculation,
so computational requirements may be lowered con-
siderably if problem-specific software were developed.
The WinBUGS environment limits the scope of RBF
I unless some data reduction is done with respect to
SNP dimension. For instance, in our analysis of BW
and FCR, instead of using SNP-specific weights,
group-specific weights were used, so that the effective
number of weights to be estimated was reduced
from the number of SNPs to the number of groups.
Grouping can be done on the basis of chromosome,
LD, or some other measure. LD was not useful for
grouping here. Pairwise LD (Fig. 4) among SNPs was
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very weak for both BW and FCR data, as estimated
by the r? measure (squared correlation between
two SNP loci). This means that LD-based grouping
would produce almost as many groups as there are
SNPs. Instead, PCA-based grouping was adopted,
which consisted of two steps: forming mega-SNPs
and then grouping mega-SNPs based on their eigen-
values.

To compare mega-SNPs with real SNPs, Bayes A
and RBF II were also fitted to BW and FCR data
using real SNPs. Results indicated that the two yiel-
ded similar prediction performance. For example,
Bayes A with real SNPs had correlations of 0-36 (BW)
and 0-19 (FCR), very close to those obtained from
using mega-SNPs: 0-35 (BW) and 0-18 (FCR).
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Table 3. Prediction accuracy and PMSE]I for the three scenarios (pure additive, additive + dominance and pure
epistasis) in the whole genome simulation. Prediction accuracy is corr(E(y), y). PMSEl =n,,} :”:; (EG) =)
where n,.q =500 is the sample size in the testing set. RBF50—RBF300 indicate RBF II with 50-300 basis
functions, respectively. Results were averages of 50 replications, with standard deviations given in parentheses.

Pure additive Additive + dominance Pure epistasis

Accuracy PMSE1 Accuracy PMSE1 Accuracy PMSEI1
Bayes A 0-44 (0-05) 0-82 (0-08) 0-13 (0-05) 7-25 (0-46) 0-14 (0-05) 3-23 (0-37)
RBF50 0-28 (0-07) 0-86 (0-08) 0-10 (0-04) 5:36 (0-32) 0-15 (0-06) 1-00 (0-07)
RBF100 0-34 (0-06) 0-82 (0-11) 0-12 (0-05) 5-46 (0-42) 0-19 (0-06) 1-02 (0-09)
RBF150 0-38 (0-06) 0-80 (0-09) 0-12 (0-04) 5:43 (0-36) 0-20 (0-05) 1-03 (0-13)
RBF200 0-40 (0-07) 0-78 (0-09) 0-13 (0-04) 5-50 (0-46) 0-21 (0-06) 1-03 (0-11)
RBF250 0-41 (0-06) 0-75 (0-09) 0-13 (0-04) 5:60 (0-57) 0-21 (0-06) 1-04 (0-16)
RBF300 0-43 (0-06) 0-75 (0-08) 0-14 (0-04) 5:61 (0-57) 0-21 (0-06) 1-03 (0-12)

Likewise, RBF II with real SNPs had correlations of
0-41 (BW) and 0-17 (FCR), close to those from using
mega-SNPs: 0-45 (BW) and 0-18 (FCR).

RBF I tended to have better predictive ability than
RBF 1II. Also, by assigning SNP-specific weights,
RBF I successfully flagged the three relevant SNPs
in the toy example (Fig. 1). Nonetheless, RBF Il is a
promising, simpler, non-parametric method for mak-
ing predictions. It achieved reasonably high accuracy
in the toy example across a wide range of herita-
bilities. Although slightly worse, RBF II had similar
prediction accuracy to RBF I in the real data analysis.
More importantly, RBF II outperformed Bayes A
when the underlying data generating system was far
from additive.

As suggested by the whole genome simulation
study, increasing the number of basis functions in
RBF can improve prediction accuracy in general.
However, the improvement gets smaller as more basis
functions are included. At some point, accuracy
reaches a plateau. Hence, one may not need as many
basis functions as there are observations in order to
get satisfactory predictions, provided that a smaller
number of basis functions are properly chosen.

When all training data points are to be used as
centres for the RBFs, some smoothness (regulariza-
tion) must be imposed on the regression coefficients &
in the model y=1u+ Ka +e¢, in order to avoid over-
fitting. In a Bayesian treatment, regularization is done
via a prior over the regression coefficients. In the
present study, & was assigned a double exponential
prior which puts more mass near 0 and in the tails,
relative to a normal prior (Tibshirani, 1996). With
a normal prior N(0, K~ 16%) on a, the model becomes
a RKHS regression model (e.g. Wahba, 2002) from a
Bayesian point of view (Gianola & van Kaam,
2008), in which a scaled inverted chi-square distri-
bution is usually assigned as a prior to ¢%. RKHS
requires the kernel matrix (equivalently radial basis
matrix in RBF) K to be semi-positive definite. RBF
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Fig. 4. Density plots of #* (squared correlation between
two SNP loci) of pairwise SNP LD in BW and FCR data.
Exhaustive pairwise computations were not feasible
(24126931 pairs from 6947 SNPs in BW; 6 056 940 pairs
from 3481 SNPs in FCR), so repeated sampling of all
SNPs was used. Each repetition consisted of randomly
sampling 50 SNPs, and pairwise 12 was calculated. Values
of 1% from all repetitions were collected to approximate the
LD level among the SNPs, and used for plotting. Here, 10
repetitions were performed for each dataset.

regression does not require so. Gonzalez-Recio et al.
(2008, 2009) presented applications of RKHS to
mortality and FCR in broilers, and their results
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suggested that RKHS regression using SNPs can
produce more reliable predictions of genomic value
than standard parametric additive model currently in
use.

In addition to RBF and RKHS, another non-
parametric method for modelling genotypic data is
kernel regression, introduced by Gianola et al. (2006).
When interest is in additive effects, kernel regression
can be built in an additive manner, in which the total
genetic value is the sum of non-parametric function
values at each locus. In this way, additive and domi-
nance effects at each of the loci can be captured,
but not epistatic interactions (Gianola & van Kaam,
2008). Bennewitz et al. (2009) compared additive
kernel regression with a BLUP model, and found that
with differential amount of smoothing for the mar-
kers, the kernel regression was better than BLUP in
predicting genomic BVs.

Since additive effects are central in selection im-
provement, it is sensible to ask whether or not it is
useful to accommodate non-additivity in the model.
Further, as shown by Hill ez al. (2008), and corrobo-
rated here, a large portion of the genetic variance
turns out to be additive. Our research indicates that
non-parametric methods have similar or even better
predictive ability than additive parametric models.
Further, they are more general in situations in which
prediction of performance is a focal point, such as in
personalized medicine or genome-assisted manage-
ment programmes.

9. CONCLUSION

Non-parametric RBF regressions were investigated
by simulation and analysis of two broiler datasets. In
the presence of a complex genotype—phenotype re-
lationship (i.e. non-linearity and non-additivity), the
RBF models outperformed a linear additive model,
Bayes A, in predicting total genetic values of quanti-
tative traits using SNP markers. The RBF methods
had similar or even better predictive ability when gene
action was purely additive. A RBF model with SNP-
specific weights (RBF I) was generally better than one
with a common weight for every SNP (RBF II). There
is a potential for RBF I to discover relevant markers
from a large pool of genetic markers scattered across
the entire genome. When dealing with a massive
number of markers, computational demand in RBF I
is intensive, which remains an issue to be addressed.

APPENDIX A. BAYESIAN HIERARCHICAL
RBF MODEL

The priors for all parameters in the Bayesian hier-
archical model (see (5) and (7)) are as follows

p(P) o constant, (A.1)
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plall, o =ﬁ 4 exp _ Ayl

Pp(Ayy, 61) = Gamma (y,, 0;1) o< (1) exp (—d17),
(A3)

(A.2)

P p

p0lp)= ] Expon(p)=[] pexp(—pbh).
k=1 k=1

(A.4)

P(p|yy, 05) =Gamma (y,, 83) x p*~'exp (—0sp),
(A.5)

p(02|a, v)=1Inverse Gamma (a, v)

o (6% ““texp (— %) )

The residual variance o? was assigned a vague Inverse
Gamma(a=0-001, v=0-001) prior, throughout; the
Gamma distribution parameters for 4 and p were
tuned to ensure convergence in all analyses. The joint
posterior density of all parameters is proportional to
the product of (7)—(A.6). The fully conditional dis-
tributions can be shown to be:

(A.6)

pBlelse) = N[(W'W) " Wy — Koa), W'W)'0?],
27)

p(?felse) o< (o) V!

oxp{ 55105~ W~ Ko (y - WP~ Kuc) + 21}

/1 m
X exp (— D) |a,-), (28)
0(’ Jj=1

plaels) ocexp | 51— W~ Ko (3~ WP Koa)|

m /1|a,>
X H exp <— =
j=1 \/8; (29)

p(A|else) oc}Lm”‘_lexp[— ( [ +61>/'L]
=10,
=Gamma | m+ S M
- )/19 Z 5] +61 ’ (30)
j=1 Oe
p(Belse)
1 P
o< exp {f 75t Y~ WB—Koa)(y— WB—Koa) —p > Hk],
e k=1

(1)
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P
p(plelse)=p’ 7" texp <_ p(0s+ 9&)) , (32)
=1
P
=Gamma (p +7. 02+ Y. Bk) : (33)
k=1

Hence, not all fully conditionals are recognizable
distributions. For parameters with recognized dis-
tributions (f, A and p), Gibbs sampling (i.e. using the
fully conditionals as proposal distributions) can be
used. For the other parameters, Metropolis—Hastings
sampling can be employed.

APPENDIX B. GENERATING GENETIC
VALUES AND EVALUATING ADDITIVE
GENETIC VARIANCE IN THE WHOLE
GENOME SIMULATION

Pure additive. The additive effect («) was equal to the
allele substitution effect, such that for genotypes 4,4,
A4, and A,A,, their genotypic values were 2a, a and
0, respectively. The value of a at each QTL locus was
sampled from a normal distribution with mean 0 and
variance 0-1.

Additive + dominance. The additive effects were as
in the pure additive scenario. To simulate a marked
dominance effect, its value (d) assigned to each QTL
locus was obtained by multiplying the additive effect
(a) at that locus by arandom number sampled from
uniform (—35, 5) distribution. For a QTL locus with
additive effect « and dominance effect d, its genotypic
values were 2a for A.A,, a+d for A,A,, and 0O for
Ay A,. If genotypic frequencies at that locus are p?, 2pg
and ¢ for A,A4,, A;As and A,A4,, respectively, the total
genetic variance can be decomposed into additive (o%)
and dominance variance (0%) as follows (Falconer &
Mackay, 1996):

0% =2pgla+(g—p)dl’,
o =(2pqd).

For simplicity, independence between QTLs was as-
sumed and, as a result, the total additive (dominance)
variance was summed over all loci.

Pure epistasis. Only segregating QTLs were
involved in epistatic interactions. Among the 57 seg-
regating QTLs, 56 were randomly chosen to form
28 QTL pairs. Each pair was assigned an axd
interaction effect i,4, a d x a effect i, and a d x d effect
iyxq- The absolute value of each of i,4 iz and iy
was the same, and set to mean of |a|, |d|, || and
|ds|, where a; and d; were additive and dominance
effects at the first locus, and a, and d, were those at
the second locus. The sign of each of the three epistatic
effects was sampled from {1, — 1} with probability 0-5.

Given a pair of QTLs (i=1, 2), its epistatic value
was given by i, X2y + ig,21Xe + i442122, Where x; and z;

https://doi.org/10.1017/5S0016672310000157 Published online by Cambridge University Press

223

were additive and dominance codes at locus i, re-
spectively. For A,4; genotype, x;=1, z;=—0-5; for
AyA4s, x;=0, z;=0-5; and for Ay,A4,, x;=—1, z;= —0-5
(Cordell, 2002).

The total genetic value was the sum of
epistatic values produced by each of the 28 QTL
pairs. The procedure of estimating additive and
epistatic variance components followed Cockerham
(1954), assuming independence between two loci of
each QTL pair and between QTL pairs.

APPENDIX C. DETERMINE « IN THE
UNIFORM PRIOR DISTRIBUTION (0, #) FOR
VARIANCES OF MARKER EFFECTS IN
BAYES A

The construction of the prior distribution was based
on some assumptions and approximations. The pur-
pose was getting a rough value of the marker variance
o:,](/': 1,2, ...,p), which was the variance of the prior
distribution for marker effect g; : g; ~ N(0, az,/_). The
assumptions were:

1. Allele frequencies at all loci come from the same
distribution. Similarly, marker effects at all loci come
from the same distribution g;~ N(0, 02).

2. Consider only additive genetic variance at each locus j,
which is 2p,g;g7 (p;, ¢; are allele frequencies and g; is ad-
ditive marker effect at locus j).

3. The total genetic value (G) of an individual is as-
sumed to be obtained by adding genetic values at all
marker loci, with marker loci treated as independent
(no LD). Then, the variance of the total genetic
value (var(G)) is the sum of variances at individual
loci.

4. Approximate var(G) by the variance of observed pheno-
typic values (var(y)). This leads to an overstatement of
genetic variance and, thus, of the variance of each mar-
ker. As a prior, this allows a wide range of values for
marker variance.

Based on assumptions 1 and 3, the expectation of
the variance contributed by each of the p loci is the
same. Hence,

var(y)
B(Hgh="—,

H;=2p,q; represents heterozygosity.

Because H; and g7 are independent,

E(H)) E(¢)= E(H) 0% = Va;(y) ,

since g; ~ N(0, 03).

E(H;) was estimated by averaging H; across all
p loci (due to assumption 1) and var(y) was calculated
from the empirical distribution of phenotypic values.
Thus, o2 was available. Finally, the upper bound u in
the uniform (0, u) distribution was set to be twice as
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large as the estimated value of 03, to make the mean of
this uniform distribution equal to the estimated op.
This procedure was also applied to the principal
component regression, as used for the two broiler
datasets. In that case, the variance of the prior distri-
bution of mega-SNP effects m (16) was the target. The
expectation of the variance caused by each of the a
mega-SNPs (7, j=1, ..., a) was approximated as

Elvar(t;m;)] = E[var(t;)m}]

= Elvar(t)|E(m;) = Elvar(t))]o,, = Vaif” :

and E[var(¢)] was estimated by averaging var(t)
across all @ mega-SNPs. Thus, o2, was available.

APPENDIX D. COMPARE BAYES A WITH
UNIFORM PRIOR AND SCALED INVERTED
CHI-SQUARE PRIOR ON THE VARIANCES OF
MARKER EFFECTS

The uniform prior was described in the preceding
section. For the scaled inverted chi-square distri-
bution, its degrees of freedom (v) was fixed at 4:2, and
the scale S was chosen so as to make the mean of
the distribution equal the estimated value of o, as
for the uniform prior. Bayes A (additive effects only)
with each of the two priors was fitted to the five
simulated data used in the toy example, as described
in section 6(ii), and to the two chicken datasets (BW
and FCR) using real SNPs. Predictive correlations
(corr(E(y), y)) obtained with each of the two priors
were similar.

Scenarios in toy

example Chicken data

1 2 3 4 5 BW FCR

Uniform 0-50 053 0-54 055 056 0-36 0-19
Scaled 0-50 052 054 055 056 035 0-19
inverted
chi-square
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