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Abstract

In this note, for any given simple group obtained from an orthogonal or unitary group of non-
zero index, by a procedure similar to the construction of Chevalley groups and twisted groups,
we construct a simple group which is identified with the given simple classical group. The simple
groups constructed in this note can be interpreted as generalized simple groups of Lie type. Thus
all simple groups of Lie type of types An, By, Cn and D, and all generalized simple groups of
Lie type constructed in this note exhaust all simple classical groups with non-zero indices.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 H 20.

In [3], by a similar method to that used in [4), [6], [2], we constructed a
family of simple groups associated with the Satake diagrams. The simple
groups associated with the Satake diagrams of types AIII, BI, DI are identified
with some simple groups obtained from the orthogonal or unitary groups
corresponding to the forms whose Witt indices and the anisotropic kernels
were not considered explicitly in [3]. In general, the simple groups of Lie
type of the types A,, B,, C,, D, are the linear and symplectic groups, and
orthogonal and unitary groups corresponding to the forms whose Witt indices
are sufficiently large. The remaining simple classical groups are not Chevalley
groups or twisted groups, that is, the simple groups of Lie type. In this
note, for constructing the remaining simple classical groups, we consider Witt
indices and the anisotropic kernels of the forms carefully and we get a method
which is similar to the method of [4], [6] and [2], and is more explicit than the
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method of {3]. By this method, for a simple classical group corresponding to
a given form, we construct a simple group which is identified with the simple
classical group. The simple groups constructed in this note can be interpreted
as generalized simple groups of Lie type. It follows that all simple groups of
Lie type of types A,, B,, C, and D, and all generalized simple groups of
Lie type constructed in this note exhaust all simple classical groups with
non-zero indices. Furthermore, in this note, we prove that every generalized
simple group of Lie type has a “quasi-Bruhat” decomposition which is a
generalization of the Bruhat decomposition of the simple groups of Lie type
and has a (B, N) pair. Thus, in this note, we prove that every simple classical
group has a “quasi-Bruhat” decomposition and has a (B, N) pair also.

Let K be a field of characteristic not equal to 2.

Now, we shall consider the Witt index and the anisotropic kernel of a
Hermitian form or of a quadratic form.

(I) Let K be a field such that there is a non-trivial involutive automorphism
o of K. For each t € K, we write a(t) = . Let V' be a vector space of di-
mension n+ 1 over K endowed with a non-singular Hermitian scalar product
which determines a Hermitian form f. We denote by v (or v(f)) the Witt
index of f. Then the Hermitian form f relative to the basis B = {vy,...,v,}
has the form:

f = XoXn + XnXg + X1 Xp—1 + Xp—1X1 + - + Xp—1 Xn—p+1 + Xn—p+1X0—)

+ P1X Xy + VaXy 1 Xyl + 0 F Pt Kok X ks
k=n-2v, vi€K, a(y) =17 i=1,....k+1.

It is clear that (y,72,...,7+1), denoted by Ag(f), is associated with the
anisotropic kernel of the form f. Clearly, we have Ef:ll yitit; # 0 for all
(Il,tz,...,tk+|) (S K(k+l), (tl,tz,...,tk_H) #0.

(II) Let V be a vector space of dimension n + 1 over K endowed with a
non-singular symmetric scalar product which determines a quadratic form f.
We denote by v (or v(f)) the Witt index of f. Then the quadratic form f
relative to the basis B = {vy,...,v,} has the form

S = X0Xn + X1 Xn—1 + -+ + Xy 1 Xn—yr1 + N1 X2 + y2x3+, +0 )’k+1x3+k,
k=n—2v, p €K, i=1,... k+]l.

It is clear that (y,72,...,7k+1), denoted by Ag(f), is associated with the
anisotropic kernel of the form f. Clearly, we have Zf:ll yit? # 0 for all
(L1, 8255 tiyy) € K(k'H), (t1,t25 o5 tiy1) # 0.

We will use the notations defined in [1] without explanation.

Henceforth, we fix a form f which is a Hermitian form of a quadratic
form and we denote by v the Witt index v(f) of f.

https://doi.org/10.1017/51446788700031190 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700031190

[3] Classical groups 55

Let B = {vg,vy,...,U,} be a basis of vector space V¢ of dimension n + 1
over C. Relative to the basis B, each linear transformation of V¢ can be
expressed as an (n + 1) x (n + 1) matrix over C. Let L be the Lie algebra
of all (n + 1) x (n + 1) matrices of trace zero over C. Then L = A4,. Let
e;; be the elementary matrix with (i, j)-coefficient 1 and other coefficients
Oand hijj = e;;—e€;;, 0 < i,j < n,i# j. Leth be the subalgebra of all
diagonal matrices in L. It is clear that L = h + }_,,; Ce;; is a root space
decomposition of L where Ce;; is the root space of L corresponding to the
co-root h;j, 0 < i,j < m, i# j. Clearly, h is a Cartan subalgebra of L and &
is a subspace of L spanned by {h;;, 0 <i,j <n,i# j} over C.

Let By = {ep,ei,...,e,} be an orthonormal basis of a Euclidean space
of dimension n + 1. It is convenient that we denote by e; — ¢; the root
corresponding to the co-root h;;, 0 < i, j < n, i # j. Thus, the root system
® of L relative to & can be expressed in the form {e; —¢;,0 < i,j < n,i # j}
and A = {e¢; — e;41,0 < i < n— 1} is a fundamental root system of .

Let © be the map of By defined by B(e;) = —e,—;,0(e,—i) = —€;,0 < i <
v—1,8(¢j) = —ej,v < j < n—wv. Clearly, © can be extended as a linear
transformation of 4 which is denoted by © also, and © = twy where 7 is a
non-trivial symmetry of the Dynkin diagram of A and wq is an element of
the Weyl group of ®. For each r € ®, we define 7 = 6(r) and r' = %(r + F).
Let Ag = {r € A;r’ =0} and @y = {r € ®;r' = 0}. A Dynkin diagram of A is
called the diagram of form f if every root of Ay is denoted by a black node
and every root of A* = A\Ay is denoted by a white node, and two distinct
roots r; and r; of A* are joined by a curved arrow when r| = rj. Clearly, the
linear transformation © of /# and the diagram of form f which is identified
with the Satake diagram of type AIII given in Table I are determined by v.
We define @* = ®\Dy; ;= {re ®*;r =7}; @), = P*\®; @y, = {re ®yy;
r+7e®}; ®g = O1\Prip; Pip = {r + 7, r € Py1p}; Pra = O\ Py,

For Ao(f) = {y1,72,---» Yk41}> kK = n — 2v, we define

Ao = diag(y1, 72,5 Yk+1)-
Let J, be the v x ¥ matrix

and let A be the matrix
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Clearly, Cp{h;i+1,0<i<n-1;¢;;,0<i,j<n,i# j}isaChevalley basis
of L. Let Lz be the subset of all linear combinations of the elements of C,
with the coefficients in Z of rational integers and Ly = Lz ® K (see page 62
of {1]). We define a transformation pg of Lk by pg(M) = —AM'A~!, for all
M € L. Clearly, pg is an automorphism of Lyx. Since 4’4A~! = I we have
pé(M ) = M for all M € Ly, so p = I where I is the identity map.

Clearly, @y, = {£(e;—e;),i =0,...,v—1,v+k+1,...,n, j=v,...,v+k}
and ®, UDy, = {x(e; —€;),i,j =0,...,v — LLv+k+1,...,ni < j},
so we have pg(e,) = —k,e;, r € O, ¢,,e, € C, where K, € K satisfy the
condition (A): AL k, =1 if re ®;,, Udy; 7: = yj‘* if r = Ale; — €j) € Py1p,
J=v,...,v+k,i=0,1,...,v-1Lv+k+1,...,ni=1lor -1 Al Kk =1
and k.k_, =1 forall r € ®.

We may summarize the results mentioned above as follows.

PrOPOSITION 1. Let f be a Hermitian form or quadratic form such that
v(f) = v and Ao(f) = (Y1,725---»Yk+1)- Then there exist a Chevalley basis
Cp={h,,r€eA; e,re®} of L =A,,n=2v+k and an involutive automor-
phism pg of Lx = Lz ® K such that pele,) = —k,e_s, r € ®, e,, e; € Cy, where
k, € K satisfy the condition (A) mentioned above.

Henceforth, we denote by F the non-trivial involutive automorphism o
of K if f is a Hermitian form, we denote by F the identity transformation
I of K if f is a quadratic form, and we write F(t) =  for any t € K. We
denote by G the Chevalley group L(K) = (x,(t) = exp(tade,); r € ®, ¢t € K).
Clearly, F can be extended to an involutive automorphism F of G in this
way: F(x.(1)) = x.(f), r € ®, t € K, Moreover, the involutive automorphism
pe of L can be extended to an involutive automorphism of G (denoted by
pe also) in this way: pg(x,(t)) = x,(=kt), r € ¥, t € K. We define an
automorphism g of G by o = pgF, so a(x,(t)) = xi(—k/d), re ®,t € K
because k, = k, for all r € ®. Obviously, we have p3 = I and F? = I and
peF = Fpeg, so a2 = I. Thus ¢ is an involutive automorphism of G.

We define some notation and terminology which will be used later.

M If re ®,, X}(t) = x,(1),t €K, = {t € K;T = -1}, W! = w,; h}(v) =
h.(v),ve K" ={veK;v=uv};, N(u)=n,(u), ue K} = K,\0.

(Ia) If r € @114, X} (2) = X (O)%r(~0), t € K, = K; W! = wywy; b} (v) =
h,(V)he(D), v € K}' = K,\O; N (1) = n,(u)n,(—@), u € K} = K,\0.

(Hb) Ifre (D11b9 Xrl(t) = xr(t)xr(_krt_)xr+r(—%Nr,rkr(tt_)’ te K, =K,
W) = wpp, hlL(V) = h(v)he(D), v € K}' = K\O; N (u) = h,(u)n,nen,,
ue K.

For each r € ®*, we write r' = 1(r+F) and define I,(r) = {s € I(r);s > 5},
where I(r) = {s € ®*;s' =nr', n=1, 1 or 2}.
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The following statement (B) is easily verified.

B Ifr=24>ej—eg), j=0,1,...,.v—1,g=n—j,re®,, A=1or -1,
I,(r) = {I',‘ =A(ej—e,,_1+,-), i=1.. . k+1;r= Ip, D= k+1+ l},
I(r)y ={ri=Ale; —ey—14:), Fi = Ale,_14+i — &),

i=1,...,k+1r=r,p=k+1+1}.
(Blla) If r € ®y)4, I1(r) = {rp}, rp, = r or Faccordingtor > ForF>r, p =
L, I(r)={r,F} (r #F).

(BIIb) If r € ®yyp, [1(r) = L1 (r+ ), I(r) = I(r + F), r + F € ®y,,.

For any r € ®@*, we define K,y = K, x --- x K,,, X,(T) = [I"_, X}(t:),
T = (t1,t2,...,1,) € K, and D(T) = T¥ .7, We write N} = n,n, if
r € ®14, N} = n,npn, if r € ®,y, N} = n,(up), up being a fixed element of
K} ifr e ®;and K; # 0. Wedefine W! = (w!, r € ®*), N' = (N}(u), r € ®*,
ueK)iH'=N'NnH, U' ={ueU,o(u)=u}, V! = {veV,ow)=uv}
G'= (UL VY, Gy = (Xa(t), a €Dy, t € K; H), Y! = GoNG.

Clearly, for any form f given by (I) or (II), the group G! is determined by
v(f), Ao(f) and K, F, so we denote by A,(v(f), Ao(/); K, F) the group G'.

We denote by ®* (respectively ®~) the positive (respectively negative)

root system containing A (respectively —A), clearly, we have ®* = —®—.

We define @*+ = @* NP+ and P*~ = —@*+, it = {r € O**;r > 5,

sel(n}and Z;” = -Z;* A; = {reA*r>r} and ;" = {re ®**;r > r}.

Let Wy = (w,, a € o) and W} = Won WE.

By [3] we have the following propositions and corollary immediately.

PROPOSITION 2. (a) W! = (W}, r e A}; W).

(b) Let ri,s € ®*. Then there exists w € W' such that (s|,r}) # 0, s =
w(s).

(c) Let s € ®*. Then there exist w € W' and r € A} such that w(s) € I(r).

PROPOSITION 3. (a) Let r € ®;*, s € Lj*, t € K} and T € K(;). Then
X1(0), X(T) € U' and X1 (1), X_s(T) € V.

(b) Each element u of U' (u # I) and each element v of V! (v # I) have
a unique expression in the forms

u=T[x\ ) =] %:,(T)),
rie®it,s; e ek, T € K, Tj #(0,...,0) =0,
i=1L2,...,0,j=12,...,¢,nn<n< - <185 << <5
v =[] XL, () =] X-s(T)),
rié(D;+,sj€Z;+,t,~€K,':,7"jEK(SJ.),T,- #0,i= 1,2,...,1,

J=L2,...mrn<nrn< - <r,5s << <Spy.
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We shall aefine Jy(u) = {r}, i(v) = {-n}; J(u) = {rn,...,rp}; J(v) =
{=ri,...,=n}, Ju)* = {s1,...,8}; JW)* = {=51,...,—Sm}-

CorOLLARY 1. Let r € A} and U, T € K. Let ' = N}u(N})~! and
u" = X_,(U)uX-,(=U), and v' = N}w(N)! and v" = X,(TwX,(-T)
whereu € U' and v € V! satisfy r ¢ J(u)* and —r ¢ J(v)*. Then u',u" € U'
and v',v" € V! satisfy r ¢ J(u')* UJ(u'")* and —r ¢ J(v')* U J(v")*.

For each r € @, we write s = r + 7 and n = N,;. By 6.4.4 and 5.2.2 of
[1], and 5% = 1, for each ¢ € K, we have
Xrl(t) = x,(t)x,(—k,f)xs(%nk,tf)
= X_ (17 Y (=1 xp(—ke D) xe (g kot B 1) X (3 ket x_p (271
= x_ (TR (=Y xp (=3 Ko D) xr (A ket D) x_p (1)
=X (™Y (=t )xos(2nk T YR (2K T
nenex () xg(3nketDx_p 2k T NYx_, (171)
= X (A (=t X2k T A2k
X (YR (™ YYn,nym,
xf(—%k,f)xs(%nk,tf)x_,(t_l)x_;(Zk,_lt_"l)x_,(t"l)
= X (o=t X s 20k T YR (2K )
x_ (YR () x_ (- 3K T)
x_s(Ankttynnen, x_p (20 Y x_p (2K E T Y x_s(2nk e )
= X_,2t " Yannn, X_,(2t71)
where b = h_, (¢ )h_ 2k 1T~ Dh_,(t7Y).
Since X! (), X1,(2t71) € G', we have hn,n,n, € G'. It is easily verified
that h = hL ('), so hL (i ~")n,n,n, € G! where { = ftk,.

By the statement mentioned above and [3] we have the following proposi-
tions and corollary immediately.

ProrosiTION 4. (1) H' ¢ N' c G and N'/H! = W'!,
(2) Foranyre ®*, te€ K,, N\ X,(t)N} = X_,(u), u € K,.

ProPOSITION 5. (a) Lety € Y', he€ H' and n € N'. Then hyh~! , nyn=!
eyl

(b) H' c Y! c G! and for each r € ®*, h!(v)e H', v € K} ".

(c)Letre X} =X;*UX;", TeKyandy € Y. Then yX,(T)y~! =
X,(T'), T e K(,).

(d) Letuce U, veViandy € Y'. Then yuy~' € U and yvy~' e V.

https://doi.org/10.1017/51446788700031190 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700031190

(7 Classical groups 59
COROLLARY 2. U'Y! = Y!U! and B! = U'Y! is a subgroup of G'.

For each r € A}, Ay is said to be connected with r if there is a € Ay such
that (r,a) # 0. We denote by A, the set {r, 7} if Ay is not connected with 7,
and the set Ay U {r,s} if A is connected with r, where s € A* satisfies r # s
and r = s'. All such A, are given in Table II. The following lemma is easily
verified.

LEMMA 1. (a) Let r € A}. Then I,(r) = {s € ®}"; W, (s) e D~ }.
(b) Letr € A} and b € B'. Then b = X,(T)u'y'’, T € Ky, y' € Y! and
u' € U! satisfy N'u'N} = u* € UL

For each r € A}, let ®, denote the root system with the fundamental A,
and let ®; = ¢,\®, N .

Assuming A, # {r, F}, the Satake diagram of A, is given by Case 4 in Table
I of [3] (see Table I, of [3]). We shall use the structure constants for each
pair of ®; which are determined by Case 4 mentioned above in [3] (see page
21 of [3]). In this note, we write k + 1 instead of the n — 1 used in [3] and
p =(k + 1) + 1 instead of the n used in [3].

LEMMA 2. Suppose r € A}, Ii(r) = {ri,r2s..., k1, 7oy and T = (t,..., tp)
€Ky, T#0. Then X_,(T) = X, (T*)N)X(T*")y, ye Y', T*,T*' € K.

ProoF. We shall consider the Cases 1, 2 and 3.

(I) Cases 1 and 2 are just the Cases 1 and 2 of Lemma 1 of [3]. Thus,
by the results of Lemma 1 of [3], our lemma is established immediately for
these Cases 1 and 2.

(II) Case 3 is just the Case 4 of Lemma 1 of [3]. We shall use the notations
used in the Case 4 of Lemma 1 of [3]. By the statement (A), we have k_,, =
y7!foralli=1,2,...,k+ 1. Since T # 0, there is an integer m, | < m <
k+1,suchthat t;,; = - =ty = 0 and ¢t,, # 0. We write f = —y~'f,, and
rp=ro, and tg = $nD(T) +¢, € € K, &€ = —¢, D(T) = &2 y7't:f. Asin
the Case 4 of Lemma 1 of [3] we have
X_o(T) = XL, (o)X, (t1)- - XL, (tisr)

= X_p, (D)X, (tm)X—ry(to)X—r, (-Yl_lt_l )X—r, (t1)
C Xy (_y,-n.l_lt_m—l)x—rmq (tm—l)
= x-’m (t_—l)hrm(_t__l)nrm'x_rm ({_lta)x”o(to)
x—r. (_yl—ltl)x—-rl (tl) toe x—r,,,_. (_7,;l_|t_m—l)x-r,,,_| (tm—l)xr,,. (f_l)yl,
where
y=xp (7' GE ) xp, (& T )
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and
1y = t'"(%D(T) + ne).

Since 9, = yi, an y; # 0 forall i = 1,2,...,k+1 and T # O we have
D(T) =X yitrer #0, 68 = y7';, i = 1,...,k + 1. Since £ = —¢ and
D(T) = D(T) we have t} # 0. Then, by a similar method to that used in the
proof of the Case 4 of Lemma 1 in [3], finally, we have

X_{(T)=X(T*)N!X(T*")y, y €Y', T*,T*' €K, N} =nnn,.

The lemma is established for Case 3, and the proof is complete.
LEMMA 3. Let r € A}. Then B' U B'N]} B! is a subgroup of G'.

ProoF. (1) By Proposition 4 and Corollary 2 we have (N!)~! = hN},
h € H! and B! = (B')~! respectively. Thus we have

(B'N!B')~' = (B")"\(N})~'(B")"' = B'N,B".

(2) In order to prove that B! U B! N!B! is closed under multiplication
it is sufficient to show N!B!'N! c B' UB!N!B'. Let b € B!. Then by
statement (b) of Lemma 1, we have x = N'bN! = X_,(T)u*y* where T €
K and u* is an element of U! as given in statement (b) of Lemma 1,
y* = N!y'N}! € Y!. Suppose T # 0. Then it follows from Lemma 2 that
x = X, (T*)N} X(T*")yu*y*, T*,T*' € K;), y € Y!. Thus by Proposition
5 we have x € B'N!'B!. Suppose T = 0. Then we have x € B!. We
may summarize the results considered above in a single formula as follows:
N!B'N! c BLUB!N!B!.

It follows from (1) and (2) that B' U B' N} B! is a subgroup of G'.

LEMMA 4. Letr € Aj andn € N'. Then B'nB'N!B' c B'nN}!B'UB'nB'.

PRrROOF. Let w be the image of n under the natural homomorphism from
N onto W. Then w € W!. We shall consider two cases separately.

(1) Suppose w(r) € ®*. Let b € B and x = nbN!. Then by state-
ment (b) of Lemma 1, we have x = nX,(T)u'y’N} = nX,(T)n"'nu'y'N} =
X,(T")nN}!u*y* where T € K,), T' € K5), s = MinI(w(r)), and u* is an
element of U! as given in statement (b) of Lemma 1 and y* = N}!y'N! e Y.
Clearly, we have s € Z;*. Thus X;(T") € U' c B!, so B'nB'N!B' C
B'nN!B!.

(2) Suppose w(r) € ®~. Let n; = nN} and w; be the image of n; under
the natural homomorphism from N onto W. Then w,(r) € ®*. It follows
from statement (1) above that B'n;B'N!B! c B'nN!B'. Clearly, we have
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B'nyN!B' c B'n\B'N}B'. Thus B'n|B'N}!B' = B'n\N!B' = B'nB'. By
Lemma 3 we have
B'nB'N!B' c B'nyB'N!B'N}B' c B'n\B'(B' UB'N!B")
=B'nN!B' UB'nB'.
The proof is complete.

THEOREM 1. Let G, = B'N'B!. Then G, is a subgroup of G' and G, = G'.

ProoF. (1) For each w € W! we have w~! € W! so (NI)~! = N!
by Proposition 4. It follows that (B'N!'B!)~! = (B)~"}(N")~" (B! =
B'N'B!.

(2) In order to prove that G, is closed under multiplication it is sufficient
to show B'n;B'ny;B! ¢ G' for each pair n;,n, € N'. By Propositions 2
and 4 we have ny = ngN\N},---N}, r; € A}, i = 1,2,...,h, nj € N', the
image of ny under the natural homomorphism from N onto W being an
element wy of W. Thus we have nj € Y! C B!, so we have B'nB'n,B! C
B'nB'N'B'B'N)B'---B'N)B', r; € A}, i = 1,2,...,h. By Lemma 4 we
have

B'nyB'nyB' c (B'nyB' UB'nN,B")B'N,.B'---B'N, B!
Cc---CB'N'B'.

By statements (1) and (2) above, G, is a subgroup of G!.

Since B!, N! c G,, we have U', V! c G,. It follows that G; = G'.

Let W!* = WI\W,} and N'* = (N}, r € A}). By Propositions 2 and
4, for each w € W!*, we can choose an element n,, of N* such that n,
corresponds to w under the natural homomorphism from N onto W. The
elements n,, for all w € W!* form a set N'*. For each w € W!*, we define
Uy~ =U;nUL

Since ®* N Py = &, by Theorem 1, we obtain the following corollary
immediately.

COROLLARY 3. G' = Upepr- B'nuwB' = Uyepr- U'Y 0y, U™ (disjoint
union).

This disjoint union gives the decomposition of G! into double cosets with
respect to B!. This decomposition of G! is called the quasi-Bruhat decompo-
sition of G'. Clearly, this quasi-Bruhat decomposition of G! is a generalized
Bruhat decomposition of Steinberg groups and Chevalley groups. For each
T e K, T #0, r € A}, we have D(T) # 0 since D(T') defined in this note
is associated with Ag(f). Thus, the group G! constructed in this note has the
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quasi-Bruhat decomposition G! = B! N!B! which is more explicit than the
quasi-Bruhat decomposition G! = B!N!V!B! (not unique) given in [3] for
the groupG' constructed in [3].

Henceforth, we assume K is a field of characteristic p > 5 and assume
v(f) > 2if f is a quadratic form.

By [3], we have the following lemma immediately.

LEMMA 5. Let r,s € ®** such that r' # s'. Then there exists h(x) € H'
such that y(r) = 1, (s} # L or x(s) =1, x(r) £ 1, and x(B) = 1 for all
B € dy.

COROLLARY 4. Suppose f is a Hermitian form and r|,r, € ®** such that
ry # ry and ry # Fy. Then there is h(x) € H' such that x(r\) = £1, x(r;) #
x(r1) or x(r2) = £1, x(n) # x(r2).

COROLLARY 5. Suppose v(f) > 2. Then for any r € ®,;, NZ;*, T € Ky,
T #(0,...,0,t,) there are s, € ®* and u € K, such that

x = X WX(T)X}(~u) = X} (v), s€®iq veEK].

PrOOF. Since r € @, we have ro = r + 7 € ¥y, s0 ry = e, — e, where
m = n— h and h is an integer satisfying 0 < & < v — 1. Then we have
Ii(r) = {r,r,...;r41, 7, = ro} where r; = ejy,—y —€m, i = 1,...,k+ 1.
Since T # (0,...,0,¢,) there exists at least ¢; € K,*j, 1<j<k+1. Since
v(f) = 2 there exists s; = e, — €4, € Oy, where p is an integer satisfying
0L<p<v-1landp # h LetucK;. Then, by 5.2.2 of [1] we have
X, (W X(T)X} (—u) = Xs(Atju) where s = ¢, — e,y € ®yjgand A =1 or —1.
Since ¢; # 0 and u # 0 we have At;u € K}, so the corollary follows.

Using a similar method to that used in [3], by Lemma 5, the following
corollary is easily verified.

COROLLARY 6. Let n € N'*. Then there exists h(x) € H' such that
nh(x)n=' = h(x') # h(x) and x(B) = x'(B) = 1 for all B € Py.

LEMMA 6. Supposey € Y andy # 1. Then

(1) y ¢ Z" where Z! is the centre of G', and
(2) there exists u € U' such that yuy~'u=! = u* # I or there exists
v € V! such that yvy~—'v-1=v* £ L

PrOOF. It is clear that statement (1) and statement (2) are equivalent. We
shall prove statement (1).
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By a similar method to that used in Lemma 6 of [3], the following state-
ment (C) is easily verified.

(C): Suppose y € Z!. Then y = h(xo)ny, w € Wj.

(1) Suppose y € Z! and w # I. Then there exists r € ®,;; such that s # r
and s # F, s = w(r). Then we have X!(1)yX!(—1) # y. Thus we have a
contradiction.

(2) Suppose y € Z! and w = I. Then by statement (C) we have y =
h(xo) # 1. Thus it follows from (4.B) of [3] that there exists r € ®* such that
x0(r) # 1. Then we have X!(1)yX}!(—1) # y. Thus we have a contradiction.

By the results of Cases (1) and (2) mentioned above we have y ¢ Z1.

The proof is complete.

For each r € ®;*, we define X! = {X](?), ¢ runs through K,}.

We shall denote by R! an arbitrary normal subgroup of G' satisfying |R!| >
1.

Using the results mentioned above, by a similar method to that used in
[3], the following lemmas, corollary and theorem are easily established.

LEMMA 7. |[RINU!| > 1.

LEMMA 8. There exists r € ®;* such that |R' N X}| > 1.

LEMMA 9. For every s € ®;*, X! C R'.

CoroLLARY 7. U, V! c RL

THEOREM 2. G! is a simple group.

Clearly, A can be expressed in the form A} = {r;, i € I} where [ is a finite
set of indices. We shall denote by »; the element N,‘i and denote by w; the
element W,} where i € I. We denote by N/} the subgroup of N! consisting of
all elements of N'! which correspond to the elements of W, under the natural
homomorphism from N onto W.

THEOREM 3. The subgroups B!, N! form a (B, N)-pair in G'.

PrOOF. We shall verify that the subgroups B!, N! satisfy the axioms BN1-
BNS5 in Section 8.2 of [1].

(1) By Theorem 1, G! is generated by B! and N'.

(2) It is easily verified that B' N N! = N} and N} is a normal subgroup of
NL
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(3) Clearly, for any i € I, n; corresponds to w; under the natural homomor-
phism from N onto W. Thus we have N!'/(B' N N')= N'/N} = W!/W} =
W'* where W'* is generated by {w;, i€ I}, w} =Iforall i€ I.

(4) By Lemma 4, for any n € N', i € I we have B'n;B'nB' C B'n;nB' U
B'nB!.

(5) By Proposition 4, we have n,X!n; = X!, , i€ 1,50 n;B'n; # B' for all
iel.

The proof is complete.

Let Bz be the set of all linear combinations of the elements of B
= {vg,...,Un} with the coefficients in Z of rational integers and let V =
Bz ®z K. Then V is a vector space of dimension n+ lover K and B® 1 =
{vo®1,...,v, ® 1}, abbreviated to B, is a basis of V. Let Sp, be the set of
all 4 x h diagonal matrices over K and U (respectively W) the set of all upper
(respectively lower) unitriangular matrices of SL,.(K). For each form f
with matrix A relative to the basis B, we define

Ur={TeVU;T'AT = A}; V;={T € V;T'AT = A4};
Hf = {H € SD(,H.l);ﬁIAH = A},

Dy
I,-D, D,
. Ik+l ;Du € SD(V),Dg = DV9DV = DVJV
D, 1, - D,

(I, being the A x h identity matrix).

Yir };qu ESLk+1(K),Du,D5‘€So(u):7’AY=A},

THEOREM 4. Let f be a Hermitian form or a quadratic form with matrix
A (relative to the basis B). Let v = v(f) be the Witt index of f and Ao(f) be
the anisotropic kernel of f. Then

An(”(ﬂsAO(f)’KaF) = PSUn+l(K’f)’ F # Ia F(yl) =7 = l,...,k +1,
if f is a Hermitian form;
A"(V(f)’AO(f);KyF) = PQn+l(K’f)’ F = I,
if f is a quadratic form.
Proor. Clearly, we have 6: M — —A~'M'A for all M € Lk and it has
been shown that G = A4,(K) consists of all the automorphisms of Ly defined
by M - TMT-', T € SL,,(K) for all M € Lyx. We consider which of

these automorphisms 7" commute with ¢. In order for this to be so, T must
satisfy the condition —4~' (T ~'YM'T'A = ~TA-"M'AT~! which implies
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M'T'ATA™ = T'ATA-"M'. As this holds for all M € Lx we must have
T'AT A" = Al for some A € K. Thus T'AT = AA. Suppose T is an upper
unitriangular matrix. Then by comparing the (0, n)-coefficients on each side
we have 4 = 1. Similarly, if T is lower unitriangular a comparison of (n,0)-
coefficients shows that A = 1. Thus the matrices T giving rise to the elements
of U! and V! are precisely the matrices of U, and of V; respectively. How-
ever, SU,. (K, f) is generated by its Uy and V, and Q,, (K, f) is generated
by its Uy and ¥y also (see the Appendix). Thus G!, the group generated by
U! and V!, consists of all transformations M — TMT~!, M € Ly where
T € SU,.1 (K, f) if f is a Hermitian form, T € Q,, (K, f) if f is a quadratic
form. Therefore, G! is isomorphic to PSU,, (K, f) if f is a Hermitian form,
to PQ,, (K, f) if f is a quadratic form. The proof is complete.

For each form f and each n of N, we define (Uy); = {T € U;;nTn"! €
Vr}; and By = UsY; and Ny = H/N. By Theorems 2, 3 and 4 we have the
following theorems immediately.

THEOREM 5. (a) PSU, (K, f) = Upen UrYrn(Up)y, F # I (disjoint
union),
(b) PQuy (K, f) = Upen UrYrn(Uy)y;, F =1 (disjoint union).

THEOREM 6. (a) PSU,, (K, f) has a (B, N) pair (By, Ny).
(b) PQn+l(K$f) has a (B’N) pair (stNf)

‘ k
O—oO0-----=- o—I
TABLE 1
I o) Iz 0 o) I3 & o ——0------- PP
r r T r s
TaBLE 11

REMARK. Suppose Ag = @. Then all the nodes of the Dynkin diagram of
the “K-index” (A, Ag, 0*) corresponding to the form f are white, and therefore
the group G'! = A,(v(f),Ao(f); K, F) is a Chevalley group or twisted group.
Thus PSU,. (K, f) and PQ,. (K, f) are the orthogonal and unitary groups
corresponding to the forms f whose Witt index is sufficiently large. So there
is no semi-simple anisotropic kernel for the form f, so Y! = H! and B! =
U!'H', and B! is a Borel subgroup of G!. Then G! is k-split (Chevalley form)
or k-quasi-split (Steinberg form).
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Suppose Ag # &. Then there are some black nodes in the Dynkin diagram
of the “k-index” (A, Ag, 6*) corresponding to the form f. Thus PSU,(K, f)
and PQ,, (K, f) are the orthogonal and unitary groups corresponding to the
forms f whose witt index is not sufficiently large. There is a semi-simple
anisotropic kernel for the form f, so Y! # H! and B! # U'H!, and B! is
not a Borel subgroup of G'. Then G! is not k-split or k-quasi-split, so G! is
a k-non-split form.

Appendix

In this appendix, we shall prove the following statement.

(A) Suppose n > 5 and v(f) > 1. Suppose f is a Hermitian form (resp.
a quadratic form). Then PSU,. (K, f) = (U, Vy) (resp. PQq(K, f) =
Uy, Vi)

This statement has been used in the arguments proving Theorem 4.

We first assume that f is a Hermitian form.

We shall denote by |M| the determinant of a matrix M. For each basis
B = {vy,...,v,} of V, there exists an (n + 1) x (n + 1) matrix W such that
Ww)=v},i=0,..,n where v; = v;, i = 0,...,v — 1, ¥] = Unyp—j,
i=v,...,2v - 1,9} =v_,4;, i =2v,...,n. Itis easily verified that B* =
{vg,...,v;} is a basis of ¥ and W'W = I and

I,
WlAaw =4*= |1, ]
Ao

Clearly, the matrix A relative to the basis B* has the form 4*. Let f be the
form with the matrix A relative to the basis B. Then f has the form f* with
the matrix A4* relative to the basis B*. Let f;' be the form with the matrix

[, "] relative to the basis B*. Let A € Sp(s1) be such that A, — A; = A

where A = Ap. We denote by Sp the set of all » x (k + 1) matrices over K,
and denote by S,, (respectively S,;) the set of all v x v upper (respectively
lower) unitriangular matrices over K. We define

(1) T(C)=[C Ik+.]’ C e Uy(K, ),

(Is) T(C)) = [Cn - ] . CleSULK.L),
H,

(1) T(H,) =

ﬁ,l—l ] s Hl € Sau,
Iiy
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H,
(ITb) T(H;) = [ " } , HeS,,
Ik+l
PIV Ql T .
(Illa) UYQy) = I, ,  G1€GL,(K), 0, =-0,
| Iy |
>3 -
(Ilb) U¥Q)=|Q: L . Q2 €GL,(K), Q) =-0,,
L Ik+lj _
I, —PAP, P
(IVa) vip) = I, ,  PES,
L _A_FG v |
L :
(IVb) VipP)=|-PBAP, I, P |, P €S,
. ‘Aﬁlz Ik+l.4

D, I,-D,
(V) X(Dy) = I., - D,, Dy N D,, € SD(V), Dg = D”,
Tyt

1,
V) Y(U)= [ 1, . UeGL(K), U'AgU = Ay,
U

I,
(VIs) Y(U;) = [ 1, s U, e SLi,.(K), U_'leUl = Ayp.
U

E

Henceforth, we assume n > 5, 1 < v < 3n.

We denote by G* the group generated by all matrices Y(U;), U'(Q),
U%(Q,), V(Py), V(P,), T(H,) and T(H,) mentioned above.

We shall first show the following statements.

(A1) Let t € K* be such that tt = 1. Then there exists A € K* such that
t=Ai"1

PROOF. Let ¢ be a fixed element of K* satisfying €= —¢c and let Ky = {t €
K;i = t}). Therefore, we have t = a + be, a,b € Ko. Since 17 = a?> — b%¢? = 1

there exist xp, yo € Ko such that 4 = xp + yo& € K* and (xg, yo) satisfies each
of the equations in (A.1.1):

(A.1.1) (@a-Nx-¢e’by=0, bx—(a+1)y=0

It is easily verified that A1 ~! = ¢. The statement (A1) follows.
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() X(D,)eG,
(A2) 2) 1=1X(D,)|=IT@I=IU"Q)
= U @) = [V!(Py)| = [V*(Po)l.
Proor. Since (% 1) = (41)( L, 9)(} 1) statement (1) follows. Statement

01
(2) is clear.
The following statement is easily verified.

Y(O)T(O)Y(U)™' =T(C);  Y()X(D,)Y(U) ' = X(D,);
Y(O)TH)Y(U)™' =T(H), i=12
Y(OHUHQHY(U)™' =UNQ), i=12
Y(U)VIP)Y(U) ' =VIPU™Y, i=1,2.

For each 4 € K*, we denote by I,(1) the 2 x h matrix

Ay

(A3)

and we define

I,(A) : I,
I(3) = [ LAY } ., D= [ L
Ik+l

1k+1(/1)}
(Ad) Let T € SUp (K, f*). Then T can be expressed in the form
(a.4) T = VX(P)T(CY(UnV'(P)X(D,),
where T(C,) and Y (U,) are matrices of types (Ib) and (VIb) respectively.
ProoF. By Theorem 3 of Section 8, Chapter 7 of [5], T can be expressed
in the form
T = VX(P)T(C)Y(U)V'(P)X(D,)
where T(C) and Y(U) are matrices of types (I) and (VI) respectively. Let
= |T(U)|. Then, by (A1), there exists A € K* such that A1 ~! = y,s0 T has
the expression (a,4) where T(C;) = I(A)T(C) and Y(U,) = D(u~ )Y (U). 1
is easily verified that 7(C,) and Y (U;) are matrices of type (Is) and (VIs)
respectively. The statement (A4) follows.

(AS) SU (K, [7) C G*.

ProoOF. By the assertion given in 14.5.1 of [1], all matrices T(C) of type
(Ib) belong to the subgroup of G* generated by all matrices T(H,), T(H,),
UY(Q,) and U 2(Q2) Thus, by (A2) and (A4), statement (A5) follows.

We denote by G* the subgroup of G generated by all UY(Q,), U%(Q),
VY(P), Vi(P,), T(H)) and T(H,) of type (IIT), (IV) and (II) respectively.
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(A6) PSUpi(K, f*) = G".

PrROOF. By (A3), G* is a normal subgroup of G*. Clearly, all the matrices
T(H,) and T(H,) of type (II) belong to PSU, (K, f*). By Theorem 1 of
Section 2, Chapter 8 of [5], all the matrices U'(Q;), U*(Q,), V'(P,) and
V2(P,) of type (III) and (IV) belong to PSU,. (K, f*), so G* is a normal
subgroup of PSU,, (K, f*). Since G* # {I} and PSU,, (K, f*) is a simple
group we have PSU, (K, f*) = G*.

(Aa) Let f be a Hermitian form. Then PSU,.1(K, f) = (Uy, V).

PrROOF. Let M, (respectively M) be the set consisting of all the matri-
ces UY(Q)), VI(P)) and T(H,) of type (Illa), (IVa) and (IIa) (respectively
U%(Q,), V*(P,) and T(H,) of type (IlIb), (IVb), and (IIb)). Clearly, all
the matrices of M, (respectively of M) are upper (respectively lower) uni-
triangular matrices relative to the basis B. Thus, it is easily verified that
Uy (respectively V) coincides with M, (respectively M,) relative to the
basis B. By (A6), PSU,. (K, f*) = (M,, M) relative to the basis B*, so
PSU,. (K, f) = (Uy, V) relative to the basis B. The proof is complete.

We define

Iiyy

By a similar argument to that used proving statement (Aa), in which we
shall take the matrix J(—1) instead of the matrix I(A)D(u~!), 4,u € K*,
AA~! = u, the following statement (Ab) can be established immediately.

(Ab) Let f be a quadratic form. Then PQ,. (K, f) = (Uy, V).
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