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M-IDEALS IN L(€,,£) 

BY 

D. J. FLEMING AND D. M. GIARRUSSO 

ABSTRACT. In this article it is shown that for any Banach space E, 
L (€,,£) always contains uncountably many distinct A/-ideals that are 
closed subspaces of K{£\, E) and which are not complemented in L(£x, E). 
Using standard duality arguments one obtains the result that infinitely many 
distinct subspaces of K(E, c0) are M-ideals in L(E, c0). In particular, for the 
case E = c0, this shows that the uniqueness conditions enjoyed by K{ip), 
p > 1, is not valid for E = c0. The results are obtained by utilizing the 
identification of L(€|, E) with the vector-valued sequence space £^(E) and 
to exploit natural decompositions of €*(£)' afforded by a class of L-
projections on £^(E)' induced by certain E'-valued vector measures. 

1. Introduction. Let X be a Banach space. A continuous linear map T:X —» X is 
called an L-projection if T2 = T and ||JC|| = ||T(JC)|| + \\x - T(JC)|| for all x in X [4]. A 
closed subspace M of a Banach space X is an M-ideal if there exists an L-projection 
T:X' —» X' with kerT = M1. M-ideals were first defined and characterized in the 
fundamental paper of Alfsen and Effros [ 1 ]. 

For Banach spaces X, Y we denote by L(X, Y) [respectively K(X, Y)] the Banach 
space of all continuous [respectively compact] linear maps w.X -» Y. Much recent 
attention has been devoted to the geometric problem concerning the existence and 
uniqueness of non-trivial M-ideals in the operator space L(X, Y). Hennefeld [8] deter­
mined that K(tp), 1 < p < <», and K(c0) are M-ideals in L((p) and L(c0) respectively. 
That^f(€2) is an M-ideals inL(€2) was first established by Dixmier [5]. Recently Flynn 
[7] has characterized K((p) as the only non-trivial M-ideals in L((p), 1 < p < °°. 
Saatkamp [10] has shown that K((p, £q), 1 < p ^ q < a>, is an M-ideal in L(£p, (q) 
whileA^(€i,€p),/?^ 1, and K(£p,£x), 1 <p< oo, are not M-ideals in the corresponding 
spaces of linear operators. That K(£u C[0,1]) is not an M-ideal in L(€j, C[0,1]) was 
noted by Mach and Ward [9] who also determined that K(E, c0) is always an M-ideal 
in L(E, c0) for any Banach space E. 

In this paper we show that for any Banach space E, L{£X,E) always contains 
uncountably many distinct M-ideals that are proper closed subspaces of K(£UE) and 
which are not complemented in L(€,, E). Using standard duality arguments one obtains 
the result that infinitely many distinct subspaces of K{E, c0) (including K(E, c0) itself) 
are M-ideals in L(E, c0). In particular for the case E = c0 this shows that the uniqueness 
condition enjoyed by K(HP), p > 1, is not valid for K(c0). 
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The results in this paper are completely self-contained. Our technique is to utilize the 
identification of L{tx,E) with the vector-valued sequence space C ( £ ) and to exploit 
natural decompositions of (oo(E)' afforded by a class of L-projections on (oo(E)' 
induced by certain E'-valued vector measures. 

2. Notation and Terminology. Let E be a Banach space over R or (f. The vector-
valued sequence space (00(E) is the collection of all sequences x = (xn) where xn E E 
for all n and (\\x„\\) E €OO. Given the norm ||*|| = s u p j x j , (X(E) is a Banach space. 
The Banach spaces c0(E) and (x (£) are similarly defined with norms given by supjjt„ || 
and 2„||JC„|| respectively. c0(E) is a closed subspace of €*>(£). 

Let N denote the set of positive integers and 3F the power set of N. Let A E ? , i G £ 
and XA the characteristic function of A. By XA'X we mean the sequence (XA(W)X). The 
linear span of the collection of all XA 'X, A E 3% JC E £ will be denoted by S(E). Any 
such 5 E S(E) admits a unique representation S"=1 x v a < where the a/s are distinct 
elements of £ and A1?. . . ,An is a disjoint decomposition of A. The closure of S(£) in 
£œiE) is denoted by kx(E). A direct argument shows that kx(E) consists of those 
(x„) E €oc(£) such that {x/7|n E A} is a relatively compact subset of E. Consequently 
kao(E) is always a proper closed subspace of (00(E) if dim E = 00. 

By bva(cF,E) we shall mean the collection of all finitely additive £-valued set 
functions (JL : 3* —> £ such that 

IMI = sup IS MA,) | | w E TV, A = U Ai (disjoint) < 00 

With the above total variation norm bva(cF,E) is a Banach space. 
For A E ^ and x = (*„) E €«,(£) we define TT^:€„,(£) -> €»(£) by TTA(X) -

(XA(K)X «). If A = {1, 2 , . . . , m} we denote TTA by irm. The identity map on £ is denoted 
by idE and 'w:F' —* £ ' denotes the transpose of the linear map u:E -* F. 

3. L-Projections on €oo(F)'. Let £ be any Banach space and let cj> E (00(E)'. A 
finitely additive vector measure ji(<|)):3F —> £' is constructed as follows: For A E 3F 
define the linear form |m((|))(A) on £ by 

(3.1) (X,[L(4>)(A)) = $(xA-x) (xGE). 

For each x E E 

\(x,ix(<\>)(A))\^ \\4>\\\\XA-X\U^ U\\\\X\\ 

and hence |x(cf>)(A) E £ ' with ||JA(<|))(A)|| ^ ||c|)||. Clearly ix(cj)) is finitely additive. 
Further note that |ut(ct>) = 0 if and only if cj> vanishes on kx(E). We now establish that 
|x(4>) is of bounded variation. 

3.2 LEMMA: Let E be any Banach space and let $ E (00(E)'. Then 

M,(4>) E bva(?,E') and \\^)\\ = ||<|>|ME)||. 
PROOF: Let $ E ( 00(E)'\ A , , . . . ,A„ a partition of A and jcl5. . . . ,xn elements of £ 

with ||JC,|| ^ 1. Let a, - sgn <JC„ ^((^(A,)}. Then 
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X <*,, iL(WAi)) = 2 (*,•<*,-, MWAi)) 

= <|>(2 a , - xv * / J ^ ||c|>|| S <*iXArXil ^ H\\ 
i=l i-\ °° 

It follows that S;L, HIULCĈ XA,)!! ^ ||(|>|| and so ||p,(<|>)|| ^ ||c|>||. Consequently 
|jL(<t>) G bva(&,E') for each <|> G €«(£)'. 

Now let (|) e €»(£)'. By the Hahn-Banach Theorem 3 <j> G €„(£:)' such that 
<j>|fc«>(£) = <(>|̂ oo(£) and ||cj>|| = ||<()|A:M(£)||. Since <j>-<|> vanishes on koo(E), |x((}>) = 
(x(<()) and so ||jx((f))|| = |||x(<j))|| ^ ||<j)|| = ||&oo(£)||. To establish the reverse inequality 
let e > 0 be fixed and choose a simple function s with canonical representation s = 2"=1 

xv*/where Ikll = l for ! = * = w and II4>|M£)II ~ e = l<K*)l- Now l<M-y)l = 2"=i 
|Cc]-, |x(4>KAf->>| ^ S?=I |||UL(<f>K f̂)|| ^ ||M.(4>)|| and so U\k„(E)\\ ^ h(<\>)\\ + e. It 
follows that ||^(4>)|| = ||4>||ME)||. • 

3.3 REMARK: From the above discussion the map |i :€«,(£)' —» bva($F,E') is con­
tinuous and ker JJL = k^E)1. For co G bva{$F,E') there exists, by the Hahn—Banach 
Theorem, <j>tt G €«,(£)' such that 

n i n 

Consequently fi(c|>J = oo and so the map JJL is surjective. Thus by 3.2 the induced map 
ji: (ooiEY/kooiE)1 —» bva(cF, E') is an isometric isomorphism and hence bvafâ, E') is 
isometric to the dual space of kx(E). In particular €*,(£)' is isometrically isomorphic 
to bva(^,E') if and only if dim E < <». If dim £ = o° then bva{^,E') captures but 
a portion of €«,(£)' (see section 4). 

For <f> G €»(£)', |||x(c())|| ^ ||(|>|| and so, in particular, 2j|x(<|>)(M)|| ^ ||<|>||. Thus 
(|x(<|))({/i}))n, G €](£"). Now for each (J) G €*(£)' define the (clearly continuous) 
linear form T(C()) on €«,(£") by 

(3.4) T(cf>)U) - 2,7(*„, *L(<|>)({/I})> (x - (*,) G €.(£)) 

Since 

||T(C|))|| = 2J|M.(<|))({/I})|| ^ ||<|>|| (<j> e €,(£) ' ) , 

T:€QO(£)' —» £oc(E)' is continuous. Now T(C|))(X) = limm—»<|)(Trw(jc)) for each 
JC G €«,(£) (and consequently limm-̂ (j)((/(i-'TT,„)(*)) exists for each x G €„(£)). It 
follows that for each ((> G €„(£)', T(<|)) agrees with c() on c0(£) and so ker T = ^ ( f ) 1 . 
Since (X(T(C()))(A) = (ju(cf>)(A) for finite sets A G SF it is evident that T2 = T. We now 
establish that T is an L-projection on €„(£)'• 
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3.5 LEMMA: For each * E C(£) ' 

||4>|| = | |T (4>) | | + ||c|> - T(C)>)|| 

PROOF: Since 2j|x(<|>)({n})|| ^ \\$\\ it follows that am = %,„ converges to T in the 
norm topology of €«,(£)'• Moreover ir,„ is an M-projection on (X(E) and hence riTm is 
an L-projection on £X(E)'. Consequently T is an L-projection. [see [2], [3]]. • 

The T-map can now be used to generate a commuting family {TA \A E 2F} of L-
projections on €»(£)' • For A E 2F let crA = fTrA:C(L)' -» €x(£)' and define TA = 
VAOT. That is, 

TA(<|>)(X) = S <*„, M ^ X M » (x E €»(£), 4> E €»(£)'). 
n e A 

Since |i(TA(<|>)({rt})) = XA(w)|x(c|))({n}) we have 

TA(JA(4>)(X)) = 2 (xn, iL(TAm({n})) 
n& A 

= S (x,„ (x(4))(W)> 
n E A 

= TA(<|>) 

and thus iA = TA. Furthermore, one easily checks for A,B E 3F 

[a] TAoTB = T^nfî 

[t>] TA U B = JA + JB - 7AnB 

dA is an L-projection on €*>(£)' since TTA is an M-projection on £X(E) [1]. Thus 

||TA(<|>)|| + ||(|> - TA(<|))|| - ||a,(T((t>))|| + ||(f> - CTA(T(C|>)|| 

^ ||aA(T(4>))|| + ||T(C|>) - a,(T((|>))|| + ||<|> - T(<|>)|| 

= ||T(<|))|| + U - T(C|))|| 

- 11*11 (by 3.5) 

Hence {TA|A E 3F| is a family of L-projections on £X(E)'. 
For A 6 ? define 

cA(E) = {* = (*„) E c0(E)|jcn - 0 for n £ A}. 

Note c,v(£) = c0(E). 

3.6 PROPOSITION. L ^ A G ? 
[a] cA(E) is an M-ideal in C(L) 
[b] If A is infinite then cA(E) is not complemented in £X(E) 
[c] cA{E)" is isometrically isomorphic to €*,(£"'). In particular, if A is infinite, cA(E) 

is not a dual space. 
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PROOF: [a] It suffices to note ker TA = cA(E)L. Let x G c0(E), (j> G C(£) ' . Then 

<K*) = T ( 4 > ) U ) = ln(xn, |x(4>>({/i})> 

- S <**, fJL(((>)(W)) + E <*„, fl(<|))({/l})>. 

If T,*((j)) = 0 then |x((())(H) = 0 for n G A and hence <)>(.*) = 0 if x G Q ( £ ) . Similarly 
if <|> E Q ( E ) 1 then |m((j>)(M) - 0 for n G A and so T/1(<|>) - 0. Thus €»(£)' = 

[b] Let A G 3* be infinite and suppose there exists a continuous projection £ on €«>(£) 
with im £ = cA(£). Let JC0 G £, 4 G £" be such that (JC0>*O) = 1 and let i:N —» A be 
the natural order preserving bijection. Denote by £ the induced embedding of €«, into 
€„(£). That is, for p G €», 

£(P)(/i) - p t-i ( l l ) jc0 if/i G A, î(P)(/i) = 0 i f « £ A 

Finally let p be the mapping from cA(E) into c0 given by 

p{x) = ((plin)(x),Xo))n (x G cA(E)) 

where p„ :€»(£) —> £ is the w-th coordinate projection map on €»(£). Note that 
t(P) G C , ( £ ) if p G C0. Consequently, for p G Co,po£o i(P) = p(£(î(P))) = p(î(P)) 
- ((Pi(/i)(î(P)), ^o))/i - ((P/»^o>^o))/i = P- Thuspo^oi gives a continuous projection 
of €oo onto c0 which is impossible. 

[c] if A is infinite then cA(E) is isometrically isomorphic to c0(E). The result follows 
by standard duality arguments. • 

For any Banach space E,L((UE) is isometrically isomorphic to £X(E) under the 
isometry p£ given by pE(u) = (u(e„))n. One directly verifies that pE(K((]9E)) = 
kx(E). For each A G 3? we define KA(tuE) = pE

l(cA(E)). Note that KA(iuE) is 
always a proper closed subspace of K(t\,E). From 3.6 we have 

3.7 COROLLARY: L r̂ £ 6c any Banach space and let A G 8F 

[a] KA(ÎUE) is an M-ideal in L(t\,E) 
[b] ^ (€ i ,£ ' ) w* «or complemented in L(t,\,E) if A is infinite 
[c] KA(£\,E)" is isometrically isomorphic to L{tx,E") if A is infinite. 

Now using the transpose map t:L(E9 c0) —> L(€]9E') and corollary 3.7 we obtain a 
family of M-ideals in L(E, c0) by pulling back the M-ideals KA(t,uE

(). We begin with 
an elementary lemma. 

3.8 LEMMA: Let E be any Banach space and let t:L(E, c0) —» L((ifE') denote the 
transpose map. Then t(K(E,c0) = KN(i\,Ef). 

PROOF: Let u G KN{t{,E') and define v:E-> c0 by v(x) = ((x,u(en))). Clearly v 
is continuous and for x G E, (*, V(cJ) = (v(x),en) = (x,u(en)). Thus V = w. 
Moreover v G # (£ , c0) since u is compact. 
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Now for x' 6 £ ' , P 6 c 0 let w:E-> c0 denote the rank-1 operator w(x) = (x,x')$. 
For each x EE,nE N(x, 'w(^)> - (w(x),en) = $n(x,x'). Thus ||Sv(eB)|| ^ Ik'I! |P«I 
and consequently 'w G KN{tuE'). Since # (£ , c0) is the closed linear span of rank-1 
maps it follows that lu E KN(£UE') for each u E K(E, c0). • 

Let Z be a Banach space, M, Y closed subspaces such that M C Y C Z and suppose 
M is an Af-ideal in Z. Let T denote the L-projection on Z' with kernel M1 . For ( | ) G r 
let (j> be any continuous linear extension of <\> to all of Z and define T($) = T($)\Y. It 
is easy to see that T:Y' -> Y' is an L-projection on 7' with ker T = M 1 (in Y'). 

3.9 COROLLARY: For eac/i A E 9 let MA(E, c0) = r1(^A(€1,£:')). 77ien MA(L, c0) 
w an M-ideal in L(E, c0) flfld if A is infinite, MA(E, c0)" is isometrically isomorphic to 
L(tl9E

m). 

PROOF: Let t:L(E, c0) -> L(€j, L) be the transpose map. By 3.8 we have t(MA(E, c0)) 
= ^A(€1 ,F)and^(€1 ,£ ')Cf(L(£:,Co)) C L((UE'). By 3.7 KA(tx,E') is anM-ideal 
inL(€i,£") and so by the above discussion ATA(€],£") is anM-ideal in t(L(E, c0)). Since 
r is an isometry onto its image it follows that MA(E, c0) = r 1 ^ ^ i , E')) is an M-ideal 
in L(E, c0). D 

3.10 REMARK: It is of interest to unravel the identifications and exhibit explicitly the 
form of the L-projections on L(E, c0)' with kernel MA(E, CQ)1. 

We have t:L(E,c0) -> £(€, ,£ ') (isometry into) and pE.:L(tuE') -» €«(£') (iso­
metry onto). We have the following where 7 = pE-ot 

MA(E,c0) ^L(E,c0) 

cA{E') <-+ im 7 C €„(£') 

Let TA be the L-projection on €«,(£')' vvith ker TA = cA(£")1 and TA the induced 
L-projection on (im 7)' with ker îA = cA(E')L (in (im 7)'). The L-projection on 
L(E,coy (with kernel MA{E, Co)1) whose structure we wish to unravel is precisely 
7oTAo 7 . 

A direct computation shows that 

tyoTAoty-l(^))(u) = S §((en®e'n)ou) 
n £A 

REMARK: Corollary 3.9 in the case A = N was first established by Mach and Ward 
[9] using the 3-balls-property. A different proof was given by Saatkamp in [10]. 

4. Further Remarks on the Dual of £x (E). In a recent paper [6] the authors have 
determined certain natural topological decompositions of the strong dual of Lb(Z,E) 
where Z, E are Hausdorff locally convex spaces and Lb(Z,E) carries the topology of 
uniform convergence on the bounded subsets of Z. It is shown that if E is quasi-
complete and id£ has a suitable resolution into quasi-compact maps then Kb{Z,E)L is 
topologically complemented in Lb{Z,E)' where Kb{Z,E) is the space of continuous 
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linear maps u:Z-> E which take bounded sets to relatively compact sets (such maps 
are called quasi-compact). Kb(Z,E) is always a closed subspace oiLb(Z,E) whenever 
E is quasi-complete, and Kh(Z,E) coincides with the space of compact linear maps 
when Z, E are Banach spaces. It follows that for any Banach space Z and a large class 
of Banach spaces E [see definition 4.1] AT(Z, L)1 is complemented in L(Z,E)'. In 
particular K(t\,E)L is topologically complemented in L(€i,L)' and kœ(E)1 is com­
plemented in €«,(£)'. In this section we explicitly construct projections on €00(£')' with 
kernels koo(E)1 and study the relationship between these projections and the L-
projection T on tx(E)' defined in section 3. 

For simplicity we make the following definition 

4.1 DEFINITION: A Banach space E is admissible if there exists a sequence of compact 

operators £„:£ —» E such that 

(4.1.1) x = 2„Ç„(x) U e £) 

and 

(4.2.1) sup E P„d p = (P„) Œ €„, IIPIU ^ l,mi= 1 <oo 

Examples of admissible Banach spaces are afforded by Banach spaces of the type 
(2W ® Xn\, p^lor(2n® Xn)C0 where dim Xn < oo. 

Let £ be an admissible Banach space. Define x^oc(L)' —> €<»(£)' by 

(4.2) x(*)U) - ^MteulnXi* • • •) (* e C(D, <|> e €.(£)'). 

From 4.1.2 it follows that the series in 4.2 is absolutely convergent and in turn that x 
is a continuous operator on €«,(£)'. A direct computation shows that for c() G €«>(£)', 
Î CxC*)) = l^*) and hence <|>|£«,(£) = x(*)|£oo(£)- Thus x2 = X anc* ker x = koo(E)1. 
Furthermore TOX = x ° T ~ T where T is the L-projection defined in section 3. Con­
sequently T,X ~ T and id - x are mutually orthogonal projections on €«,(£)' a nd thus 
we obtain the topological decomposition 

(4.3) C(£) ' = ker (id - T) © ker (id - x + T) © ker x 

where ker (id — T) is isometrically isomorphic to t\(E') and ker (id — x + T) is 
isometrically isomorphic to bva^, E'), the space of E'-valued vector measures which 
vanish on the finite subsets of N. Note that card bvaQ{^,E') ^ 2C. 

From 3.5 T is always an L-projection. If x is also an L-projection then for each 

* G €»(£)' 

11*11 = llx(*)ll + II* - x(*)ll 
= Hx(*))ll + llx(*) - T(X(4>))|| + 11* - x(*)ll 
= I|T(*)|| + ||x(*) - T(*)|| + ||* - X(*)ll 
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If E = c0 then x is an L-projection. This follows from the direct calculation 'p^1 o a o 'pt.0 

= x where pt.0 is the isometry of L(€1?c0) onto €*(c0) and or = '"yofo'7"1 with 7 and 
T defined as in section 3 (with E = €,). Consequently, in this case we have the 
interesting decomposition 

€»(c0)' = im T © €l im (x - T) © f, Mco)1 

where im T is isometrically isomorphic to £\(£\) and im T © im (x - T) is isometrically 
isomorphic to /?va(3%€,) which is in turn isometrically isomorphic to (\((L). 

The functionals in fcoo(co)1 are of a more exotic nature than those in feva(3% €1). To 
obtain examples of such functionals let r\, £ be elements of €4 where r\ extends the limit 
functional on c and £ E CQ. Then £ ® T] G €*(€oo)' where g ® T)(*) = £(((*„,?]))«) 
for JC = (xn) E €oo(€oo). Clearly £ ® T] vanishes on c0(€x). Let 

IT = Pexo/op^^^co)->€»(€„) 

where t:L(£uc0) —> L((u(œ) is the transpose map and pt.0:L(€i,c0) —» €x(c0), 
p£x:L(€1,€x)—> €x(€x) are the canonical isometries. From 3.8 TT(/:X(CO)) = c0(€a>) a nd 
hence £; ® irjoTr E ^ ( C O ) 1 . Moreover the map £ —» ^©TIOTT is injective for if 
(3 E €x and if x„ = 2-L, (3,-e,- for each n then £ (x) r\ o TT((X„)) = £(($). It follows that card 
fcoo(co)1 = card CQ = 2r. 

REMARKS: Lety'x(co) denote the closed linear span of all forms of the type £ (x) nrj O TT, 

£ E cQ and iq E €4 extending the limit functional. It would be of interest to describe 
the quotient space k^c^Y/jx(cQ). 
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