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FACTORS OF FIELDS 

BY 

JAMES K. DEVENEY AND JOE YANIK 

ABSTRACT. Let L be a finitely generated extension of a field k. L is 
a &-rational factor if there is a field extension K of k such that the total 
quotient ring of L ®£ K is a rational (pure transcendental) extension of 
K. We present examples of non-rational rational factors and explicitly 
determine both factors. 

Introduction. Let L be a finitely generated field extension of a field k. L is called 
a ^-rational factor if there exists a field extension K of k such that the quotient 
field of L (% K is £(*i7.. .,xn), a pure transcendental extension of k. In view of the 
characterization of projective modules as direct summands of free modules, rational 
factors are in some sense the projectives in the category of fields. In a recent paper 
[3], Colliot-Thelene and Sansuc have shown the equivalence of being a rational factor 
and being retract rational in the special case of function fields of algebraic tori. We 
show that in general a rational factor must be retract rational (Theorem 1). In Section 
2, after giving an elementary proof of the result of Colliot-Thelene and Sansuc, we 
explicitly determine both factors for a non-trivial family of rational factors. 

§ 1. Rational Factors. Throughout this paper k will denote a field. All homomor-
phisms will be &-homomorphisms. We will denote by k^n) the pure transcendental 
extension of k of transcendence degree n. 

DEFINITION 1. If L and K are fields containing k then the total quotient ring of 
L <S>k K is called the local tensor product of L and K over k and is denoted by 
L xk K. 

DEFINITION 2. A field L containing k is said to be a k-rational factor (or simply a 
rational factor) if there is a field K containing k such that L x^ K = k^ for some n. 

A rational factor is, of course, regular and unirational over k. Any stably rational 
extension is a rational factor. (L is stably rational if L(m) = k^ for some m and n.) 
In [2] an example is given of a stably rational extension that is not rational so not all 
rational factors are rational. We will present other examples later. 

A related concept is that of retract rationality. 
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DEFINITION 3. A field L containing k is retract rational if there is a k-algebra 
T whose quotient field is L such that T is a retract of k[x\1... ,x„](l/w) for some 
variables jci,...,jcn and w G k[x\,... ,xn] (i.e. there are k-algebra maps i : T —> 
&[jti,... ,xn](l/w) and j : K[x\,... ,xn](l/w) —-> T such that j o / = id). 

Definition 3 is due to Saltman and some of the basic properties of retract rational 
extensions can be found in [6] and [7]. 

THEOREM 1. If L is a rational factor then L is retract rational. 

PROOF. Suppose L xk K = k^ — ^(JCI,...,JCW). Choose an affine T\ so that 
T[ has quotient field L and w\ G &[xi,... ,x„] so that T\ Ç k[x\,...,xn](l/wi). 
Now L xk K xk L = L(n) = L(y,...,yn). Choose u G T{[yu...,yn] so that 
T\ Ç ^[jci,...,jcn](l/w) Ç T\[y\,.. .,yn](l/u). Now choose a\,...,an G T\ so that 
u{au...,an) = a ^ 0 and define j : Ti[yu...,yn](l/au) —> ^ ( 1 / a ) byy(ji) = «/ 
for / = 1 , . . . , n. Then j restricts to a retraction from k[x\,... ,xn](l/w) —» T where 
w = aw\ and 7 = T\(l/a). D 

It is unclear at this point as to whether the converse of Theorem 1 holds although 
there is some evidence for it. We present this evidence in the next section. 

§2. The Fixed Field of a Group Action. Let G be a finite group and let M be a 
finitely generated Z[G]-module which is free as an abelian group. Such an M will be 
called a G-module. A G-module P is said to be a permutation module if the action 
of G permutes the elements of some basis for P. 

Considering M as a free abelian group we can form the group algebra k[M], k(M) 
will denote its quotient field. G acts naturally as a group of automorphisms on k(M) 
and we are interested in the structure of the fixed field, k(M)G. 

A closely related construction is the function field of an algebraic torus. In this 
situation G is the Galois group of a Galois extension L of k and our function field is 
L(M)G, the fixed field of G acting on L(M). The difference here is that the elements 
of G also act on the coefficients of the rational functions. A fundamental tool in the 
study of algebraic tori is the following: 

THEOREM 2. Suppose that L is a Galois extension of k with Galois group G and P 
is a permutation module. Then L(P)G = k^ for some n. 

PROOF. See [4], Proposition 1.4, p. 303. • 

The following result of [3] is the basic motivation for this paper. We present an 
elementary proof. 

THEOREM 3. Suppose that M is a G-module and L is a Galois extension of k with 
group G. Then L{M)G is retract rational over k if and only if L(M)G is a k rational 
factor. 

PROOF. By theorem 1 we need only prove that L(M)G retract rational implies that 
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L(M)G is a ^-rational factor. Assume that there is an affine T with quotient field L(M)G 

and maps / : T —* k[x\,... ,xn](l/w) and j : k[x\,..., xn](l/w) —> T with j oi = id. 
Since L[M]G also has quotient field L(M)G, there is an s G L[M]G and t € T such 
that L[M]G(l/s) = 7(1/0- Thus we get 

L[Mf(l/s) — * [ * b . . . , JcKl/nv) — L[M]G(l/s) 

where the composition is the identity. Tensoring with L over k we get 

L[M](l/s)-*L[xu...,xn](l/tw)-^L[M](l/s) 

where the composition is the identity and the maps respect the G-action. 
Let N = (L[M](l/s))*/L* and P = (L[M](l/s))*/L* where * denotes the group of 

units. N and P are G-modules and the above sequence yields a retraction of P onto N 
so we get P = N 0 N' for some G-module Nf. But P is a permutation module. (The 
set of distinct prime factors for tw forms a basis for P and the action of G permutes 
this basis because tw is fixed by G.) 

Now applying [8, Lemma 7, p. 151] to L[M] and L[M](l/s) we get an exact 
sequence 

where Q is a permutation module. Thus 

L{N)G ^ LiM 0 <2)G [4, Proposition 1.5 p. 304] 

But 
L(P)G ^ L(N 0 N ;)G ^ L(M ® Q 0 N7)G = L(Mf xR L(Q 0 Af')G 

(The last equality holds since tensoring either side with L over k yields L(M0g0N / ) . ) 
Hence, L(M)G is a rational factor by Theorem 2. • 

To get further examples of rational factors we turn to the fields of the form k(Z[A])A 

where A is a finite abelian group. Saltman has shown in [6] that if the characteristic 
ofk^21 the exponent of A is 2rm with m odd, & is a primitive 2r root of unity, and 
k(£,2r)/k is a cyclic extension then /:(Z[A])A is retract rational (the conditions above 
are satisfied, for example, if k = Q and 8 | \A\). We will show that these fields are, in 
fact, rational factors and explicitly determine the other factor. Using Theorem 1 we 
get Saltman's result as a corollary. 

LEMMA 1. Let H and G be finite groups. Then k(Z[H x G])HxG and k(Z[H])H xk 

&(Z[G])G are stably isomorphic. (Note that the transcendence degree of k(Z[H x 
G])HxG/k is \H\ • \G\ while that of k(Z[H])H xk K(Z[G]G is \H\ + \G\ so they are 
not, in general, isomorphic.) 

PROOF. k(Z[H x G]) = k(xh,g | Qi,g) G H x G), k(Z[H]) = k(xh \ h e H) and 
k(Z[G]) = k(xg | g G H) for some variables x^g1Xh and xg. Let L = k({xh \ h G H}, 
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{xg | g e G} , {xh# \(h,g)EH x G}) and K = k({xh \heH},{xR\g G G}). Then 

we have Figure 1. 

K k(l[H x G]) 

FIGURE 1 

The natural projection H x G —• / / and H xG —+ G define a faithful action H xG 

on AT. Clearly, / ^ / / x G contains ^ Z f / / ] / 7 x* £(Z[G])G . But K is of dimension | / / | • \G\ 

over both of these fields. Hence, they are equal. By Theorem 2, LHxG is rational over 

both KHxG = k(Z[H])H xk k(Z[G])H and k(T[H x G])HxG. D 

NOTATION. By Ln we will mean L xk L xk L xk ••• xk L, the product taken /i 

times. 

THEOREM 4. Suppose that A is a finite abelian group and that t(A) is the highest 

power of 2 dividing the exponent of A. Assume k(£r(A)) is a cyclic extension of k 

where ^r^) is a primitive r(A) root of unit and assume that the characteristic of 

k ^ 2. Then k(Z[A])A is a k-rational factor. Moreover, there is an integer w so that 

(k(Z[A]A)w ^ k(m) for some m. 

PROOF. By the proof of [4, Corollary 7.5, p. 322] there exists an n such that 

k[Z[An])A" is rational over k. Thus, by Lemma 1, (k(Z[A])A)n is a rational factor. If 

we choose s so that s -n- \A\ â \A\n then (k[Z[A]A)sn will be stably rational and hence, 

by [4, theorem 6.4, p. 320] will actually be rational. • 

COROLLARY 1. If A = C47, and k = Q, the rationals, then K = k(Z[A])A is a 

rational factor that is not stably rational. Furthermore, Kw is rational for some w. 

PROOF. Follows from theorem 4 and [8]. • 

There are many other examples of groups A with Q(Z[A])A not rational and hence, 
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many examples of rational factors that are not stably rational. In fact, if A — Cp* where 
s ^ 2 and ps <£ {22,3m, 52,72 | m € Z, m ^ 2} Lenstra has shown that Q(Z[A])A is 
not rational. 
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