Advances in Plasma Astrophysics
Proceedings IAU Symposium No. 274, 2010 © International Astronomical Union 2011
A.Bonanno, E. de Gouveia Dal Pino & A. Kosovichev, eds. doi:10.1017/S1743921311007551

High-order methods for the simulation of
hydromagnetic instabilities in core-collapse
supernovae

. Rembiasz**, M. ergaulinger', M. Ange oy“, P. Cerda-Durén
T. Rembiasz*!, M. Ob li L M. A 1 Aloy?, P. Cerda-Duran?!
and E. Miiller!

! Max-Planck-Institut fiir Astrophysik, 85748 Garching, Germany
*email: rembiasz@mpa-garching.mpg.de

?Universitat de Valencia, 46100 Burjassot (Valencia), Spain

Abstract. We present an assessment of the accuracy of a recently developed MHD code used to
study hydromagnetic flows in supernovae and related events. The code, based on the constrained
transport formulation, incorporates unprecedented ultra-high-order methods (up to 9th order)
for the reconstruction and the most accurate approximate Riemann solvers. We estimate the
numerical resistivity of these schemes in tearing instability simulations.
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1. Introduction

If the weak magnetic fields of progenitor stars are amplified efficiently in the post-
collapse phase, they may affect the dynamics of core-collapse supernovae significantly.
Prime candidates for this amplification are hydromagnetic instabilities in the stellar
core, e.g., magneto-convection and the magneto-rotational instability (e.g., Obergaulinger
et al. 2009). Leading to small-scale turbulence, these instabilities demand the use of
highly accurate methods in supernova simulations, while the wide range of physics in-
volved and the presence of supersonic flows and strong shock waves call for flexibility
and stability.

The properties of turbulence developing due to MHD instabilities can depend crucially
on transport coefficients such as the resistivity, n. In any numerical simulation, numerical
diffusion and dissipation, described approximately by a numerical resistivity, nyum, add
to the effects of the physical (microscopic) resistivity. A clear distinction between both
effects is important for a correct interpretation of the simulations.

Therefore, we try to quantify the numerical resistivity of our MHD code, an implemen-
tation of a finite-volume constraint-transport scheme. Here we show a comparison of the
numerical resistivity for different resolutions, Riemann solvers (Lax-Friedrichs (LF) (e.g.,
Toro 2009), Harten, Lax, van Leer (HLL) (e.g., Toro 2009), the approximate six-stage
MHD solver (HLLD) (Miyoshi & Kusano 2005)) and reconstruction schemes (piecewise
linear (PL) (e.g., Toro 2009), monotonicity preserving (MP) (Suresh & Huynh 1997) of
5th, 7th and 9th order).

2. Simulations

We performed 2D simulations of the tearing instability in a current sheet in force-free
magneto-hydrostatic equilibrium with constant gas pressure and density using similar
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Figure 1. Left: Time evolution of BE/Q for different magnetic Reynolds numbers R,,. HLL

Riemann solver, MP 5th order and grid of 512 x 1024 zones were used. R,, = 7 X 10* (orange
squares), R, = 7 x 10° (red triangles), R,, = 27 x 10° (green diamonds), R, = 2m x 107
(dashed blue), R,, = m x 107 (solid black).

Right: Growth rates for different Riemann solvers: LF (green squares), HLL (black diamonds),
HLLD (blue triangles). The simulations were performed with 7th order MP reconstruction on
grid of 128 x 256 zones.

physical parameters as in Landi et al. (2008) for different resistivities. The initial config-
uration is perturbed with transverse velocity fluctuations, which are much smaller than
both the Alfvén and the sound speed. Due to non-zero resistivity the tearing instability
sets in. This can bee seen in Fig. 1, depicting the time evolution of the average of the
transverse (y) component of the magnetic energy. It grows exponentially during the first
phase of evolution and its growth rate is proportional to resistivity. (Note that the on-
set of the instability is delayed for higher Reynolds numbers, defined as R,, = ca/Lyn,
where L, is the transverse box size.) However, this proportionality holds only above a
critical resistivity n* being approximately equal to the numerical resistivity num. This
sets the maximum Reynolds number R}, which can be resolved (for a given scheme and
resolution).

Resolution studies are presented in the left panel of Fig. 2. With the coarsest grid we
are not able to resolve Reynolds numbers higher than R, ~ 10°, because the numerical
resistivity dominates over the physical one. Doubling the number of grid zones reduces
the numerical resistivity approximately fourfold for the used scheme. In the right panel
of Fig. 2 we compare different reconstruction methods. All simulations were performed
with a fixed number of the grid zones. 9th order MP is approximately twice less resistive
than 7th order MP and four times less resistive than 5th order MP. The PL scheme
seems to be less reliable than MP schemes for these simulations. A comparison of three
different Riemann solvers is shown in the right panel of Fig. 1.
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Figure 2. Left: Resolution studies with HLL Riemann solver and MP of 5th order. Grids of:
64 x 128 (red asterisks), 128 x 256 (green squares), 256 x 512 (blue triangles), 512 x 1024 zones
(black diamonds) were used.

Right: Growth rates for different reconstruction schemes: PL with a combination of minmod
and MC slope limiter (red asterisks), MP of 5th order (green squares), MP of 7th order (blue
triangles), MP of 9th order (black diamonds). In the simulations HLL Riemann solver and grid
of 128 x 256 zones were used.

3. Conclusions

We conclude that with the aforementioned simulations we are able to measure the
numerical resistivity of our code. This allows us to choose a proper grid resolution and
reconstruction schemes such that the numerical resistivity is lower than the microscopic
resistivity with which we want to simulate the physical phenomena of interest.

In the performed tests we reduced by approximately the same factor the numerical
resistivity of the simulations with 5th order MP, either by choosing 9th order MP, or by
doubling the resolution. The latter is computationally much more expensive. Therefore,
in order to resolve higher Reynolds numbers, one should start by choosing higher order
reconstruction methods, rather than by increasing resolution, if the computational time
is a matter of concern.
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