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M-IDEALS IN L({,, E)

BY
D. J. FLEMING AND D. M. GIARRUSSO

ABSTRACT. In this article it is shown that for any Banach space E,
L(€,, E) always contains uncountably many distinct M-ideals that are
closed subspaces of K(¢,, E) and which are not complemented in L(¢,, E).
Using standard duality arguments one obtains the result that infinitely many
distinct subspaces of K (E, ¢,) are M-ideals in L(E, c,). In particular, for the
case E = c,, this shows that the uniqueness conditions enjoyed by K(¢,),
p > 1, is not valid for E = ¢,. The results are obtained by utilizing the
identification of L(€,, E) with the vector-valued sequence space €..(E) and
to exploit natural decompositions of €.(E)" afforded by a class of L-
projections on £.(E)" induced by certain £'-valued vector measures.

1. Introduction. Let X be a Banach space. A continuous linear map 7:X — X is
called an L-projection if 7> = 7 and ||x|| = ||7(x)|| + ||x — 7(x)| for all x in X [4]. A
closed subspace M of a Banach space X is an M-ideal if there exists an L-projection
7:X' — X' with kert = M*. M-ideals were first defined and characterized in the
fundamental paper of Alfsen and Effros [1].

For Banach spaces X,Y we denote by L(X,Y) [respectively K(X, Y)] the Banach
space of all continuous [respectively compact] linear maps u:X — Y. Much recent
attention has been devoted to the geometric problem concerning the existence and
uniqueness of non-trivial M-ideals in the operator space L(X, Y). Hennefeld [8] deter-
mined that K(£,), | <p <, and K(c,) are M-ideals in L(£,) and L(c,) respectively.
That K(£,) is an M-ideals in L(£,) was first established by Dixmier [5]. Recently Flynn
[7] has characterized K(€,) as the only non-trivial M-ideals in L(€,), 1 < p < o.
Saatkamp [10] has shown that K(€,,€,), I < p = g < », is an M-ideal in L(£,, €,)
while K(€,€,),p=1,and K(£,, €..), 1 <p <, are not M-ideals in the corresponding
spaces of linear operators. That K(€,, C[0,1]) is not an M-ideal in L({,, C[0,1]) was
noted by Mach and Ward [9] who also determined that K (E, ¢,) is always an M-ideal
in L(E, c,) for any Banach space E.

In this paper we show that for any Banach space E, L({,E) always contains
uncountably many distinct M-ideals that are proper closed subspaces of K({,, E) and
which are not complemented in L(£,, E). Using standard duality arguments one obtains
the result that infinitely many distinct subspaces of K(E, ¢,) (including K(E, c,) itself)
are M-ideals in L(E, c,). In particular for the case E = ¢, this shows that the uniqueness
condition enjoyed by K(£,), p > 1, is not valid for K(cy).
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The results in this paper are completely self-contained. Our technique is to utilize the
identification of L({,, E) with the vector-valued sequence space ¢..(E) and to exploit
natural decompositions of ¢.(E)" afforded by a class of L-projections on {..(E)’
induced by certain E'-valued vector measures.

2. Notation and Terminology. Let E be a Banach space over R or €. The vector-
valued sequence space €..(E) is the collection of all sequences x = (x,) where x, € E
for all n and (||x,]|) € €... Given the norm ||x|| = sup, | x, |, €~(E) is a Banach space.
The Banach spaces ¢, (E) and €, (E) are similarly defined with norms given by sup,||x, |
and =, | x| respectively. c(E) is a closed subspace of €.(E).

Let N denote the set of positive integers and ¥ the power set of N. LetA € ¥, x € E
and x, the characteristic function of A. By x4*x we mean the sequence (x4(n)x). The
linear span of the collection of all x,-x, A € &, x € E will be denoted by S(E). Any
such s € S(F) admits a unique representation X/, x4 -a; where the a;’s are distinct
elements of Eand A,, ..., A, is a disjoint decomposition of N. The closure of S(E) in
€.(E) is denoted by k..(E). A direct argument shows that k.(E) consists of those
(x,) € €(E) such that {x,|n € N} is a relatively compact subset of E. Consequently
k.(E) is always a proper closed subspace of €.(F) if dim E = o,

By bva(¥,E) we shall mean the collection of all finitely additive E-valued set
functions p:% — E such that

nenN,N=U a4, (disjoint)} <
i=1

Il = sup {2 fhacan]

With the above total variation norm bva(%, E) is a Banach space.

For A € ¥ and x = (x,) € €.(E) we define m,:€..(E) = €.(E) by ms(x) =
(Xa(n)x,). If A ={1,2,...,m} we denote m, by m,. The identity map on E is denoted
by idg and ‘u:F’ — E’ denotes the transpose of the linear map u:E — F.

3. L-Projections on €¢.(E)'. Let E be any Banach space and let & € €.(E)'. A
finitely additive vector measure p(db):F — E’ is constructed as follows: For A € %
define the linear form w($p)(A) on E by

(3.1 (x, (d)(A)) = dxs-x) (x € E).
For eachx € E

[, @)AN] = Nl lIxaxll- = lloll lx]]

and hence w($b)(A) € E' with [|u(d)(A)]| = |$]. Clearly () is finitely additive.
Further note that w(¢$) = 0 if and only if ¢ vanishes on k..(E). We now establish that
() is of bounded variation.

3.2 LEMMA: Let E be any Banach space and let & € €.(E)'. Then
w(d) € bva(F,E") and [|w@)| = |ldlk(E)].

PrROOF: Let & € €..(E)'; Ay, ...,A, aparttition of N and x, . ..., x, elements of E
with ||x;|| = 1. Let o; = sgn (x;, m(db)(A))). Then
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2 |(xs u(¢)(Ai)>\ = 2 adr, w)(A)
i=1 i=1

= |¢]

%

= ¢(2| a,-xA,-x,-> = |4l Z} X4, " X;
It follows that =, [[m(d)A)| = [&]| and so ()| = |$||. Consequently
pu(d) € bva(%F,E') for each ¢ € €..(E)".

Now let ¢ € €.(E)'. By the Hahn—Banach Theorem 3 ¢ € ¢.(E)’ such that
$lko(E) = blko(E) and | & = [[d|k-(E)||. Since $—¢ vanishes on k.(E), w($) =
() and so [u(d)|| = ()| = ||| = ||k=(E)]|. To establish the reverse inequality
let € > 0 be fixed and choose a simple function s with canonical representation s = 2,
Xa,"X; where ||x;|| = 1 for I =i = nand |$|k.(E)|| — € = |b(s)|. Now |(s)| = =1,
G, (@) AN = ZL, | A)] = [[r@)]| and so [|dlk(E)]| = @) + e It
follows that ||u()]| = ||d]lk=(E)]. O

3.3 REMARK: From the above discussion the map w:€.(E)" — bva(%,E’) is con-
tinuous and ker w = k.(E)*. For € bva(%, E') there exists, by the Hahn—Banach
Theorem, ¢, € €.(E)" such that

du(s) = 2 (xi, w(A) (s => XA,.-x,-).
i=1 i=1

Consequently p.(d,) = w and so the map p is surjective. Thus by 3.2 the induced map
L:l(E) [ko(E)t — bva(%,E’) is an isometric isomorphism and hence bva(%,E’) is
isometric to the dual space of k.(E). In particular €..(E)’ is isometrically isomorphic
to bva(¥,E') if and only if dim E < . If dim E = o then bva(%, E') captures but
a portion of €..(E)' (see section 4).

For ¢ € €.(E)', [|n(@)l| =[] and so, in particular, =,||p(&){n| = [[4]l. Thus
(r(d){nD)., € €,(E"). Now for each &b € €.(E)’ define the (clearly continuous)
linear form 7(¢$) on €.(E) by

(3.4) T(P)(x) = 2,00, p(d)(nD))  (x = (x,) € €(E))
Since
(@ = )l = ol (& € €(E)),

7:4.(E) — €.(E) is continuous. Now 7(d)(x) = limm—=d(w,(x)) for each
x € €.(E) (and consequently limm—=d((id-w,)(x)) exists for each x € €.(E)). It
follows that for each € €.(E)’, 7(db) agrees with ¢ on ¢o(E) and so ker T = co(E)*.
Since p(T(P))(A) = p(d)(A) for finite sets A € F it is evident that 72 = 7. We now
establish that T is an L-projection on €.(E)’.
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3.5 LEMMA: For each & € €.(E)’

[l = 7l + l& — ()l

Prook: Since 2, [|w(d){n})|| = || it follows that o, = ', converges to T in the
norm topology of ¢.(E)'. Moreover 1, is an M-projection on {.(E) and hence ‘m,, is
an L-projection on €.(E)". Consequently T is an L-projection. [see [2], [3]]. Il

The T-map can now be used to generate a commuting family {t4]A € F} of L-
projections on €.(E)'. For A € F let 0, = '"ms:€(E) — {.(E)" and define 7, =
0a07. That is,

@) = 2 (o, @) (x € €AE), b € €a(E)).

n€A

Since w(Ta(d){n}) = xa(n)pu(d)({n}) we have
TATADNX) = 2 (X, p(ra(d)En))

neA
= 2 (5., wd){nh)
neA
= Ta (‘b)

and thus 7, = 7,. Furthermore, one easily checks for A,B € &
[a] TaoTg = Tans
[b] Taus = Ta T Tg = Tanp
0,4 is an L-projection on €.(E)’ since 1, is an M-projection on €..(E) [1]. Thus

[ra@ + & = 14 = [loaG@)] + b — oatr(d)|
= lloaG@)l + 7(d) — aaw(d)] + [|& — ()|
= v + o — ()l
= ol (by3.5)

Hence {14,]A € %] is a family of L-projections on ¢..(E)’.
For A € ¥ define

cA(E) = {x = (x,) € co(E)|x, = 0 for n & A}.
Note cy(E) = ¢o(E).

3.6 PROPOSITION. Let A € F
[a] ca(E) is an M-ideal in €..(E)
[b] If A is infinite then c4(E) is not complemented in €.(E)
[c] ca(E)" is isometrically isomorphic to €(E"). In particular, if A is infinite, c4(E)
is not a dual space.
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PROOF: [a] It suffices to note ker 74, = c4(E)*. Let x € co(E), & € €.(E)'. Then

2"<x"9 “’(d))({”}))
2 (A + 2 (x, m(d)(n)).

n€A neEN-A
If T4(d) = 0 then w(d)({n}) = 0 forn € A and hence ¢(x) = 0if x € c4(E). Similarly
if & € c4(E)* then w(d){n}) = 0 for n € A and so T4,(d) = 0. Thus £.(E) =
CA(E)lG')e, im 7,.

[b] Let A € & be infinite and suppose there exists a continuous projection £ on €« (E)
with im &€ = ¢4(E). Let xo € E, x{, € E' be such that (x,, xj) = 1 and let L:N — A be
the natural order preserving bijection. Denote by © the induced embedding of €., into
€,(E). That is, for B € €.,

d(x) = 7(d)(x)

Il

tPR)(n) = Brimx, if n € A, {B)n)=0ifnEA
Finally let p be the mapping from c¢,(E) into ¢, given by

p(xX) = (pum(x),x0))s  (x € c4(E))

where p,:€.(E) — E is the n-th coordinate projection map on €.(E). Note that
t(B) € cu(E)if B € ¢y Consequently, for B € co, po&ot(B) = p(E(L(B))) = p(L(B))
= (punEBY), x6))n = (Buxo,x0))» = B. Thus po€ot gives a continuous projection
of €.. onto ¢, which is impossible.

[c] if A is infinite then ¢4 (FE) is isometrically isomorphic to ¢o(E). The result follows
by standard duality arguments. O

For any Banach space E,L({,,E) is isometrically isomorphic to €.(E) under the
isometry p; given by pz(u) = (u(e,)),. One directly verifies that pz(K(£,,E)) =
k.(E). For each A € ¥ we define K,(£,,E) = p; ' (ca(E)). Note that K,(£,,E) is
always a proper closed subspace of K(€,, E). From 3.6 we have

3.7 CorOLLARY: Let E be any Banach space and let A € F
[a] K (€,,E) is an M-ideal in L({,,E)
[b] Ks(€£,,E) is not complemented in L(€,,E) if A is infinite
[c] Ks(£,1, E)" is isometrically isomorphic to L(€£,,E") if A is infinite.

Now using the transpose map t:L(E, ¢c) = L(£,, E") and corollary 3.7 we obtain a
family of M-ideals in L(E, cy) by pulling back the M-ideals K, (£, E’). We begin with
an elementary lemma.

3.8 LEMMA: Let E be any Banach space and let t:L(E, co) = L(£,,E") denote the
transpose map. Then t(K(E, co) = Ky(€,,E").

PrROOF: Let u € Ky(£,,E’) and define v:E — ¢y by v(x) = ((x, u(e,))). Clearly v
is continuous and for x € E, (x,'v(e,)) = (v(x),e,) = {x,u(e,)). Thus v = u.
Moreover v € K(E, c¢o) since u is compact.
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Now forx' € E', B € ¢, let w:E — ¢, denote the rank-1 operator w(x) = {x, x")B.
Foreachx € E, n € N (x,'w(e,)) = (w(x), e,) = Bu(x, x'). Thus |'w(e,)|| = ||x']| |B.]
and consequently ‘w € Ky(£,,E"). Since K(E, o) is the closed linear span of rank-1
maps it follows that ‘u € Ky(€,, E") for each u € K(E, cy). [l

Let Z be a Banach space, M, Y closed subspaces such that M C Y C Z and suppose
M is an M-ideal in Z. Let 7 denote the L-projection on Z' with kernel M*. For ¢ € Y’
let $ be any continuous linear extension of ¢ to all of Z and define 7(¢) = 7($)|Y. It
is easy to see that 7:Y’ — Y’ is an L-projection on Y’ with ker T = M* (in Y").

3.9 COROLLARY: For each A € F let My(E,co) = t (Ka(€1,E")). Then MA(E, co)
is an M-ideal in L(E, co) and if A is infinite, M4(E, c,)" is isometrically isomorphic to
L, E™).

PROOF: Let t: L(E, co) — L({,, E) be the transpose map. By 3.8 we have t(M,(E, c,))
=Ks(€1,E"and K (€, E") C t(L(E,cq)) C L({,E"). By 3.7 K4 (£, E") is an M-ideal
inL(€,, E") and so by the above discussion K (€, E') is an M-ideal in t(L(E, c,)). Since
t is an isometry onto its image it follows that M4(E, co) = t (K4 (£,, E")) is an M-ideal
in L(E, cg). J

3.10 REMARK: It is of interest to unravel the identifications and exhibit explicitly the
form of the L-projections on L(E, c,)’ with kernel M4(E, co)*.

We have t:L(E,co) = L(£,,E’) (isometry into) and pg :L(£,,E') = €.(E') (iso-
metry onto). We have the following where y = pg ot

MA(E7 CO) C—> L(E’ CO)

A
ca(E)Y S imy C L€(E)

Let 74 be the L-projection on €..(E')’ with ker 7, = c4(E’)* and 7, the induced
L-projection on (im <y)' with ker T4 = c4(E')* (in (im vy)'). The L-projection on
L(E, co)' (with kernel M4(E, co)") whose structure we wish to unravel is precisely
"YO'?AO"Y_]~

A direct computation shows that

Yorso'y (d)U) = 2 d(en@en)ou)
neA

REMARK: Corollary 3.9 in the case A = N was first established by Mach and Ward
[9] using the 3-balls-property. A different proof was given by Saatkamp in [10].

4. Further Remarks on the Dual of €..(E). In a recent paper [6] the authors have
determined certain natural topological decompositions of the strong dual of L,(Z, E)
where Z, E are Hausdorff locally convex spaces and L,(Z, E) carries the topology of
uniform convergence on the bounded subsets of Z. It is shown that if E is quasi-
complete and idg has a suitable resolution into quasi-compact maps then K,(Z, E)* is
topologically complemented in L,(Z, E)’ where K,(Z, E) is the space of continuous
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linear maps u:Z — E which take bounded sets to relatively compact sets (such maps
are called quasi-compact). K,(Z, E) is always a closed subspace of L,(Z, E) whenever
E is quasi-complete, and K,(Z, E) coincides with the space of compact linear maps
when Z, E are Banach spaces. It follows that for any Banach space Z and a large class
of Banach spaces E [see definition 4.1] K(Z, E)* is complemented in L(Z,E)’. In
particular K(€,, E)* is topologically complemented in L(€,,E)’" and k-(E)* is com-
plemented in €..(E)". In this section we explicitly construct projections on €.(E)" with
kernels k(E)* and study the relationship between these projections and the L-
projection 7 on €. (E)’ defined in section 3.
For simplicity we make the following definition

4.1 DEFINITION: A Banach space E is admissible if there exists a sequence of compact
operators {,:E — E such that

(411) X = Encn(x) (X € E)

and

B=B)EC,|Bl.=1,m= 1} <o,

(421) SUP{ 2 Bnén
n=1
Examples of admissible Banach spaces are afforded by Banach spaces of the type
E, ® X, p=lor @, & X,)., where dim X, < o,
Let E be an admissible Banach space. Define x:¢..(E)" — €¢.(E)’ by

4.2) X)) = Z,0x1, 80X, .. ) (x € €(E), & € L(E)).

From 4.1.2 it follows that the series in 4.2 is absolutely convergent and in turn that x
is a continuous operator on ¢..(E)’. A direct computation shows that for & € €.(E)’,
p(x(d)) = w(d) and hence d|k-(E) = x(d)|k~(E). Thus x> = x and ker X = k.(E)*.
Furthermore Tox = xoT = T where 7 is the L-projection defined in section 3. Con-
sequently T,x — 7 and id — x are mutually orthogonal projections on €.(E)" and thus

we obtain the topological decomposition
4.3) €.(E) = ker (id — 7) @ ker (id — x + 1) @ ker X

where ker (id — 7) is isometrically isomorphic to €,(E’) and ker (id — x + 1) is
isometrically isomorphic to bvay(%, E"), the space of E’-valued vector measures which
vanish on the finite subsets of N. Note that card bvay(%F,E’) = 2¢.

From 3.5 7 is always an L-projection. If X is also an L-projection then for each
b € €.(E)

ol = Ix@®I + 6 — x@l
[rx@dnl + lIxd) — tx@d»] + b — x|
= )] + Ix@) — 7| + ld — x|

Il
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If E = ¢, then x is an L-projection. This follows from the direct calculation ’p(,'ol 0G0 Py,
= x where p,, is the isometry of L({,,co) onto {..(c() and o = 'yoTo'y~! with y and
7 defined as in section 3 (with E = ¢,). Consequently, in this case we have the
interesting decomposition

€.(co) =im7@ ¢ im(x — 7@ ¢ k.(co)*

where im 7 is isometrically isomorphic to €,(€,) and im T @ im (x — 7) is isometrically
isomorphic to bva(%, €,) which is in turn isometrically isomorphic to €,(£z).

The functionals in k.(co)* are of a more exotic nature than those in bva(%, €,). To
obtain examples of such functionals let m, & be elements of ., where m extends the limit
functional on ¢ and & € ¢;. Then £ ® m € £.(£.) where &€ ® M(x) = E((x,M)n)
for x = (x,) € €({). Clearly £ X m vanishes on ¢(({.). Let

= Pt‘x°t°p:ﬂl3€x(f0) — £.(f,)

where 1:L(€,,¢) = L(£,,¢.) is the transpose map and p.:L(€,,co) — €.(cy),
pe,:L(€, €)= €.(£.) are the canonical isometries. From 3.8 mw(k..(¢y)) = ¢o(£-) and
hence £ X mom € ku(co)'. Moreover the map £ — & (X) Mo is injective for if
B € €.andifx, = 2., Be; foreach nthen & ® mom((x,)) = &P). It follows that card
ko(co)t = card ¢, = 2°.

REMARKS: Let j..(cy) denote the closed linear span of all forms of the type £ & nor,
€ € ¢y and m € ¢, extending the limit functional. It would be of interest to describe
the quotient space k..(co)"*/j.(co).
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