
J. Fluid Mech. (2022), vol. 937, A31, doi:10.1017/jfm.2022.103
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In this work, we show that the double-periodic boundary conditions typically applied in
numerical simulations of elastic turbulence can lead to significantly incorrect results if not
treated properly. This is demonstrated by simulating elastic turbulence using the popular
four-roll mill benchmark at different levels of periodicity, namely, 16, 36 and 64 rolls
using the popular Oldroyd-B model with added artificial diffusivity. We find that the initial
onset of elastic turbulence causes a breakdown in symmetry independent of periodicity,
which is characterised by a leading vortex and is known to be attributed to artificial
diffusivity. Beyond this initial transition, the standard four-roll mill case transitions into
a periodic state, a well-known characteristic from the literature. On the other hand, the
cases with higher levels of periodicity quickly overcome the effects of a leading vortex
and experience purely chaotic flow fluctuations, characterised by a broadband spectrum
and steep power law behaviour. Certain qualities of the flow at higher levels of periodicity
are reminiscent of the true solutions of elastic turbulence obtained numerically without
any artificial diffusivity (Gupta & Vincenzi, J. Fluid Mech., vol. 870, 2019). These
results suggest that the well-known periodic states observed for the four-roll mill are due
to insufficient periodicity as the problem transitions into the elastic turbulence regime,
leading to a dominant vortex cycling around all four quadrants of the unit cell throughout
time unable to recover the initial symmetry. This work demonstrates the importance and
caution required when applying periodic boundary conditions in numerical experiments
of the elastic turbulence regime and further emphasises the impact and care required for
artificial diffusivity.
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1. Introduction

Non-Newtonian fluids exhibit interesting nonlinear material properties, which offer a range
of very exciting practical benefits. Viscoelastic fluids, a subclass of non-Newtonian fluids,
are no exception to this. This type of fluid involves mixing polymer additives with a
solvent, which gives rise to interesting time-dependent flow dynamics not experienced
in purely Newtonian flows (Steinberg 2021). It is well known that the addition of these
polymer molecules generates an anisotropic elastic stress contribution that transitions the
flow to a chaotic regime, coined elastic turbulence (Groisman & Steinberg 2000, 2004).
Unlike traditional turbulence, the nonlinearity of this chaotic regime is sourced from
purely elastic instabilities, allowing for enhanced mixing capabilities at vanishingly low
Reynolds numbers, Re � 1. This level of nonlinearity of elastic instabilities is captured by
the Weissenberg number Wi which measures the relative elastic to viscous effects. Due
to its inherent qualities, elastic turbulence has naturally emerged as an obvious solution
to the long-encountered mixing challenges in microfluidics (Groisman & Steinberg 2001;
Gan et al. 2007).

The numerical simulation of elastic turbulence is far from a trivial task. The majority of
previous numerical attempts have involved resolving the polymer field through constitutive
polymer models, such as the Oldroyd-B model (Oldroyd 1950) and FENE-P model
(Peterlin 1961). Perhaps the greatest numerical difficulty encountered when solving either
of these models arises due to the well-known high-Weissenberg-number problem (Alves,
Oliveira & Pinho 2021). The excessive stretching of polymer molecules at high Wi
numbers, a characteristic of elastic turbulence, leads to steep polymer stress gradients,
which can quickly overwhelm numerical solvers if not treated correctly. These numerical
issues can be partially alleviated through the use of high-resolution discretisation
schemes (Kurganov & Tadmor 2000; Vaithianathan et al. 2006), enforcing strict polymer
requirements (Vaithianathan & Collins 2003) and the inclusion of a global artificial
diffusivity term in the constitutive equations (Thomases 2011; Gupta & Vincenzi 2019).
However, because the elastic turbulence regime is driven purely by elastic instabilities, the
global artificial diffusivity term has the potential to significantly influence the numerical
solutions, which can lead to an incorrect physical interpretation of the chaotic regime,
as demonstrated recently by Gupta & Vincenzi (2019). Although not imposing any
artificial diffusivity would lead to an exact representation of elastic turbulence, the steep
polymer stress gradients that develop would require significant grid resolutions and, hence,
computational costs to overcome the numerical stability issues that ensue. In certain
cases these stability issues can be partially alleviated through the local use of artificial
diffusivity in only regions of high polymer stress gradients (Dubief et al. 2005). However,
this localised approach has only been applied to drag-reducing viscoelastic flows with
Re � 1 (Dubief et al. 2005). In the case of limited inertial effects (i.e. elastic turbulence,
Re � 1), Gupta & Vincenzi (2019) argued that global artificial diffusivity has a much
more significant effect on the flow than when inertial effects are more prominent, such
as for elasto-inertial flows where high levels of artificial diffusivity do not alter the flow
behaviour significantly. Furthermore, the additional complexities surrounding the careful
treatment of solid boundaries and multicomponent flow interactions render most previous
numerical studies to simplified flow configurations (Alves et al. 2021). These idealised
benchmark cases attempt to recreate popular experimental periodic flow cases of elastic
turbulence (Arora, Sureshkumar & Khomami 2002; Liu, Shelley & Zhang 2012), and
are often constrained to only two dimensions with fully periodic boundary conditions
(PBCs). Nevertheless, these simplified cases have proved successful in qualitatively and
quantitatively reproducing the main experimental observations of elastic turbulence, which
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Effect of periodicity in the elastic turbulence regime

includes unsteady velocity fluctuations (Gupta & Vincenzi 2019), increased flow resistance
(Berti et al. 2008), a broad range of temporal and spectral frequencies (Berti et al. 2008;
Gupta & Vincenzi 2019) and enhanced mixing (Plan et al. 2017).

Three popular benchmarks with PBCs have emerged as appropriate tests to numerically
simulate elastic turbulence, namely (i) the Kolmogorov forcing scheme (Berti et al. 2008;
Plan et al. 2017), (ii) the cellular forcing scheme (Plan et al. 2017; Gupta & Vincenzi 2019)
and (iii) the four-roll mill case (Thomases & Shelley 2009; Thomases 2011; Thomases,
Shelley & Thiffeault 2011). All three benchmark cases involve imposing a constant
external background force that drives the evolution of the flow through rotating and
counter-rotating cylinders. From the three cases, the four-roll mill has arguably emerged
as the most widely applied benchmark case for simulating elastic turbulence and will
be considered in the current investigation. The reason for selecting the four-roll mill
force is twofold. First, the regime generates a flow structure in which the straining and
vortical regions are clearly separated, similar to the cellular forcing scheme considered
by Gupta & Vincenzi (2019), this feature will turn out useful in highlighting the effect of
periodicity on elastic turbulence. Second, the case is one of the limited but most widely
used benchmark cases for the numerical simulation of viscoelastic fluids, allowing to
investigate the main features of elastic turbulence with simplified PBCs. In their study,
Thomases & Shelley (2009) conducted a numerical investigation into the transition and
onset of elastic turbulence using the four-roll mill case. It was found that at small Wi
numbers (i.e. Wi ≤ 5) the flow was largely slaved to the initial symmetry and extensional
geometry imposed by the background force. Interestingly, at moderate Wi numbers (i.e.
5 < Wi < 9), the flow experienced asymmetry, transitioning to a structurally dissimilar
state dominated by a single large vortex. Beyond this, at even higher Wi numbers (i.e.
Wi ≥ 10), the flow transitioned into a new state dominated by high velocity fluctuations.
This new state showed persistent oscillatory behaviour with the production and destruction
of smaller-scale vortices that promoted mixing. In a separate study, Thomases et al.
(2011) found that within this high-oscillatory regime, the flow dynamics transitioned
from quasi-periodic (Wi = 10) to fully periodic (Wi = 12, 15) and then to non-periodic
(Wi = 20, 30). The numerical results were in partial agreement with popular experimental
investigations of elastic turbulence in cross-channel flows (Arratia et al. 2006), which
also observed two flow instabilities: one in which the velocity field becomes strongly
asymmetric, and a second in which it fluctuates non-periodically in time. However, an
experimental study of the four-roll mill by Liu et al. (2012), which involved using sixteen
rollers observed contrasting results. In their study, it was found that the transition into
the oscillatory state was not a product of flow asymmetry. In fact, the experimental
investigation outlined the differences in lattice geometry (i.e. number of rollers) as a
potential explanation as to the absence of flow asymmetry. Similarly, in a numerical
study by Gupta & Vincenzi (2019) exploring the effect of artificial diffusivity on elastic
turbulence using the cellular forcing scheme, it was found that at high Wi numbers the
flow was largely slaved to the background driving force with distinct areas of vortical
and strain-dominated regions. The investigation confirmed that any flow asymmetry
experienced by the cellular forcing scheme was, in fact, a by-product of the excessive
artificial stress diffusivity implemented to increase numerical stability. The study by
Gupta & Vincenzi (2019) confirmed that the ability to accurately simulate the elastic
turbulence regime is very sensitive to controlled parameters, and although the effect
of artificial diffusivity has been explored in previous works (Thomases 2011; Gupta &
Vincenzi 2019), the role of PBCs in the elastic turbulence regime has been left largely
unexplored.
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The role of PBCs is to replicate the same characteristic flow (i.e. the unit cell) over all
regions of the spatial domain in an infinite system. Given that the fundamental assumption
of all fully periodic problems is an infinite system, the ability to replicate this inherently
unphysical assumption numerically increases in accuracy with a larger number of unit
cells, i.e. by increasing the periodicity. In fact, periodic problems require solving the same
flow at least twice, which provides a great test of whether or not the numerical simulations
can preserve the initial flow symmetry (Lecoanet et al. 2016). Furthermore, in active
matter, such as microswimmers (De Graaf & Stenhammar 2017), it is well established
that a large number of units cells is required to adequately represent PBCs due to a slow
decay of the stresslet flow field. We shall see that, when applied to the four-roll mill case
for viscoelastic fluids in the inertialess limit, the level of periodicity of the background
force n, which dictates the number of four-roll unit cells, greatly influences the late-time
dynamics within the elastic turbulence regime. More specifically, it will be shown that the
use of four rollers (i.e. n = 1) will be inadequate to maintain the background symmetry of
the initial forcing, leading to noticeable qualitative and quantitative differences with the
results obtained using a larger number of rollers. We show that increasing the periodicity
to n = 2, 3, 4 and even 8 (corresponding to 256 rollers) leads to flow regimes that are still
mostly confined to the effects of the background forcing, but transition into purely chaotic
dynamics at later times, reminiscent of the experimental results obtained by Liu et al.
(2012). Moreover, the results at the higher levels of periodicity fail to show any transition
from quasi-periodicity and full periodicity, in contrast to results observed in the current
study (n = 1) and previous studies when using the four-roll mill (Thomases & Shelley
2009; Thomases et al. 2011). In fact, all of the high-periodicity simulations transition
to a purely chaotic state, with any quantitative differences being attributed to late-time
chaos.

2. Numerical method

In the current investigation, we are interested in simulating the behaviour of
incompressible viscoelastic fluids in the inertialess limit. Accordingly, two separate
constitutive equations are required to characterise the hydrodynamic (i.e. solvent
properties) and polymer (i.e. elastic properties) fields. The behaviour of the solvent can
be described through the incompressible Navier–Stokes equations,

∇ · u = 0, (2.1a)

∂u
∂t

+ u · ∇u = −∇p + μsΔu + F + ∇ · σ p, (2.1b)

where the symbols ρ, μs, p, u and F represent the density, the solvent dynamic viscosity,
the pressure, the velocity and the external force contributions. Notably, the right-hand
side includes an additional term, ∇ · σ p, which accounts for the additional polymer stress
contribution.

The constitutive equation for the polymer field involves representing polymer molecules
as two beads (i.e. blocks of monomers) connected by a spring with a distance r. In
this simplified system, the dumbbell springs undergo two processes, which include
elongation due to a velocity gradient, as well as stress relaxation. To numerically model
this description, a rank-2 conformation tensor C describes the average orientation of the
polymer chains at each point in the fluid, C ≡ 〈rirj〉 (Vaithianathan & Collins 2003).
The simplest polymer model that incorporates these physical behaviours is the Oldroyd-B
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model (Oldroyd 1950),

σ p = μp

τp
(C − I), (2.2a)

∂C

∂t
+ u · ∇C = C · (∇u)+ (∇u)T · C − 1

τp
(C − I)+ κΔC, (2.2b)

where the additional Laplace term in (2.2b), κΔC, is the artificial diffusivity. μp and I are
the polymer dynamic viscosity and identity tensor, respectively. A known limitation of the
Oldroyd-B model is the unbounded molecular elongation of polymer molecules, which in
certain flow conditions can lead to unphysical results, as the polymers stretch indefinitely.
To ensure our results are not affected by the numerical limitations of the Oldroyd-B model,
we conducted additional simulations in Appendix A using the FENE-P model (Peterlin
1961), which imposes a maximum finite extensibility for the polymer molecules.

To resolve (2.1) and (2.2), a hybrid scheme from the authors previous study of
viscoelastic instabilities (Dzanic, From & Sauret 2022) is used, comprising of a lattice
Boltzmann (LB) model and a high-resolution finite difference scheme. More specifically,
a single-relaxation time collision LB model with an explicit force coupling scheme is
used to resolve (2.1) based on a mesoscopic description. The polymer contributions to
the hydrodynamic field, ∇ · σ p, are incorporated directly in the LB collision using the
popular ‘pressure method’ (Swift et al. 1996; Gupta, Sbragaglia & Scagliarini 2015). The
polymer solver involves directly resolving (2.2) using a fourth-order central difference
scheme for the spatial gradients and a fourth-order Runge–Kutta scheme for the temporal
evolution, ensuring that the accuracy of the discretisation schemes used lead to smooth
and converged solutions. Given the definition, C ≡ 〈rirj〉, it follows that the conformation
tensor is a symmetric positive definite (SPD) matrix (Vaithianathan & Collins 2003).
However, the accumulation of errors resulting from steep polymer stress gradients at high
Wi can cause this property to be lost, leading to Hadamard instabilities (Sureshkumar &
Beris 1996). To overcome this, instead of solving for C, the Cholesky decomposition is
applied to preserve the SPD property, i.e. C = LLT, where L is a lower-triangular matrix
with elements Lij, such that Lij = 0 for j > i (Vaithianathan & Collins 2003). The positivity
of C is confirmed by evolving the logarithmic transformation of the normal L components
(i.e. ln Lii) (Vaithianathan & Collins 2003). Equation (2.2) is a hyperbolic equation which
lacks any diffusive terms to control the generation of sharp gradients (shocks) that occur at
high Wi numbers. Although the Cholesky-decomposition scheme eliminates the negative
eigenvalues, an additional artificial diffusivity term κΔC (Vaithianathan & Collins 2003;
Gupta & Vincenzi 2019) is added to the constitutive equations (e.g. (2.2)) to smooth out
the steep gradients of C. The level of artificial diffusivity κ is controlled by setting the
Schmidt number Sc = νs/κ = 103 (i.e. κ = 10−4) in all of our simulations as done in
previous studies of elastic turbulence (Thomases & Shelley 2009; Thomases et al. 2011;
Gupta & Vincenzi 2019), where νs is the kinematic viscosity of the solvent. Although this
level of diffusivity was found to affect the elastic turbulent regime for the cellular forcing
scheme (Gupta & Vincenzi 2019), we find that this value with true-periodic-boundary
conditions preserves the background forcing symmetry and late-time chaos dynamics for
the four-roll mill, as is shown in § 3. We also further control the effect of steep polymer
stress gradients by treating the advection term, u ·∇C, according to the high-resolution
Kurganov–Tadmor (KT) scheme (Kurganov & Tadmor 2000; Vaithianathan et al. 2006).

Equations (2.1) and (2.2) are solved within a double periodic two-dimensional domain
x[0, n × 2π]2 on a symmetric square grid with (n × N)2 grid points, subjected to n levels
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of the constant four-roll mill force geometry (Thomases & Shelley 2009),

F (x) = (F0 sin(Kx) cos(Ky), −F0 cos(Kx) sin(Ky)), (2.3)

where the spatial frequency K = 1 is kept constant to admit the four-roll mill geometry
in each unit cell [0, 2π]2 with N number of grid points. As such, the grid resolution
Δx = 2π/N and the level of periodicity, defined through the parameter n ≥ 1, sets the
quantity of unit cells (i.e. n = 1 admits the standard four-roll mill benchmark case)
(Thomases & Shelley 2009; Thomases et al. 2011). This is possible because the four-roll
mill force geometry (2.3) has a reverse-reflect symmetry property, as is required by PBCs.
Here F0 is the force amplitude fixed to F0 = 2U0νsK2, thus resulting in a turnover time,
T = 2νsK/F0, where U0 is the characteristic velocity formally defined further in the
following.

To simulate elastic turbulence using the four-roll mill benchmark a small perturbation
is added to the initial conformation tensor, C(x, 0) = I . Here the same initial perturbation
originally proposed in Thomases & Shelley (2009) is used and, as done for (2.3), repeated
over n-levels of periodicity, i.e.

C(x, 0) = I +
(

δ cos(Ky)ψ(x) −δ sin(Kx) cos(2Ky)
−δ sin(Kx) cos(2Ky) δ cos(Kx)ψ( y)

)
, (2.4)

with δ = 0.01 and ψ(z) = 2 sin(Kz)− 3/2 sin(2Kz), z := x, y. It is noted that, similar
to the four-roll mill geometry (2.3), the initial perturbation (2.4) has the symmetry
reverse-reflect property required by PBCs. In summary, any n case (for n /= 0) yield the
same physical problem, meaning that cases n � 1 essentially solve the same four-roll mill
problem n2 times [O(n2) due to periodicity in both principle axis]. To assess the effect
of periodicity on the flow, we perform simulations for n = 1, 2, 3 and 4, corresponding
to 4 (i.e. the standard case), 16, 36 and 64 rollers, respectively, as illustrated in figure 1.
For typographical convenience, throughout this work these cases will be referred to as R4,
R16, R36 and R64, respectively.

Following previous investigations of elastic turbulence (Berti et al. 2008; Plan et al.
2017), we admit the flow to vanishingly low levels of inertia by setting Re below the
critical value at which inertial instabilities arise, Rec = √

2 (Gotoh & Yamada 1984). The
incompressibility of the hydrodynamic field is also ensured by setting the Mach number,
Ma � 0.3. This allows us to easily retrieve the characteristic velocity, U0 = csMa, which
can be used to obtain νs = U0/ReK. (Note, cs = 1/

√
3 for the LB model used in this

work. For more details, see Dzanic et al. (2022).) To define the behaviour of the polymer
field, we set the concentration using the parameter, β = νp/νs, which measures the relative
polymer viscosity, νp, to the solvent viscosity, νs. The value β = 0.5 will be fixed in our
simulations to match previous numerical (Thomases & Shelley 2009; Thomases et al.
2011) and experimental investigations (Arratia et al. 2006). We control the level of polymer
deformability by the Weissenberg number Wi = τp/T by setting the polymer relaxation,
τp = WiT , which is a direct measure of the polymer elasticity.

To summarise, the investigation will study the effect of the periodicity in the four-roll
mill problem for elastic turbulence, whereby the level of periodicity is controlled by
increasing n. We note, that PBCs are inherently unphysical to begin with and are
idealised assumptions used to simplify more complex systems, even for very high
levels of periodicity. As such, the purpose of this investigation is not to imply that an
accurate or exact level of periodicity exists when simulating elastic turbulence, but instead
demonstrate the effect of different levels of periodicity, especially the numerical artefacts
that ensue at lower levels of periodicity (i.e. n = 1). Simulations will be conducted
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Figure 1. Initial normalised vorticity field of the four-roll mill forcing with (a) n = 1, (b) n = 2, (c) n = 3
and (d) n = 4, which are referred by their corresponding n2 number of rollers, namely, R4, R16, R36 and R64,
respectively.

over n = 1, 2, 3 and 4 (denoted by R4, R16, R36 and R64, respectively) as shown in
figure 1. All simulations will be conducted with N2 = 1282 grid points in a single unit
cell (i.e. total (n × 128)2 grid points) using the Oldroyd-B model (analogous results for the
FENE-P model are presented in Appendix A) at Ma = 0.01, Re = Rec/

√
2 = 1, Sc = 103,

β = 0.5 and Wi = 10. Dependence on Wi is checked by running the same simulations for
5 ≤ Wi ≤ 20. Note, additional simulations with different parameters are reported in the
supplementary material and movies are available at https://doi.org/10.1017/jfm.2022.103
and support the results presented in the following section.

3. Results

First, in figure 2(a) we show the time series of the first component of the conformation
tensor Cxx at the central stagnation point [π,π] at the early stages of the flow, prior to
the onset of viscoelastic instabilities (i.e. 0 ≤ t/T ≤ 400). As expected, all n levels of
periodicity retrieve the exact same evolutions for the polymer field. Initially, the polymers
experience excessive stretching due to the high level of friction between the solvent
and the polymer molecules, reaching a maximum extension within t ≈ 10T . Beyond this
maximum peak, the velocity gradients in (2.2), which drive the polymer stretching are no
longer strong enough due to the transfer of kinetic energy to elastic energy, thus resulting
in a noticeable steady state. Qualitatively, figures 2(b) and 2(c) show that during this stage,
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(a)

100 200 300 400

(b) (c)

t/N

Cxx
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Figure 2. (a) Time series of the first component of the conformation tensor Cxx at the position [π,π] for
the initial steady-state region corresponding to 0 ≤ t/T ≤ 400. Results are compared at different levels of
periodicity, namely, the R4 (black solid), R16 (red solid), R36 (blue solid) and R64 (green dashed) case at
Wi = 10. A representative snapshot of (b) the vorticity and (c) the trace of conformation tensor, tr(C), at
steady-state region corresponding to t = 100T .

the flow is still slaved to the initial four-roll mill forcing symmetry. This steady-state region
begins to break down as early as t ≈ 200T , due to the presence of artificial diffusivity,
causing the polymers to gradually relax back towards their initial equilibrium state (i.e.
C = I). This period of relaxation is reflected by a loss of the initial flow symmetry (as
depicted in figures 3 and 4, and discussed shortly), as observed in previous studies of the
four-roll mill (Thomases & Shelley 2009; Thomases et al. 2011).

The vorticity and the conformation tensor trace, tr(C), contour fields are shown in
figures 3 and 4, respectively, for all n cases at the initial symmetry breakdown at t = 300T
(top row) and within the chaotic elastic turbulent regime at t = 1300T (bottom row). Note,
all results presented hereinafter for higher levels of periodicity (n � 1) are sampled in a
representative unit cell [0, 2π]2, and full domain results are included in the supplementary
material and movies. The top row of figures 3 and 4 show that all levels of periodicity
experience the same initial breakdown in symmetry originally observed by Thomases &
Shelley (2009) and Thomases et al. (2011) and can be attributed to the presence of artificial
diffusivity (Gupta & Vincenzi 2019), which unphysically stretches the polymers into the
vortical regions of the flow, destabilising the initial forcing structure. However, at the later
stages of the unsteady regime, the different periodicity levels contribute to contrasting
qualitative differences observed in the vorticity and polymer fields. For instance, when
observing the vorticity field for the classic four-roll mill case (n = 1), corresponding to
the left column in figure 3, once the flow transitions into the chaotic regime, the spatial
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R4

t = 300T

t = 1300T

R16 R36 R64

0 0.2–0.2 0.4–0.4 0.6–0.6

Figure 3. Contour plots for the vorticity field taken at the initial onset of asymmetry at t = 300T (top row)
and at the later stage corresponding to t = 1300T (bottom row) for each case, from left to right: R4, R16, R36
and R64 at Wi = 10. Note, for the R16, R36 and R64 cases, the vorticity field is extracted for a single unit cell
of size [0 2π]. The full domain contour plots can be found in the supplementary material and movies.

R4

t = 300T

t = 1300T

R16 R36 R64

150 20010050 250

Figure 4. Contour plots for the conformation tensor trace tr(C) at Wi = 10 taken at the initial onset of
asymmetry at t = 300T (top row) and at the later stage corresponding to t = 1300T (bottom row) for each
case, from left to right: R4, R16, R36 and R64. Note, for the R16, R36 and R64 cases, the polymer trace field is
extracted from the unit cell [0, 2π]2. The full domain contour plots can be found in the supplementary material
and movies.

structure of the flow departs from the initial symmetry imposed by the background force
(refer to figures 2b and 2c). However, at the later stages, the R4 vorticity field is largely
dominated by a single leading vortex, which cycles around all of the quadrants of the
unit cell (Thomases & Shelley 2009; Thomases et al. 2011). Only some of the remaining
vortices continue to exist, whereas the remaining quadrants experience small patches of
positive and negative vortices which contaminate the four-roll mill geometry of the base
flow. In contrast, at higher periodicity n � 1, figure 3 shows that the vorticity fields are
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slightly perturbed from the initial symmetry, however unlike the R4 case, the large-scale
structures of the flow are still mostly adhering to the background force. The behaviour
of the polymer field at the later stages also shows the same qualitative differences seen
for the vorticity field in the regimes between the standard level (n = 1) and all higher
levels (n � 1) of periodicity (figure 4 (bottom row)). In particular, in the case of higher
periodicity n � 1, the effect of the rollers on the polymer field is still noticeable. As
a result, highly stretched polymers are found mostly in strain-dominated regions of the
flow, situated in-between the rollers, whereas weakly stretched polymers are located in the
vortical regions, where they are quickly contracted. However, for the R4 case, in figure 4
(bottom left), it is clear that the polymer molecules are no longer strictly stretched along
the incoming and outgoing streamlines of the extensional stagnation points.

These results are similar to the results observed for the cellular forcing scheme at
Sc = 103 by Gupta & Vincenzi (2019), who observed that the flow asymmetry was induced
by artificial diffusivity, suppressing the true chaotic nature of the elastic turbulence
regime. Here, we observe similar results for the four-roll mill, as all four periodic regimes
experience an initial symmetry breakdown at t ≈ 300T due to the presence of artificial
diffusivity (refer to figures 3 and 4 (top row)). However, the breakdown in symmetry is
partly recovered by the higher periodicity cases (i.e. n � 1), as the vorticity and polymer
fields quickly retain the noticeable background forcing effects (refer to figures 3 and 4
(bottom row)). Notably, the background forcing symmetry for n � 1 is not fully recovered,
especially when compared with results without the use of global artificial diffusivity
(Gupta & Vincenzi 2019). This is reflected in figure 3, as some vortical cells are still
slightly perturbed into unphysical regions of the flow, and is largely attributed to the
remaining effects of artificial diffusivity. Nevertheless, the results at the later stages clearly
show that the artefacts induced by artificial diffusivity reduce with increasing periodicity.
On the other hand, the R4 case (n = 1) is severely affected by the initial loss of symmetry
induced by artificial diffusivity and is unable to recover the background forcing symmetry.
The lack of periodicity in both directions causes the single leading vortex to remain
throughout time and cycle around all four quadrants within a unit cell. In fact, an additional
simulation was conducted increasing the periodicity in only one of the principal axis,
specifically x = [0, 4π] and y = [0, 2π] corresponding to eight rollers (denoted R8, see
Appendix B), which resulted in the same loss of symmetry as R4, supporting that this is
an issue with the double-periodic requirements of the flow, as opposed to simply increasing
the quantity of rollers.

Furthermore, we also show that the flow asymmetry is not induced numerically by a
lack of spatial resolution (see the supplementary material and movies) and it is also not
modified by the nonlinearity of the elastic force (see Appendix A). The differences in
behaviour observed across all levels of periodicity are further confirmed in the analogous
animations provided in the supplementary material and movies. Ultimately, we observe
that our current results at higher levels of periodicity are reminiscent of the true solutions
obtained by Gupta & Vincenzi (2019) for the cellular forcing scheme with zero artificial
diffusivity (i.e. symmetric flow with fully chaotic behaviour in the elastic turbulent
regime). Note, given the shared behaviour between figures 3 and 4, the remainder of
the paper predominantly focuses on analysing the polymer field, with analogous results
obtained for the hydrodynamic field.

In figure 5 we compare the fully evolved time series for Cxx at the central stagnation
point [π, π] at Wi = 10 over the period 0 ≤ t/T ≤ 2500. For all of the different levels
of periodicity, it can be seen that beyond the early and steady stages (for which all
n conform, see figure 2), the dynamics of the flow transition into a transient state at
t ≈ 500T . For the R4 case (n = 1), in figure 5(a), this new transient regime first transitions
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Figure 5. Time series of the first component of the conformation tensor Cxx at the position [π,π] taken over
0 ≤ t/T ≤ 2500. Results are compared at different levels of periodicity, namely, (a) R4 (black), (b) R16 (red),
(c) R36 (blue) and (d) R64 (green) at Wi = 10.

into slow oscillations, which speed up over time. In fact, the high-oscillatory behaviour
observed at the later time steps reflects quasi-periodic dynamics. These results are in
full agreement with previous studies of the four-roll mill (Thomases & Shelley 2009;
Thomases et al. 2011), whereby qualitatively the quasi-periodic regime reflects a single
dominant vortex which cycles between the four quadrants of a unit cell, as shown in
figure 3(a). This quasi-periodic regime is also observed for the R8 case in Appendix B
and, albeit different late-time dynamics are obtained compared to the standard R4 case,
the dynamics observed strongly reflect the presence of a leading vortex. Nevertheless, this
further supports that this is a numerical issue with the double-periodic requirements of the
problem, as opposed to simply increasing the number of rollers. Interestingly, for higher
levels of periodicity n � 1, in figures 5(b)–5(d), the behaviour of the transient regime
is completely different. It can be seen that the high-oscillatory regime is much more
chaotic and transitions much more rapidly, showing no emerging periodic flow pattern.
This purely chaotic regime is reminiscent of the countless experimental and numerical
studies of elastic turbulence (Arratia et al. 2006; Qin & Arratia 2017; Gupta & Vincenzi
2019; Steinberg 2021), which also observe highly transient flow fluctuations at excessive
polymer stretching. The study by Thomases et al. (2011) also observed similar behaviour
for the four-roll mill case (n = 1) with higher elastic effects, corresponding to Wi = 20
and 30. However, the high-frequency flow fluctuations of the n � 1 cases observed here
are fundamentally different; a key quality is that these fluctuations albeit perturbing the
initial four-roll vortical structure still mostly adhere to the background forcing effects, as
shown in figures 3 and 4, reminiscent of experimental observations by Liu et al. (2012)
and the recent numerical study by Gupta & Vincenzi (2019). Note, the behaviour of the
hydrodynamic field shows analogous results to the polymer field (refer to Appendix C).

To further characterise the behaviour of the different levels of periodicity within the
elastic turbulence regime, we examine the temporal fast Fourier transform (FFT) of Cxx
(figure 6). We find again that the standard level of imposed periodicity of the R4 case has
a strong effect on the flow (figure 6a). For this regime, as first discovered by Thomases
et al. (2011), the quasi-periodic dynamics observed in figure 5(a) is characterised by
two dominant frequencies, ω1 and ω2, with all other large activated modes being sums,
differences, and harmonics of these two frequencies. On the other hand, figures 6(b)–6(d)
shows that for n > 1, the polymer field experiences a broad range of temporal scales.

937 A31-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.103


V. Dzanic, C.S. From and E. Sauret

(c)

F
F

T
 (

C
xx

)

0

0.5

1.0

1.5

2.0

50 100 200150 250

ω

(×104)
(d)

0

0.5

1.0

1.5

2.0

50 100 200150 250

ω

(×104)

(a)

F
F

T
 (

C
xx

)

0

0.5

1.0

1.5

2.0

50 100 200150 250

ω1

2ω1 ω2 – ω1 ω2 + ω1 ω2 + 2ω1

ω2

(×104)
(b)

0

0.5

1.0

1.5

2.0

50 100 200150 250

(×104)

Figure 6. The temporal fast Fourier transform (FFT) of Cxx at the position [π,π] taken over the chaotic elastic
turbulent regime for the (a) R4, (b) R16, (c) R36 and (d) R64 cases at Wi = 10. The two dominant frequencies
ω1 and ω2 are highlighted for the R4 case in (a).

The broad-band spectrum is characteristic of the chaotic elastic turbulent regime and has
been observed in various previous experimental (Groisman & Steinberg 2000; Pan et al.
2013; Steinberg 2021) and numerical studies (Berti et al. 2008; Grilli, Vazquez-Quesada
& Ellero 2013; van Buel, Schaaf & Stark 2018). Moreover, the multi-frequency oscillating
spectrum was also observed in the experimental study by Liu et al. (2012) of a 16-roll mill
geometry for Wi = 8.42, thus aligning closely with the chaotic behaviour of our higher
periodicity results. Overall, it is clear that the use of only R4 (n = 1) suppresses the true
chaotic nature of the elastic turbulent regime, which is attributed to the lower levels of
periodicity causing the characteristic dynamics of the system to periodically cycle around
the domain.

We further examine this behaviour by investigating the change in dynamics for the
polymer field at different Wi numbers for the R4 and R16 cases in figure 7. It can be
seen that for both cases, the speed and frequency of oscillations increase with the Wi
number, which has also been observed in previous investigations of elastic turbulence
(Arratia et al. 2006; van Buel et al. 2018; Steinberg 2021), however, the dynamics were
observed across an entirely different range. Figure 7(a) shows that the R4 case at Wi = 5
maintains a steady state over time and commences to transition into the transient regime
at Wi = 6, as reflected by the small-amplitude oscillations. At higher Wi numbers the
dynamics of the R4 (n = 1) transition into various periodic states, as discovered originally
by Thomases & Shelley (2009) and Thomases et al. (2011). At Wi = 10 the flow transitions
into the quasi-periodic regime, as discussed earlier, before reaching a fully periodic state
at Wi = 15. Beyond this, at Wi = 20 the polymer field is more chaotic and undergoes
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Figure 7. Time series of the first component of the conformation tensor Cxx at the position [π,π] taken over
the chaotic stages of the flow. Results are compared for the (a) R4 and (b) R16 cases at different Wi numbers.

aperiodic dynamics. In figure 7(b) we see that for the R16 case the transition from
quasi-periodic to fully periodic dynamics is not observed even for a wider range of Wi
numbers. The experimental investigation on the four-roll mill by Liu et al. (2012), which
involved using 16 rollers (i.e. equivalent to n = 2 (R16)), outlined the potential to obtain
richer dynamics based on the lattice geometry. Here, we see that similar to the R4 case,
the regime with higher levels of periodicity (R16 in figure 7b) also undergoes a transition
into the oscillatory regime at Wi = 6. However, the R16 case immediately transitions into
the aperiodic (i.e. chaotic) regime (Wi ≈ 6.5; note, Wi numbers increased at increments of
0.5), whereas the R4 case continues to experience slow oscillations which are followed by
a transition into the quasi-periodic regime for Wi ≥ 9. When comparing the two aperiodic
regimes at Wi = 20, it can be seen that the R16 case is more chaotic, experiencing higher
frequency fluctuations in the polymer field, as well as a faster transition into the chaotic
regime. Qualitatively, the R16 regime at Wi = 20 is no longer slaved to the background
forcing and experiences richer dynamics which resemble the R16 experimental results by
Liu et al. (2012). Overall, these results show that the differences in dynamics between the
R4 case and the solutions with higher levels of periodicity (n � 1) observed in the present
work are not exclusive to the viscoelastic regime corresponding to Wi = 10 but exist across
a broad range of Wi numbers. In fact, our present results suggest that the four-roll mill
benchmark considered in truth does not involve any periodic states. To be clear, this may
be limited to the physical parameters considered and the range of Wi investigated here.
The periodic states observed experimentally by Liu et al. (2012), may, in addition, be
attributed to additional instabilities in the short transverse axis (Gutierrez-Castillo, Kagel
& Thomases 2020), which is neglected in the present two-dimensional study. If this is
the case or if periodic states exist in two dimensions, is an intriguing and open question,
however, is beyond the purposes of this work.

As first observed by Gupta & Vincenzi (2019), the initial breakdown in initial symmetry
in the elastic turbulence regime is a product of the artificial diffusivity which spreads
the polymer stress into the vortical regions of the flow. To further understand the onset
and evolution of the initial symmetry breakdown observed for the different levels of
periodicity, we compute the normalised conformation tensor trace (X ), i.e.

X(x∗, t) = trC(x∗, t)
maxx∗[trC(x∗, t)]

, ∀ x∗ ∈ [0, 2π]2, (3.1)
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R4

t = 500T

t = 1000T

t = 1500T

t = 2000T

R16 R36 R64

0 0.2 0.4 0.6 0.8 1.0

Figure 8. Contour plots of the normalised conformation tensor trace (3.1) deviation (X − X |steady) ≥ 0 at Wi =
10, where X |steady is taken at t = 100T . Results were obtained for each case (from left to right): R4, R16, R36
and R64 at the time steps (from top to bottom): t = 500T , t = 1000T , t = 1500T and t = 2000T . Note, for the
R16, R36 and R64 cases, the contour field is extracted in the unit cell [0, 2π].

and plot the deviation from steady state by (X − X |steady) ≥ 0 in figure 8. The steady-state
normalised trace, X |steady, is obtained at t = 100T , corresponding to the steady-state
four-roll mill viscoelastic symmetry in figures 2(b) and 2(c), and serves as the reference
flow symmetry. This deviation from this reference symmetry allows for the additional
asymmetric flow contributions over time for each level of periodicity to be assessed.
Figure 8 illustrates that at the early stages of the initial flow asymmetry (top row), all
n levels of periodicity lead to the development of a single-leading vortex within each unit
cell, with the initial flow symmetry being largely indistinguishable. As discussed, this
initial loss of symmetry is attributed to the artificial diffusivity, which causes polymers
to be unphysically stretched within the vortical regions of the flow and resembles the
results observed by Gupta & Vincenzi (2019). At higher levels of periodicity n � 1, the
flow quickly overcomes the initial effects of the single-leading vortex, mostly recovering
the main flow features of the four-roll mill viscoelastic problem. The additional polymer
stretching contributions observed for the R16, R36 and R64 cases at t ≥ 1000T is mostly
located in the vicinity of high-strain regions of the polymer field and are attributed to
the flow being perturbed by the high-frequency fluctuations, as observed in figure 5. It
is clear that the n = 1 (R4) case (far left column) loses all remnants of the background
forcing symmetry, as the polymers molecules are no longer strictly stretched along the
strain dominant regions of the flow, with large patches found in the unrecognisable vortical
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Figure 9. (a) The normalised conformation tensor trace X |steady at steady state (t = 100T) including
illustrations of the four quadrants Qq used to compute the deviation from the four-roll mill symmetry, Ĉ (3.2).
(b) A representative snapshot of X(Q2) for each n case at t = 1850T .

regions of the flow, that no longer follow the initial forcing structure (refer to figures 1 and
2). In addition, the flow is unable to recover the initial symmetry, as the leading vortex
remains and cycles between the remaining quadrants throughout time, corresponding to
the quasi-periodic dynamics observed in figure 5(a). These results further confirm that
this is induced by artificial diffusivity as the flow transitions into the unsteady regime
leading to deviation from unicity and, in turn, insufficient periodicity of the forcing at
n = 1. The overall behaviour of the R16, R36 and R64 cases follow the underlying motion
of the background forcing with minor deviations observed for the different cases being
attributed, in part, by the late-time chaos of the elastic turbulence regime, as well as
the residual artefacts of artificial diffusivity, whose effects reduce with increasing n. To
quantify the deviation from the background forcing symmetry, we consider that C stretches
along the strain dominant regions of the flow, away from vortical regions of the flow, for
which the four-roll mill has four quadrants where vorticity dominates in the unit cell. As
such, we define symmetric square subdomains (Qq) for each of the four quadrants (q),
∀ q,Qq � [0, 2π]2 with square length (area) of �2 = (1

2π)2 (equivalently, in grid points
equate to (1

4 N)2). We define these specifically by considering the two arrays (ζ1 and ζ2) of
equal length �, ζ1 in [π/4, 3π/4] and ζ2 in [5π/4, 7π/4], where for each q quadrant (in
clockwise order), Q1 = (ζ1, ζ2), Q2 = (ζ2, ζ2), Q3 = (ζ2, ζ1), Q4 = (ζ1, ζ1), as depicted
in figure 9(a). In figure 9(b), a representative snapshot of the X field in the second quadrant
Q2 at t = 1850T for the different levels of periodicity is provided, which further highlights
n � 1 cases ability to partly retain the initial vortical structure. More specifically, the R4
case leads to a largely unrecognisable vortical region, which departs from the initial forcing
structure illustrated in figure 2. On the other hand, although the vortical region retained
by cases with n � 1 is partly distorted due the effects of global artificial diffusivity, the
numerical artefacts clearly reduce with increasing periodicity levels. We compute the
parameter,

Ĉ(t) = 〈|X(Qq, t)− X(Qq)|steady〉V , (3.2)

where 〈·〉V denotes the spatial average overall all four quadrants Qq (total spatial area is
4 × �2). Equation (3.2) calculates the average absolute deviation between the normalised
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Figure 10. (a) Time series of Ĉ(t) for R4 (black), R16 (green), R36 (blue) and R64 (red). (b) Zoom of the
time series (a) in 200T ≤ t ≤ 700. (c) The temporal mean 〈Ĉ〉t taken over 330T ≤ t ≤ 2200.

conformation tensor trace (3.1) at steady state X |steady and X in Qq for t ≥ 100T .
Therefore, Ĉ > 0 correspond to deviations from the four-roll viscoelastic symmetry (refer
to figures 2b and 2c). The time series, 100T ≤ t ≤ 2200T , of Ĉ (3.2) in figure 10(a)
illustrates that all n levels of periodicity retrieve the same behaviour up to t ≈ 350T .
In the steady regime 100 ≤ t < 200T the symmetry is unchanged, Ĉ = 0, where Ĉ > 0
for t � 200T which is unavoidable as the flow starts to deviate from the four-roll mill
symmetry due to artificial diffusivity, as discussed previously in figures 3 and 4. The
largest deviation occurs at t ≈ 330T , at which point the flow then transitions into the
unsteady regime and all n cases start to deviate. To highlight some of the key features
during this transition, a zoom 200T ≤ t ≤ 700T is provided in figure 10(b). The R4 case
is unable to retain the correct background symmetry of the problem, transitioning first
into a slow oscillatory regime at t ≈ 600T , which is followed by a faster periodic state at
t ≈ 1300T . The quasi-periodic late-time dynamics of the symmetry deviation corresponds
to the single leading vortex in figure 3(a), which periodically cycles around all four
quadrants throughout time. Once again, this further confirms the behaviour is induced
by the inadequate level of periodicity of the problem at n = 1, which impose the periodic
dynamics observed for the four-roll mill. On the other hand, the cases pertaining to higher
levels of periodicity n � 1 are known (from previous results, e.g. figure 8) to retain some
effects of the background forcing symmetry of the problem. In fact, it can be seen that the
time taken to overcome the single leading vortex asymmetry (i.e. a single leading vortex
within each unit cell) and partly recover the initial roller effects decreases with each level
of increasing periodicity. This can be indicated by when they start to deviate away from
the standard (R4) solution, which for R16, R36 and R64 occurs approximately at 520T ,
400T and 360T , respectively (figure 10b). Hence, owing to these differences during the
transition the n � 1 cases cannot yield the same solution. Despite this, all n � 1 cases
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Figure 11. The temporal power spectral density E( f ) of the velocity fluctuations for the R16 (red), R36 (blue)
and R64 (green) cases at Wi = 10 and Sc = 1000. Note, all higher-periodicity cases (n � 1) follow a power
law, E ∝ f −5.36, behaviour. The inset corresponds to the spectral plot for the R4 case, which fails to follow a
power law behaviour.

share similar dynamics, which can be seen for 700T < t < 1100T in figure 10(a) where
overall trends align well. Beyond this, the R16, R36 and R64 solutions experience a chaotic
behaviour characterised by high fluctuations, which is largely attributed to the late-time
chaos of the problem. Notably, there are instances where the deviations for n � 1 are larger
than for n = 1. Although the artefacts due to artificial diffusivity clearly decrease with
increasing n, the ability to retain the initial forcing symmetry over time at higher levels of
periodicity is still affected by the high levels of artificial diffusivity imposed, as well as
the strong chaotic nature of the flow. This is further shown in the animations provided
in the supplementary material and movies, whereby vortical cells oscillate between
slightly perturbed and symmetric states. As a result, the ability to perfectly preserve
the background forcing symmetry is unmatched to the solutions obtained without global
artificial diffusivity (Gupta & Vincenzi 2019). Nevertheless, n � 1 levels of periodicity
have the ability to partly retain the main features of the background forcing and clearly
reduce most of the unphysical qualities of global artificial diffusivity. To further access
this quality, we measure the overall deviations from the initial flow symmetry for the
different n levels of periodicity by calculating the temporal mean of (3.2), 〈Ĉ〉t, over
330T ≤ t ≤ 2200T . Figure 10(c) shows a converging trend of decreasing Ĉ as n levels
of periodicity increases, further confirming conformity between the n � 1 cases, as the
power spectral density also clearly shows (discussed further in the following).

Finally, the effect of both periodicity and artificial diffusivity on the elastic turbulence
regime are directly assessed through examination of the temporal power law spectrum
of velocity fluctuations, E( f ) ≡ |ûx(x̄, f )|2, where ûx represents the FFT of the velocity
fluctuation, ux(x̄, t∗)− 〈ux(x̄)〉t∗ , for t∗ ∈ t in the statistically homogeneous regime at
the position x̄ = (11π/8, 11π/8) (figures 11 and 12). Notably, a fairly steep slope is a
key characteristic of elastic turbulence (Groisman & Steinberg 2000, 2004; Steinberg
2021). At a moderate level of artificial diffusivity (Sc = 1000), figure 11 clearly shows
that cases with n � 1 levels of periodicity all conform to the same steep power law
scaling behaviour, characteristic of elastic turbulence, whereas the R4 case (n = 1)
is clearly constrained to a lower range of frequencies, showing no apparent power
law scaling behaviour. Notably, an exponent of E ∝ f −5.36 for the cases with n � 1
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Figure 12. The temporal power spectral density E( f ) of the velocity fluctuations at Wi = 10 for the R4 case
at Schmidt numbers (a) Sc = 500, (b) Sc = 1000 and (c) Sc = 2000, and the R16 case at Schmidt numbers
(d) Sc = 500, (e) Sc = 1000 and (f ) Sc = 2000. Note, all R4 cases fail to follow a power law scaling behaviour,
whereas the R16 cases at Sc = 500, Sc = 1000 and Sc = 2000 behave as a power law E ∝ f −4.32, f −5.36 and
f −3.12, respectively.

level of periodicity is steeper than previous numerically (Berti et al. 2008; Gupta &
Vincenzi 2019) and experimentally (Groisman & Steinberg 2000, 2004; Sousa, Pinho &
Alves 2018) recorded values for elastic turbulence, and is largely attributed to the high
level of artificial diffusivity imposed, which has been shown by Gupta & Vincenzi (2019)
to increase the decay rate. To investigate the combined effects of artificial diffusivity and
periodicity further, the spectral behaviour for the R4 and R16 cases was examined at
Sc = 500, Sc = 1000 and Sc = 2000 (figure 12). At high levels of artificial diffusivity
(Sc = 500), figure 12 shows that the R4 case (a) and R16 case (d) are constrained to
low-frequency velocity fluctuations. This behaviour is largely expected given the high level
of artificial diffusivity, which damps the high-wavenumber fluctuations of the polymer
feedback (Gupta & Vincenzi 2019). Despite this, the effect of periodicity on the problem
is clearly noticeable, as the R4 case is clearly governed by strong periodic dynamics,
whereas the velocity fluctuations for the R16 case are dispersed across a broader range
of frequencies, illustrating a power law scaling behaviour E ∝ f −4.32. Further decreasing
the level of artificial diffusivity, especially corresponding to Sc = 2000 (figures 12c and
12f ), unsurprisingly, allows both cases to sustain velocity fluctuations at much smaller
scales. However, when comparing the effect of periodicity on the problem, it is clearly
noticeable that both the R4 and R16 cases behave differently. More specifically, despite
fluctuating across a broader range of frequencies at lower artificial diffusivity, the R4 case
fails to follow any apparent power law scaling behaviour. On the other hand, the velocity
fluctuations for the R16 case at Sc = 2000 (figure 12f ) behave as a fairly steep power law
scaling E ∝ f −3.12, which is similar to previous experimental and numerical investigations
of elastic turbulence with different forcings, in which the decay rate varied with the setup
but the exponent was always smaller than −3 (Groisman & Steinberg 2000, 2001, 2004;
Berti et al. 2008; Sousa et al. 2018; Steinberg 2021). As discussed, the exponent of f −5.36

for the R16 case at Sc = 1000 is a lot steeper, and is largely attributed to the higher level
of artificial diffusivity (Gupta & Vincenzi 2019). Nevertheless, the cases with n � 1 levels

937 A31-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.103


Effect of periodicity in the elastic turbulence regime

of periodicity at Sc = 1000 are able to retain and conform to the same steep power law
scaling behaviour, characteristic of elastic turbulence, whereas the R4 case (n = 1) is
clearly constrained to a lower range of frequencies, showing no apparent power law scaling
behaviour. The results are significant in not only highlighting the current misconception
within the community for the standard four-roll mill problem with n = 1 level periodicity
as an elastic turbulence benchmark case (e.g. Thomases et al. (2011), Gutierrez-Castillo
& Thomases (2019), Gupta & Vincenzi (2019), to a name a few), but also suggest that
for certain problems, a finite level of artificial stress diffusivity (i.e. Sc /=∞) is still able
to retain most of the characteristic features of elastic turbulence, given that the level of
periodicity sufficiently retains the symmetry.

4. Conclusions

To numerically simulate the complex dynamics of elastic turbulence most numerical
studies rely on simplifications. This includes the addition of a global artificial diffusivity
to overcome numerical stability issues that arise from steep polymer stress gradients and
the use of PBCs to emulate an infinite system, such as benchmarks that rely on rotating and
counter-rotating cylinder arrays to drive the elastic instabilities. In the inertialess limit the
artificial diffusivity is known to adversely render the physical problem (Gupta & Vincenzi
2019). In what has been believed to conserve unicity, numerical benchmarks with PBCs
have largely investigated elastic turbulence with limited periodicity, i.e. using a single
periodic image (unit cell), such as the popular four-roll mill benchmark using only four
cylinders as the background force (Thomases & Shelley 2009). In this work, we study
the effect of PBCs including global artificial diffusivity on the four-roll mill benchmark
case in the elastic turbulence regime. More specifically, we compared two-dimensional
simulations with PBCs for the R4, R16, R36 and R64 cases using the Oldroyd-B model
constitutive.

The present study finds that at the initial onset of viscoelastic instabilities for all levels
of periodicity, the flow experiences a breakdown in initial symmetry, which eventually
leads to the formation of a leading vortex. This initial flow asymmetry is consistent with
the results obtained for the four-roll mill by Thomases & Shelley (2009) and Thomases
et al. (2011) and is attributed to the imposed artificial diffusivity (Gupta & Vincenzi
2019). Beyond this initial breakdown in symmetry, the dominant presence of the single
leading vortex within the single unit cell of the R4 case imposes quasi-periodic dynamics,
as the system is unable to recover the initial symmetry with the vortex cycling around all
four quadrants throughout time. In contrast, increasing the level of periodicity leads to a
different behaviour, where the R16, R36 and R64 cases quickly overcome the effects of
the single leading vortex, partially recovering the background forcing symmetry. In fact,
it can be seen that the time taken to overcome the single leading vortex asymmetry and
partly recover the initial roller effects decreases with each level of increasing periodicity,
leading to a converging trend. The dynamics of the system with higher periodicity within
this regime are purely chaotic, as the flow experiences high-frequency fluctuations that
contribute to a broad range of temporal scales, as well as a fairly steep power law
spectrum, which is consistent with previous numerical and experimental studies of elastic
turbulence (Groisman & Steinberg 2000, 2001; Berti et al. 2008; Alves et al. 2021;
Steinberg 2021). Most notably, the combined unphysical effects of artificial diffusivity
and finite periodicity were observed in the temporal power spectral density plots for
the velocity fluctuations, which showed that high levels of artificial diffusivity (Sc =
500) suppressed the high-wavenumber fluctuations of the polymer feedback for both the
R4 and R16 cases, consistent with the results obtained by Gupta & Vincenzi (2019).
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Upon decreasing the level of artificial diffusivity (Sc = 1000 and Sc = 2000), both cases
retain a broader range of frequencies. However, the R4 case fails to follow any apparent
power law scaling behaviour. On the other hand, the velocity fluctuations for the R16 case
are characterised by a fairly steep power law scale. Whereby, higher levels of artificial
diffusivity (Sc = 1000) increase the decay rate of velocity fluctuations. Nevertheless, at
this level of artificial diffusivity (Sc = 1000), cases with n � 1 all conform to the same
power scaling behaviour. The results are significant in not only highlighting the current
misconception within the community for the standard four-roll mill problem with n = 1
level periodicity as an elastic turbulence benchmark case, but also suggest that for certain
problems, a finite level of artificial diffusivity (i.e. Sc /=∞) is still able to retain most of the
characteristic features of elastic turbulence, given that the level of periodicity sufficiently
retains the symmetry.

Despite the increased chaotic nature of the flow, the R16, R36 and R64 cases are
able to reduce the numerical artifacts due to global artificial diffusivity, as the polymer
molecules are mostly stretched in the strain-dominated regions of the flow. This difference
in behaviour between the different levels of periodicity at Wi = 10 was not limited to the
specific level of elastic effects. When directly comparing the R4 and R16 cases across
different Wi numbers, it was found that the R4 regime transitioned from quasi-periodic
(Wi = 10) to fully periodic (Wi = 15) and then to aperiodic dynamics (Wi = 20), as
originally observed by Thomases et al. (2011). On the other hand, the R16 case does not
experience such a broad range of dynamics, transitioning to a chaotic regime instantly at
Wi ≈ 6.5. It was shown through additional simulations of the R8 case (see Appendix B)
that the numerical discrepancy observed for the R4 case is associated with the double
PBCs of the system, as opposed to simply increasing the periodicity in one direction. In
fact, the present results showed a moderate converging trend in recovering the symmetry
of the flow with increasing levels of periodicity. Analogous simulations for the FENE-P
constitutive model were performed (see Appendix A), showing similar results; hence,
the effect of PBCs is not modified by the nonlinearity of the elastic force. Our results
show that, combined with global artificial diffusivity, the consequence of PBCs can be
dramatic if periodicity is insufficient. A theoretical analysis of this effect should be
targeted in future work, notably by the derivation of an Ewald sum, which has enabled
such a study on PBCs in periodic arrays of microswimmers (De Graaf & Stenhammar
2017). Overall, the current study finds that PBCs of the popular four-roll mill benchmark
have a dramatic effect on the elastic turbulence regime, which can lead to unphysical
behaviour, especially when combined with the effects from global artificial diffusivity.
Although these unphysical qualities were shown to be reduced by increasing the level of
periodicity, resembling certain features of non-diffusive solutions, the ability to retain the
exact polymer representation is unmatched with the true solutions obtained by Gupta &
Vincenzi (2019). In this respect, the current study highlights the previous misconceptions
regarding the standard four-roll mill problem, using PBCs over a single unit cell, as
an elastic turbulence benchmark, while also demonstrating the importance and caution
required when applying PBCs in elastic turbulence problems combined with the effects of
global artificial diffusivity.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2022.103.
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Figure 13. Contour plots for the vorticity field taken at the late stages corresponding to t = 1300T for the
(a) R4 case and (b) R16 case at Wi = 10 using the FENE-P model.
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Appendix A. Effect of periodicity using the FENE-P model

A numerical limitation of the constitutive Oldroyd-B model is the unphysical unbounded
molecular elongation of the polymer molecules. In this appendix, we perform analogous
simulations using the FENE-P model, which imposes a maximum finite extensibility
length for the polymer molecules:

σ p = f (r)
μp

τp
(C − I), (A1a)

∂C

∂t
+ u · ∇C = C · (∇u)+ (∇u)T · C − f (r)

τp
(C − I)+ κΔC. (A1b)

The additional term, f (r), is used to impose a finite extensibility for the polymer
molecules. The Oldroyd-B model (2.2) exhibits unbounded elongation f (r) = 1 whereas
the FENE-P model restricts the polymer elongation to a maximum length, L, such that
f (r) = (L2 − 3)/(L2 − r2) (Peterlin 1961). Whereby, r2 = tr(C), which gives rise to a
nonlinear spring force that diverges as r2 → L, ensuring the dumbbell spring cannot
extend beyond L (Vaithianathan & Collins 2003). The results for the additional simulations
are shown for the vorticity contour (figure 13), polymer trace contour (figure 14) and the
time series of the first component of the conformation tensor (figure 15). The additional
results obtained using the FENE-P model are analogous to the results obtained using the
Oldroyd-B model; hence, the effect of periodicity is not modified by the nonlinearity of
the elastic force.
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Figure 14. Contour plots for the polymer trace field tr(C) field taken at the late stages corresponding to
t = 1300T for the (a) R4 case and (b) R16 case at Wi = 10 using the FENE-P model.
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Figure 15. Time series of the first component of the conformation tensor Cxx at the position [π,π] taken over
the late stages of the flow for the R4 case (black) and R16 case (red) using the FENE-P model at Wi = 10.

0

0.2

–0.2

0.4

–0.4

0.6

–0.6

Figure 16. Contour plot for the vorticity field taken at the late stages corresponding to t = 1300T for the R8
case at Wi = 10.

Appendix B. Effect of single PBCs using the R8 case

In this appendix, we report simulations conducted for an additional case for the four-roll
mill, whereby the level of periodicity is only extended along a single direction, thus
resulting in an eight-roll case, denoted R8. The results for the additional simulation are
shown for the vorticity contour (figure 16), polymer trace contour (figure 17), and the time
series of the first of the conformation tensor (figure 18).
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Figure 17. Contour plot for the polymer trace field tr(C) taken at the late stages corresponding to t = 1300T
for the R8 case at Wi = 10.
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Figure 18. Time series of the first component of the conformation tensor Cxx at the position [π,π] taken over
0 ≤ t/T ≤ 3500 for the R8 case at Wi = 10.
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Figure 19. Time series of the axial velocity ux at the position [11π/8, 11π/8] taken over 400 ≤ t/T ≤ 2500.
Results are compared at different levels of periodicity, namely, the (a) R4 (black), (b) R16 (red), (c) R36 (blue)
and (d) R64 (green) case at Wi = 10.

The results for the additional R8 case show that increasing the level of periodicity in
only one direction leads to the same leading-vortex structure observed for the R4 case.
Both of these dominant vortices cycle around the quadrants over time, which numerically
imposes quasi-periodic dynamics into the later stages of the flow, as shown in figure 18.
Note, although the late-time dynamics observed for the R8 case in figure 18 are slightly
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different to the R4 case (refer to figure 5), the large-scale dynamics of the system are still
governed by a quasi-periodic state.

Appendix C. Effect of periodicity in the hydrodynamic field

In this appendix, we show that the different dynamics observed for the different levels
of periodicity are not specific to the polymer field. Additional results are shown for the
hydrodynamic field, which compares the time series of the axial velocity at the location
[11π/8, 11π/8] for the R4, R16, R36 and R64 cases (figure 19). The results are analogous
to the behaviour observed for the polymer field, whereby the chaotic regime for the R4
case experiences slow oscillations which transition into a quasi-periodic state, whereas the
cases with higher levels of periodicity experience a purely chaotic behaviour.
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