M-IDEALS IN $L(\ell_1, E)$

D. J. FLEMING AND D. M. GIARRUSSO

ABSTRACT. In this article it is shown that for any Banach space E, $L(\ell_1, E)$ always contains uncountably many distinct M-ideals that are closed subspaces of $K(\ell_1, E)$ and which are not complemented in $L(\ell_1, E)$. Using standard duality arguments one obtains the result that infinitely many distinct subspaces of $K(E, c_0)$ are M-ideals in $L(E, c_0)$. In particular, for the case $E = c_0$, this shows that the uniqueness conditions enjoyed by $K(\ell_p)$, p > 1, is not valid for $E = c_0$. The results are obtained by utilizing the identification of $L(\ell_1, E)$ with the vector-valued sequence space $\ell_{\infty}(E)$ and to exploit natural decompositions of $\ell_{\infty}(E)'$ afforded by a class of L-projections on $\ell_{\infty}(E)'$ induced by certain E'-valued vector measures.

1. **Introduction**. Let X be a Banach space. A continuous linear map $\tau: X \to X$ is called an L-projection if $\tau^2 = \tau$ and $||x|| = ||\tau(x)|| + ||x - \tau(x)||$ for all x in X [4]. A closed subspace M of a Banach space X is an M-ideal if there exists an L-projection $\tau: X' \to X'$ with ker $\tau = M^{\perp}$. M-ideals were first defined and characterized in the fundamental paper of Alfsen and Effros [1].

For Banach spaces X,Y we denote by L(X,Y) [respectively K(X,Y)] the Banach space of all continuous [respectively compact] linear maps $u:X\to Y$. Much recent attention has been devoted to the geometric problem concerning the existence and uniqueness of non-trivial M-ideals in the operator space L(X,Y). Hennefeld [8] determined that $K(\ell_p)$, $1 , and <math>K(c_0)$ are M-ideals in $L(\ell_p)$ and $L(c_0)$ respectively. That $K(\ell_2)$ is an M-ideals in $L(\ell_2)$ was first established by Dixmier [5]. Recently Flynn [7] has characterized $K(\ell_p)$ as the only non-trivial M-ideals in $L(\ell_p)$, $1 . Saatkamp [10] has shown that <math>K(\ell_p,\ell_q)$, 1 , is an <math>M-ideal in $L(\ell_p,\ell_q)$ while $K(\ell_1,\ell_p)$, $p \ge 1$, and $K(\ell_p,\ell_\infty)$, 1 , are not <math>M-ideals in the corresponding spaces of linear operators. That $K(\ell_1,C[0,1])$ is not an M-ideal in $L(\ell_1,C[0,1])$ was noted by Mach and Ward [9] who also determined that $K(E,c_0)$ is always an M-ideal in $L(E,c_0)$ for any Banach space E.

In this paper we show that for any Banach space E, $L(\ell_1, E)$ always contains uncountably many distinct M-ideals that are proper closed subspaces of $K(\ell_1, E)$ and which are not complemented in $L(\ell_1, E)$. Using standard duality arguments one obtains the result that infinitely many distinct subspaces of $K(E, c_0)$ (including $K(E, c_0)$ itself) are M-ideals in $L(E, c_0)$. In particular for the case $E = c_0$ this shows that the uniqueness condition enjoyed by $K(\ell_p)$, p > 1, is not valid for $K(c_0)$.

Received by the editors August 22, 1983, and, in revised form, October 29, 1984. AMS Subject Classification: Primary 46B20; Secondary 46A32. © Canadian Mathematical Society 1983.

The results in this paper are completely self-contained. Our technique is to utilize the identification of $L(\ell_1, E)$ with the vector-valued sequence space $\ell_{\infty}(E)$ and to exploit natural decompositions of $\ell_{\infty}(E)'$ afforded by a class of L-projections on $\ell_{\infty}(E)'$ induced by certain E'-valued vector measures.

2. **Notation and Terminology**. Let E be a Banach space over R or \mathbb{C} . The vector-valued sequence space $\ell_{\infty}(E)$ is the collection of all sequences $x = (x_n)$ where $x_n \in E$ for all n and $(\|x_n\|) \in \ell_{\infty}$. Given the norm $\|x\| = \sup_n \|x_n\|$, $\ell_{\infty}(E)$ is a Banach space. The Banach spaces $c_0(E)$ and $\ell_1(E)$ are similarly defined with norms given by $\sup_n \|x_n\|$ and $\sum_n \|x_n\|$ respectively. $c_0(E)$ is a closed subspace of $\ell_{\infty}(E)$.

Let N denote the set of positive integers and \mathcal{F} the power set of N. Let $A \in \mathcal{F}, x \in E$ and χ_A the characteristic function of A. By $\chi_A \cdot x$ we mean the sequence $(\chi_A(n)x)$. The linear span of the collection of all $\chi_A \cdot x$, $A \in \mathcal{F}, x \in E$ will be denoted by S(E). Any such $s \in S(E)$ admits a unique representation $\sum_{i=1}^n \chi_{A_i} \cdot a_i$ where the a_i 's are distinct elements of E and A_1, \ldots, A_n is a disjoint decomposition of N. The closure of S(E) in $\ell_\infty(E)$ is denoted by $k_\infty(E)$. A direct argument shows that $k_\infty(E)$ consists of those $(x_n) \in \ell_\infty(E)$ such that $\{x_n | n \in N\}$ is a relatively compact subset of E. Consequently $k_\infty(E)$ is always a proper closed subspace of $\ell_\infty(E)$ if dim $E = \infty$.

By $bva(\mathcal{F}, E)$ we shall mean the collection of all finitely additive E-valued set functions $\mu: \mathcal{F} \to E$ such that

$$\|\mu\| = \sup \left\{ \sum_{i=1}^{n} \|\mu(A_i)\| \mid n \in \mathbb{N}, \, N = \bigcup_{i=1}^{n} A_i \text{ (disjoint)} \right\} < \infty$$

With the above total variation norm $bva(\mathcal{F}, E)$ is a Banach space.

For $A \in \mathcal{F}$ and $x = (x_n) \in \ell_{\infty}(E)$ we define $\pi_A : \ell_{\infty}(E) \to \ell_{\infty}(E)$ by $\pi_A(x) = (\chi_A(n)x_n)$. If $A = \{1, 2, ..., m\}$ we denote π_A by π_m . The identity map on E is denoted by id_E and $u: F' \to E'$ denotes the transpose of the linear map $u: E \to F$.

3. **L-Projections on** $\ell_{\infty}(E)'$. Let E be any Banach space and let $\phi \in \ell_{\infty}(E)'$. A finitely additive vector measure $\mu(\phi): \mathcal{F} \to E'$ is constructed as follows: For $A \in \mathcal{F}$ define the linear form $\mu(\phi)(A)$ on E by

$$(3.1) \langle x, \mu(\phi)(A) \rangle = \phi(x_A \cdot x) (x \in E).$$

For each $x \in E$

$$|\langle x, \mu(\phi)(A)\rangle| \le \|\phi\| \|\chi_A \cdot x\|_\infty \le \|\phi\| \|x\|$$

and hence $\mu(\phi)(A) \in E'$ with $\|\mu(\phi)(A)\| \le \|\phi\|$. Clearly $\mu(\phi)$ is finitely additive. Further note that $\mu(\phi) = 0$ if and only if ϕ vanishes on $k_{\infty}(E)$. We now establish that $\mu(\phi)$ is of bounded variation.

3.2 Lemma: Let E be any Banach space and let $\phi \in \ell_{\infty}(E)'$. Then $\mu(\phi) \in bva(\mathcal{F}, E')$ and $\|\mu(\phi)\| = \|\phi|k_{\infty}(E)\|$.

PROOF: Let $\phi \in \ell_{\infty}(E)'$; A_1, \ldots, A_n a partition of N and x_1, \ldots, x_n elements of E with $||x_i|| \le 1$. Let $\alpha_i = sgn \langle x_i, \mu(\phi)(A_i) \rangle$. Then

$$\begin{split} &\sum_{i=1}^{n} \left| \langle x_i, \mu(\phi)(A_i) \rangle \right| = \sum_{i=1}^{n} \alpha_i \langle x_i, \mu(\phi)(A_i) \rangle \\ &= \phi \left(\sum_{i=1}^{n} \alpha_i \chi_{A_i} \cdot x_i \right) \le \|\phi\| \left\| \sum_{i=1}^{n} \alpha_i \chi_{A_i} \cdot x_i \right\|_{\infty} \le \|\phi\| \end{split}$$

It follows that $\sum_{i=1}^{n} \|\mu(\phi)(A_i)\| \le \|\phi\|$ and so $\|\mu(\phi)\| \le \|\phi\|$. Consequently $\mu(\phi) \in bva(\mathcal{F}, E')$ for each $\phi \in \ell_{\infty}(E)'$.

Now let $\phi \in \ell_{\infty}(E)'$. By the Hahn-Banach Theorem $\exists \ \tilde{\phi} \in \ell_{\infty}(E)'$ such that $\tilde{\phi}|k_{\infty}(E) = \phi|k_{\infty}(E)$ and $\|\tilde{\phi}\| = \|\phi|k_{\infty}(E)\|$. Since $\tilde{\phi} - \phi$ vanishes on $k_{\infty}(E)$, $\mu(\tilde{\phi}) = \mu(\phi)$ and so $\|\mu(\phi)\| = \|\mu(\tilde{\phi})\| \le \|\tilde{\phi}\| = \|k_{\infty}(E)\|$. To establish the reverse inequality let $\epsilon > 0$ be fixed and choose a simple function s with canonical representation $s = \sum_{i=1}^{n} \chi_{A_i} \cdot x_i$ where $\|x_i\| \le 1$ for $1 \le i \le n$ and $\|\phi|k_{\infty}(E)\| - \epsilon \le |\phi(s)|$. Now $|\phi(s)| \le \sum_{i=1}^{n} \|\langle x_i, \mu(\phi)(A_i)\rangle| \le \sum_{i=1}^{n} \|\mu(\phi)(A_i)\| \le \|\mu(\phi)\|$ and so $\|\phi|k_{\infty}(E)\| \le \|\mu(\phi)\| + \epsilon$. It follows that $\|\mu(\phi)\| = \|\phi\|k_{\infty}(E)\|$.

3.3 REMARK: From the above discussion the map $\mu: \ell_{\infty}(E)' \to bva(\mathcal{F}, E')$ is continuous and ker $\mu = k_{\infty}(E)^{\perp}$. For $\omega \in bva(\mathcal{F}, E')$ there exists, by the Hahn-Banach Theorem, $\varphi_{\omega} \in \ell_{\infty}(E)'$ such that

$$\phi_{\omega}(s) = \sum_{i=1}^{n} \langle x_i, \omega(A_i) \rangle \qquad \left(s = \sum_{i=1}^{n} \chi_{A_i} \cdot x_i \right).$$

Consequently $\mu(\phi_{\omega}) = \omega$ and so the map μ is surjective. Thus by 3.2 the induced map $\bar{\mu}: \ell_{\infty}(E)'/k_{\infty}(E)^{\perp} \to bva(\mathcal{F}, E')$ is an isometric isomorphism and hence $bva(\mathcal{F}, E')$ is isometric to the dual space of $k_{\infty}(E)$. In particular $\ell_{\infty}(E)'$ is isometrically isomorphic to $bva(\mathcal{F}, E')$ if and only if dim $E < \infty$. If dim $E = \infty$ then $bva(\mathcal{F}, E')$ captures but a portion of $\ell_{\infty}(E)'$ (see section 4).

For $\phi \in \ell_{\infty}(E)'$, $\|\mu(\phi)\| \le \|\phi\|$ and so, in particular, $\Sigma_n \|\mu(\phi)(\{n\})\| \le \|\phi\|$. Thus $(\mu(\phi)(\{n\}))_n, \in \ell_1(E')$. Now for each $\phi \in \ell_{\infty}(E)'$ define the (clearly continuous) linear form $\tau(\phi)$ on $\ell_{\infty}(E)$ by

(3.4)
$$\tau(\phi)(x) = \sum_{n} \langle x_n, \mu(\phi)(\{n\}) \rangle \qquad (x = (x_n) \in \ell_\infty(E))$$

Since

$$\|\tau(\phi)\| = \sum_{n} \|\mu(\phi)(\{n\})\| \le \|\phi\| \qquad (\phi \in \ell_{\infty}(E)'),$$

 $\tau: \ell_{\infty}(E)' \to \ell_{\infty}(E)'$ is continuous. Now $\tau(\phi)(x) = \lim_{m \to \infty} \phi(\pi_m(x))$ for each $x \in \ell_{\infty}(E)$ (and consequently $\lim_{m \to \infty} \phi((id - \pi_m)(x))$ exists for each $x \in \ell_{\infty}(E)$). It follows that for each $\phi \in \ell_{\infty}(E)'$, $\tau(\phi)$ agrees with ϕ on $c_0(E)$ and so ker $\tau = c_0(E)^{\perp}$. Since $\mu(\tau(\phi))(A) = \mu(\phi)(A)$ for finite sets $A \in \mathcal{F}$ it is evident that $\tau^2 = \tau$. We now establish that τ is an L-projection on $\ell_{\infty}(E)'$.

3.5 LEMMA: For each $\phi \in \ell_{\infty}(E)'$

$$\|\phi\| = \|\tau(\phi)\| + \|\phi - \tau(\phi)\|$$

PROOF: Since $\Sigma_n \|\mu(\phi)(\{n\})\| \le \|\phi\|$ it follows that $\sigma_m = {}^t\pi_m$ converges to τ in the norm topology of $\ell_\infty(E)'$. Moreover π_m is an M-projection on $\ell_\infty(E)$ and hence ${}^t\pi_m$ is an L-projection on $\ell_\infty(E)'$. Consequently τ is an L-projection. [see [2], [3]].

The τ -map can now be used to generate a commuting family $\{\tau_A | A \in \mathcal{F}\}$ of L-projections on $\ell_{\infty}(E)'$. For $A \in \mathcal{F}$ let $\sigma_A = {}^t\pi_A : \ell_{\infty}(E)' \to \ell_{\infty}(E)'$ and define $\tau_A = \sigma_A \circ \tau$. That is,

$$\tau_A(\phi)(x) = \sum_{n \in A} \langle x_n, \mu(\phi)(\{n\}) \rangle \qquad (x \in \ell_{\infty}(E), \, \phi \in \ell_{\infty}(E)').$$

Since $\mu(\tau_A(\phi)(\{n\})) = \chi_A(n)\mu(\phi)(\{n\})$ we have

$$\tau_{A}(\tau_{A}(\phi)(x)) = \sum_{n \in A} \langle x_{n}, \ \mu(\tau_{A}(\phi))(\{n\}) \rangle$$

$$= \sum_{n \in A} \langle x_{n}, \ \mu(\phi)(\{n\}) \rangle$$

$$= \tau_{A}(\phi)$$

and thus $\tau_A^2 = \tau_A$. Furthermore, one easily checks for $A, B \in \mathcal{F}$

$$\tau_A \circ \tau_B = \tau_{A \cap B}$$

$$\tau_{A \cup B} = \tau_A + \tau_B - \tau_{A \cap B}$$

 σ_A is an L-projection on $\ell_{\infty}(E)'$ since π_A is an M-projection on $\ell_{\infty}(E)$ [1]. Thus

$$\|\tau_{A}(\phi)\| + \|\phi - \tau_{A}(\phi)\| = \|\sigma_{A}(\tau(\phi))\| + \|\phi - \sigma_{A}(\tau(\phi))\|$$

$$\leq \|\sigma_{A}(\tau(\phi))\| + \|\tau(\phi) - \sigma_{A}(\tau(\phi))\| + \|\phi - \tau(\phi)\|$$

$$= \|\tau(\phi)\| + \|\phi - \tau(\phi)\|$$

$$= \|\phi\| \quad \text{(by 3.5)}$$

Hence $\{\tau_A | A \in \mathcal{F} | \text{ is a family of } L\text{-projections on } \ell_{\infty}(E)'$. For $A \in \mathcal{F}$ define

$$c_A(E) = \{x = (x_n) \in c_0(E) | x_n = 0 \text{ for } n \notin A\}.$$

Note $c_N(E) = c_0(E)$.

- 3.6 Proposition. Let $A \in \mathcal{F}$
- [a] $c_A(E)$ is an M-ideal in $\ell_\infty(E)$
- [b] If A is infinite then $c_A(E)$ is not complemented in $\ell_\infty(E)$
- [c] $c_A(E)''$ is isometrically isomorphic to $\ell_\infty(E'')$. In particular, if A is infinite, $c_A(E)$ is not a dual space.

PROOF: [a] It suffices to note ker $\tau_A = c_A(E)^{\perp}$. Let $x \in c_0(E)$, $\phi \in \ell_{\infty}(E)'$. Then

$$\phi(x) = \tau(\phi)(x) = \sum_{n \leq A} \langle x_n, \mu(\phi)(\{n\}) \rangle
= \sum_{n \in A} \langle x_n, \mu(\phi)(\{n\}) \rangle + \sum_{n \in N-A} \langle x_n, \mu(\phi)(\{n\}) \rangle.$$

If $\tau_A(\phi) = 0$ then $\mu(\phi)(\{n\}) = 0$ for $n \in A$ and hence $\phi(x) = 0$ if $x \in c_A(E)$. Similarly if $\phi \in c_A(E)^{\perp}$ then $\mu(\phi)(\{n\}) = 0$ for $n \in A$ and so $\tau_A(\phi) = 0$. Thus $\ell_{\infty}(E)' = c_A(E)^{\perp} \bigoplus_{\ell_1} \text{im } \tau_A$.

[b] Let $A \in \mathcal{F}$ be infinite and suppose there exists a continuous projection ξ on $\ell_{\infty}(E)$ with im $\xi = c_A(E)$. Let $x_0 \in E$, $x_0' \in E'$ be such that $\langle x_0, x_0' \rangle = 1$ and let $\iota: N \to A$ be the natural order preserving bijection. Denote by $\hat{\iota}$ the induced embedding of ℓ_{∞} into $\ell_{\infty}(E)$. That is, for $\beta \in \ell_{\infty}$,

$$\hat{\iota}(\beta)(n) = \beta_{\iota^{-1}(n)} x_0 \text{ if } n \in A, \qquad \hat{\iota}(\beta)(n) = 0 \text{ if } n \notin A$$

Finally let \bar{p} be the mapping from $c_A(E)$ into c_0 given by

$$\bar{p}(x) = (\langle p_{\nu(n)}(x), x_0' \rangle)_n \qquad (x \in c_A(E))$$

where $p_n: \ell_{\infty}(E) \to E$ is the *n*-th coordinate projection map on $\ell_{\infty}(E)$. Note that $\hat{\iota}(\beta) \in c_A(E)$ if $\beta \in c_0$. Consequently, for $\beta \in c_0$, $\bar{p} \circ \xi \circ \hat{\iota}(\beta) = \bar{p}(\xi(\hat{\iota}(\beta))) = \bar{p}(\hat{\iota}(\beta))$ = $(\langle p_{\iota(n)}(\hat{\iota}(\beta)), x_0' \rangle)_n = (\langle \beta_n x_0, x_0' \rangle)_n = \beta$. Thus $\bar{p} \circ \xi \circ \hat{\iota}$ gives a continuous projection of ℓ_{∞} onto c_0 which is impossible.

[c] if A is infinite then $c_A(E)$ is isometrically isomorphic to $c_0(E)$. The result follows by standard duality arguments.

For any Banach space $E, L(\ell_1, E)$ is isometrically isomorphic to $\ell_{\infty}(E)$ under the isometry ρ_E given by $\rho_E(u) = (u(e_n))_n$. One directly verifies that $\rho_E(K(\ell_1, E)) = k_{\infty}(E)$. For each $A \in \mathcal{F}$ we define $K_A(\ell_1, E) = p_E^{-1}(c_A(E))$. Note that $K_A(\ell_1, E)$ is always a proper closed subspace of $K(\ell_1, E)$. From 3.6 we have

- 3.7 COROLLARY: Let E be any Banach space and let $A \in \mathcal{F}$
- [a] $K_A(\ell_1, E)$ is an M-ideal in $L(\ell_1, E)$
- [b] $K_A(\ell_1, E)$ is not complemented in $L(\ell_1, E)$ if A is infinite
- [c] $K_A(\ell_1, E)''$ is isometrically isomorphic to $L(\ell_1, E'')$ if A is infinite.

Now using the transpose map $t:L(E,c_0) \to L(\ell_1,E')$ and corollary 3.7 we obtain a family of M-ideals in $L(E,c_0)$ by pulling back the M-ideals $K_A(\ell_1,E')$. We begin with an elementary lemma.

3.8 LEMMA: Let E be any Banach space and let $t:L(E,c_0) \to L(\ell_1,E')$ denote the transpose map. Then $t(K(E,c_0) = K_N(\ell_1,E')$.

PROOF: Let $u \in K_N(\ell_1, E')$ and define $v: E \to c_0$ by $v(x) = (\langle x, u(e_n) \rangle)$. Clearly v is continuous and for $x \in E$, $\langle x, v(e_n) \rangle = \langle v(x), e_n \rangle = \langle x, u(e_n) \rangle$. Thus v = u. Moreover $v \in K(E, c_0)$ since u is compact.

Now for $x' \in E'$, $\beta \in c_0$ let $w: E \to c_0$ denote the rank-1 operator $w(x) = \langle x, x' \rangle \beta$. For each $x \in E$, $n \in N \langle x, {}'w(e_n) \rangle = \langle w(x), e_n \rangle = \beta_n \langle x, x' \rangle$. Thus $\| {}'w(e_n) \| \le \| x' \| \, |\beta_n|$ and consequently ${}'w \in K_N(\ell_1, E')$. Since $K(E, c_0)$ is the closed linear span of rank-1 maps it follows that ${}'u \in K_N(\ell_1, E')$ for each $u \in K(E, c_0)$.

Let Z be a Banach space, M, Y closed subspaces such that $M \subset Y \subset Z$ and suppose M is an M-ideal in Z. Let τ denote the L-projection on Z' with kernel M^{\perp} . For $\varphi \in Y'$ let $\bar{\varphi}$ be any continuous linear extension of φ to all of Z and define $\bar{\tau}(\varphi) = \tau(\bar{\varphi})|Y$. It is easy to see that $\bar{\tau}: Y' \to Y'$ is an L-projection on Y' with ker $\bar{\tau} = M^{\perp}$ (in Y').

3.9 COROLLARY: For each $A \in \mathcal{F}$ let $M_A(E, c_0) = t^{-1}(K_A(\ell_1, E'))$. Then $M_A(E, c_0)$ is an M-ideal in $L(E, c_0)$ and if A is infinite, $M_A(E, c_0)''$ is isometrically isomorphic to $L(\ell_1, E''')$.

PROOF: Let $t:L(E,c_0) \to L(\ell_1,E)$ be the transpose map. By 3.8 we have $t(M_A(E,c_0)) = K_A(\ell_1,E')$ and $K_A(\ell_1,E') \subset t(L(E,c_0)) \subset L(\ell_1,E')$. By 3.7 $K_A(\ell_1,E')$ is an M-ideal in $L(\ell_1,E')$ and so by the above discussion $K_A(\ell_1,E')$ is an M-ideal in $t(L(E,c_0))$. Since t is an isometry onto its image it follows that $M_A(E,c_0) = t^{-1}(K_A(\ell_1,E'))$ is an M-ideal in $L(E,c_0)$.

3.10 REMARK: It is of interest to unravel the identifications and exhibit explicitly the form of the *L*-projections on $L(E, c_0)'$ with kernel $M_A(E, c_0)^{\perp}$.

We have $t:L(E,c_0)\to L(\ell_1,E')$ (isometry into) and $\rho_{E'}:L(\ell_1,E')\to \ell_\infty(E')$ (isometry onto). We have the following where $\gamma=\rho_{E'}\circ t$

$$\begin{array}{ccc} M_A(E,c_0) & \hookrightarrow L(E,c_0) \\ \gamma & & \gamma \\ \downarrow & & \downarrow \\ c_A(E') & \hookrightarrow \text{im } \gamma \subset \ell_{\infty}(E') \end{array}$$

Let τ_A be the *L*-projection on $\ell_\infty(E')'$ with ker $\tau_A = c_A(E')^{\perp}$ and $\bar{\tau}_A$ the induced *L*-projection on (im γ)' with ker $\bar{\tau}_A = c_A(E')^{\perp}$ (in (im γ)'). The *L*-projection on $L(E, c_0)'$ (with kernel $M_A(E, c_0)^{\perp}$) whose structure we wish to unravel is precisely ${}^t\gamma \circ \bar{\tau}_A \circ {}^t\gamma^{-1}$.

A direct computation shows that

$${}^{t}\gamma \circ \overline{\tau}_{A} \circ {}^{t}\gamma^{-1}(\varphi)(u) = \sum_{n \in A} \varphi((e_{n} \otimes e'_{n}) \circ u)$$

REMARK: Corollary 3.9 in the case A = N was first established by Mach and Ward [9] using the 3-balls-property. A different proof was given by Saatkamp in [10].

4. Further Remarks on the Dual of $\ell_{\infty}(E)$. In a recent paper [6] the authors have determined certain natural topological decompositions of the strong dual of $L_b(Z, E)$ where Z, E are Hausdorff locally convex spaces and $L_b(Z, E)$ carries the topology of uniform convergence on the bounded subsets of Z. It is shown that if E is quasicomplete and id_E has a suitable resolution into quasi-compact maps then $K_b(Z, E)^{\perp}$ is topologically complemented in $L_b(Z, E)'$ where $K_b(Z, E)$ is the space of continuous

linear maps $u:Z \to E$ which take bounded sets to relatively compact sets (such maps are called quasi-compact). $K_b(Z,E)$ is always a closed subspace of $L_b(Z,E)$ whenever E is quasi-complete, and $K_b(Z,E)$ coincides with the space of compact linear maps when Z,E are Banach spaces. It follows that for any Banach space Z and a large class of Banach spaces E [see definition 4.1] $K(Z,E)^{\perp}$ is complemented in L(Z,E)'. In particular $K(\ell_1,E)^{\perp}$ is topologically complemented in $L(\ell_1,E)'$ and $k_{\infty}(E)^{\perp}$ is complemented in $\ell_{\infty}(E)'$. In this section we explicitly construct projections on $\ell_{\infty}(E)'$ with kernels $k_{\infty}(E)^{\perp}$ and study the relationship between these projections and the L-projection τ on $\ell_{\infty}(E)'$ defined in section 3.

For simplicity we make the following definition

4.1 DEFINITION: A Banach space E is admissible if there exists a sequence of compact operators $\zeta_n: E \to E$ such that

$$(4.1.1) x = \sum_{n} \zeta_n(x) (x \in E)$$

and

$$(4.2.1) \qquad \sup\left\{\left\|\sum_{n=1}^{m} \beta_{n} \zeta_{n}\right\| \middle| \beta = (\beta_{n}) \in \ell_{\infty}, \|\beta\|_{\infty} \leq 1, m \geq 1\right\} < \infty.$$

Examples of admissible Banach spaces are afforded by Banach spaces of the type $(\Sigma_n \otimes X_n)_{\ell_n}$, $p \ge 1$ or $(\Sigma_n \otimes X_n)_{c_0}$ where dim $X_n < \infty$.

Let E be an admissible Banach space. Define $\chi: \ell_{\infty}(E)' \to \ell_{\infty}(E)'$ by

$$(4.2) \chi(\phi)(x) = \sum_{n} \phi(\zeta_{n}x_{1}, \zeta_{n}x_{2}, \ldots) (x \in \ell_{\infty}(E), \phi \in \ell_{\infty}(E)').$$

From 4.1.2 it follows that the series in 4.2 is absolutely convergent and in turn that χ is a continuous operator on $\ell_{\infty}(E)'$. A direct computation shows that for $\varphi \in \ell_{\infty}(E)'$, $\mu(\chi(\varphi)) = \mu(\varphi)$ and hence $\varphi|k_{\infty}(E) = \chi(\varphi)|k_{\infty}(E)$. Thus $\chi^2 = \chi$ and ker $\chi = k_{\infty}(E)^{\perp}$. Furthermore $\tau \circ \chi = \chi \circ \tau = \tau$ where τ is the L-projection defined in section 3. Consequently $\tau, \chi - \tau$ and id $-\chi$ are mutually orthogonal projections on $\ell_{\infty}(E)'$ and thus we obtain the topological decomposition

$$\ell_{\infty}(E)' = \ker (\mathrm{id} - \tau) \oplus \ker (\mathrm{id} - \chi + \tau) \oplus \ker \chi$$

where ker (id $-\tau$) is isometrically isomorphic to $\ell_1(E')$ and ker (id $-\chi + \tau$) is isometrically isomorphic to $bva_0(\mathcal{F}, E')$, the space of E'-valued vector measures which vanish on the finite subsets of N. Note that card $bva_0(\mathcal{F}, E') \ge 2^c$.

From 3.5 τ is always an *L*-projection. If χ is also an *L*-projection then for each $\varphi \in \ell_{\infty}(E)'$

$$\begin{aligned} \|\phi\| &= \|\chi(\phi)\| + \|\phi - \chi(\phi)\| \\ &= \|\tau(\chi(\phi))\| + \|\chi(\phi) - \tau(\chi(\phi))\| + \|\phi - \chi(\phi)\| \\ &= \|\tau(\phi)\| + \|\chi(\phi) - \tau(\phi)\| + \|\phi - \chi(\phi)\| \end{aligned}$$

If $E = c_0$ then χ is an L-projection. This follows from the direct calculation ${}^t\rho_{c_0}^{-1} \circ \sigma \circ {}^t\rho_{c_0} = \chi$ where ρ_{c_0} is the isometry of $L(\ell_1, c_0)$ onto $\ell_{\varkappa}(c_0)$ and $\sigma = {}^t\gamma \circ \bar{\tau} \circ {}^t\gamma^{-1}$ with γ and $\bar{\tau}$ defined as in section 3 (with $E = \ell_1$). Consequently, in this case we have the interesting decomposition

$$\ell_{\infty}(c_0)' = \operatorname{im} \tau \oplus_{\ell_1} \operatorname{im} (\chi - \tau) \oplus_{\ell_1} k_{\infty}(c_0)^{\perp}$$

where im τ is isometrically isomorphic to $\ell_1(\ell_1)$ and im $\tau \oplus$ im $(\chi - \tau)$ is isometrically isomorphic to $bva(\mathcal{F}, \ell_1)$ which is in turn isometrically isomorphic to $\ell_1(\ell_\infty')$.

The functionals in $k_{\infty}(c_0)^{\perp}$ are of a more exotic nature than those in $bva(\mathcal{F}, \ell_1)$. To obtain examples of such functionals let η , ξ be elements of ℓ'_{∞} where η extends the limit functional on c and $\xi \in c_0^{\perp}$. Then $\xi \otimes \eta \in \ell_{\infty}(\ell_{\infty})'$ where $\xi \otimes \eta(x) = \xi((\langle x_n, \eta \rangle)_n)$ for $x = (x_n) \in \ell_{\infty}(\ell_{\infty})$. Clearly $\xi \otimes \eta$ vanishes on $c_0(\ell_{\infty})$. Let

$$\pi = \rho_{\ell_{\infty}} \circ t \circ \rho_{c_0}^{-1} : \ell_{\infty}(c_0) \longrightarrow \ell_{\infty}(\ell_{\infty})$$

where $t:L(\ell_1,c_0)\to L(\ell_1,\ell_\infty)$ is the transpose map and $\rho_{c_0}:L(\ell_1,c_0)\to \ell_\infty(c_0)$, $\rho_{\ell_\infty}:L(\ell_1,\ell_\infty)\to \ell_\infty(\ell_\infty)$ are the canonical isometries. From $3.8\ \pi(k_\infty(c_0))=c_0(\ell_\infty)$ and hence $\xi\otimes\eta\circ\pi\in k_\infty(c_0)^\perp$. Moreover the map $\xi\to\xi\otimes\eta\circ\pi$ is injective for if $\beta\in\ell_\infty$ and if $x_n=\sum_{i=1}^n\beta_ie_i$ for each n then $\xi\otimes\eta\circ\pi((x_n))=\xi(\beta)$. It follows that card $k_\infty(c_0)^\perp\geq \mathrm{card}\ c_0^\perp=2^c$.

REMARKS: Let $j_{\infty}(c_0)$ denote the closed linear span of all forms of the type $\xi \otimes \eta \circ \pi$, $\xi \in c_0^{\perp}$ and $\eta \in \ell_{\infty}'$ extending the limit functional. It would be of interest to describe the quotient space $k_{\infty}(c_0)^{\perp}/j_{\infty}(c_0)$.

REFERENCES

- 1. Alfsen, E. M. and Effros, E. G., Structure in real Banach spaces I, Ann. of Math., **96** (1972), pp. 98-173.
 - 2. Behrends, E., et al., L^p structure in real Banach spaces, 613, Springer Lecture Notes.
 - 3. Behrends, E., "M structure and the Banach Stone Theorem", 736, Springer Lecture Notes.
 - 4. Cunningham, F., L-structures in L-spaces, Trans. Amer. Math. Soc., 95 (1960), pp. 274-299.
- 5. Dixmier, J, Les fonctionnelles linéaires sur l'ensembles des opérateurs bornés d'un espace de Hilbert, Ann. of Math, 51 (1950), pp. 387-408.
- 6. Fleming, D. J. and Giarrusso, D. M., *Topological decompositions of the duals of locally convex operator spaces*, Math. Proc. Camb. Phil. Soc., **93** (1983), pp. 307–314.
 - 7. Flynn, P., A characterization of M-ideals in $B(\ell_p)$ for 1 , Pac. J. Math, 98 (1982), pp. 73–80.
- 8. Hennefeld, J. A., A decomposition for $B(X)^*$ and unique Hahn-Banach extensions, Pac. J. Math, **46** (1973), pp. 197–199.
- 9. Mach, J. and Ward, J., *Approximation by compact operators on certain Banach spaces*, J. Approximation Theory, **23** (1978), pp. 274–286.
 - 10. Saatkamp, K., M-ideals of compact operators, Math. Z., 158 (1978), pp. 253-263.

DEPARTMENT OF MATHEMATICS St. Lawrence University Canton, NY 13617 U.S.A.