The asymptotic periods of integral and meromorphic functions

By J. M. WHITTAKER, University of Liverpool.

(Received 18th November, 1935. Read 6th December, 1935.)

- 1. In a former paper published in these *Proceedings*¹ it was shown that an integral function of order less than 1 cannot have any asymptotic periods, and it was suggested that a function of order 1 can have at most a set $k\omega$ ($k=\pm 1,\pm 2,\ldots$). This was subsequently found to be the case.² Meromorphic functions for which κ , the exponent of convergence of the poles, is less than ρ , the order, behave in many ways like integral functions, so we should expect that (i) if $0 \le \kappa < \rho < 1$ there should be no asymptotic periods, (ii) if $0 \le \kappa < \rho = 1$ either none or else a single sequence $k\omega$ ($k=\pm 1,\pm 2,\ldots$). It will be shown that this is so.
- (i) was originally proved by a modification of the method used for integral functions. A quite different method was subsequently found, and this is superior in that it also establishes (ii). As the first proof has points of interest a sketch of it is included.
- 2. We first establish the following result:

Theorem I. Let f(z) be an integral function, or a meromorphic function for which $\kappa < \rho$, which has an asymptotic period of argument a. Then there is a number $\sigma < \rho$ such that

(1)
$$\frac{1}{2R} \int_{-R}^{R} \log^{+} |f(xe^{i\alpha})| dx < R^{\sigma} \qquad (R \ge R_0).$$

This is proved by the one-dimensional analogue of the "jig-saw puzzle" argument used in **T**, 96-99. The details may be omitted. Now suppose that $\rho < 1$ and that f(z) has an asymptotic period, which may be supposed real without loss of generality. Write f(z) = F(z)/G(z), where F(z) is an integral function of order ρ and G(z) is a canonical product of order κ , $G(z) \equiv 1$ if f(z) is an integral

¹ 3 (1933), 241-258.

² J. M. Whittaker, Interpolatory Function Theory (Cambridge Tract No. 35, 1935), 86. This work will be referred to as **T**.

function). Then F(z) $F(-z) = H(z^2)$, where H(z) is an integral function of order $\frac{1}{2}\rho$. It follows readily from (1), that, for some number $\lambda < \frac{1}{2}\rho$,

(2)
$$\frac{1}{R} \int_0^R \log^+ |H(x)| dx < R^{\lambda} \qquad (R \ge R_1).$$

This, however, is impossible. For choose any number μ such that $\lambda < \mu < \frac{1}{2}\rho$. Then a result of Besicovitch and Pennycuick states that

$$H(x) > x^{\mu}$$

in a set of upper density greater than $1 - \rho$, and this contradicts (2). f(z) has therefore no asymptotic periods.

3. The second proof depends on Theorem $A(\mathbf{T}, 2)$. With the notation and terminology there described, express f(z) in normal form

(3)
$$f(z) = g(z) + \sum \left\{ \frac{P(z)}{D(z)} + Q(z) \right\},$$

with associated numbers σ , τ , τ_1 , κ . The following result will be proved:

Theorem 2. A meromorphic function for which the inequalities $\kappa < \tau = \rho$, $\kappa < 1$ are satisfied has no asymptotic periods.

If possible, let β be an asymptotic period. Some of the nebulae of $f(z + \beta)$ may intersect those of f(z), and so it may be necessary to bracket together some terms in the expansion

(4)
$$f(z+\beta) - f(z) = g(z+\beta) - g(z) + \Sigma \left\{ \frac{P(z+\beta)}{D(z+\beta)} + Q(z+\beta) \right\}$$
$$- \Sigma \left\{ \frac{P(z)}{D(z)} + Q(z) \right\}$$

to get it in normal form. If there is no such intersection the result is evident, since the numbers τ_1 associated with (3) and (4) will clearly be the same, and the order of $f(z+\beta)-f(z)$ will be not less than

$$\max (\tau_1, \kappa) = \max (\tau, \kappa) = \rho.$$

If there are intersections, assume for the moment that no $f(z + \beta)$ -nebula cuts (or touches) more than one f(z)-nebula. Let N_1 , a typical nebula of f(z), cut M_2 , one of $f(z + \beta)$; and let N_2 , the

¹ Math. Ann., 97 (1927), 677-695.

² Journal London Math. Soc., 10 (1935), 210-212.

f(z)-nebula corresponding to M_2 , cut M_3 , and so on. The process will come to an end after a finite number of stages, say when N_p cuts M_{p+1} . For otherwise every circle of radius R would contain at least $R/|\beta|$ nebulae of f(z), and so at least $R/|\beta|$ poles, and this is false since the number of poles is $O(R^{\kappa+\epsilon})$, where $\kappa+\epsilon<1$. If the most distant nebula in the chain is distant d from the origin it follows from this argument that $p< d^{\kappa+\epsilon}$, and thus the diameter of the chain is $O(d^{\kappa+\epsilon})$. Now, denoting by $P_1(z)$ the P(z) associated with N_1 so that $P_1(z+\beta)$ is the P(z) associated with M_1 , etc.,

$$\frac{P_{1}(z)}{D_{1}(z)} = \left\{ \frac{P_{1}(z)}{D_{1}(z)} - \frac{P_{2}(z+\beta)}{D_{2}(z+\beta)} \right\} + \left\{ \frac{P_{2}(z+\beta)}{D_{2}(z+\beta)} - \frac{P_{3}(z+2\beta)}{D_{3}(z+2\beta)} \right\}
+ \dots + \left\{ \frac{P_{p}\{z+(p-1)\beta\}}{D_{p}\{z+(p-1)\beta\}} - \frac{P_{p+1}(z+p\beta)}{D_{p+1}(z+p\beta)} \right\}
+ \frac{P_{p+1}(z+p\beta)}{D_{p+1}(z+p\beta)},$$

and so

$$\left| \frac{P_{p+1}(z+p\beta)}{D_{p+1}(z+p\beta)} \right| \ge \left| \frac{P_{1}(z)}{D_{1}(z)} \right| - \left| \frac{E_{1}(z)}{D_{1}(z)D_{2}(z+\beta)} \right| - \dots - \left| \frac{E_{p}\{z+(p-1)\beta\}}{D_{p}\{z+(p-1)\beta\}D_{p+1}(z+p\beta)} \right|,$$

where

$$E_i(z) = P_i(z) D_{i+1}(z+\beta) - D_i(z) P_{i+1}(z+\beta) \qquad (i = 1, 2, \ldots, p).$$
 Write

$$\max_{|z|=R} |P_i(z)| = \delta_i(R), \quad \max_{|z|=R} |E_i(z)| = \eta_i(R),$$

and take z_1 to be a point of modulus 2d such that

$$P_1(z_1) = \delta_1(2d).$$

Then

$$\left|\frac{P_{p+1}\left(z_{1}+p\beta\right)}{D_{p+1}\left(z_{1}+p\beta\right)}\right| \geq \frac{\delta_{1}\left(2d\right)}{\left|D_{1}\left(z_{1}\right)\right|} - \eta_{1}\left(3d\right) - \ldots - \eta_{p}\left(3d\right),$$

since it is clear that

$$|D_1(z)|, |D_2(z+\beta)|, \ldots, |D_{p+1}(z+p\beta)| \ge 1$$
 on $|z| = 2d$.
Again, if b_0, \ldots, b_k are the poles in N_1 , of multiplicities $\lambda_0, \ldots, \lambda_k$,

$$|D_1(z_1)| = |z_1 - b_0|^{\lambda_0} |z_1 - b_1|^{\lambda_1} \dots |z_1 - b_k|^{\lambda_k} \le (3d)^{\mu} < (3d)^{\kappa+\epsilon},$$

where $\mu = \lambda_0 + \lambda_1 + \ldots + \lambda_k$, so that

(5)
$$\delta_{p+1}(3d) \geq \frac{\delta_1(2d)}{(3d)^{\kappa+\epsilon}} - \eta_1(3d) - \ldots - \eta_p(3d).$$

We may suppose that $P_1(z)$ is one of a sequence for which

(6)
$$\frac{\log^{+}\log^{+}\delta_{1}(r)}{\log r} \to \tau_{1}.$$

This being so, if we write

$$H(r) = \max [\eta_1(r), \ldots, \eta_p(r)],$$

it follows from (5), (6) that at least one of the relations

$$\overline{\lim_{r\to\infty}} \frac{\log^+\log^+H(r)}{\log r} = \tau_1, \quad \frac{\log^+\log^+\delta_{p+1}(r)}{\log r} \to \tau_1$$

is satisfied, and in either case $f(z + \beta) - f(z)$ is of order at least $\tau_1 = \rho$, since its expansion in normal form contains terms like

$$\frac{E_1(z)}{D_1(z) D_2(z+\beta)}, \quad \frac{E_2(z)}{D_2(z) D_3(z+\beta)}, \ldots,$$

and also terms like

$$\frac{P_{p+1}\left(z\right) }{D_{p+1}\left(z\right) }.$$

The assumption that β is an asymptotic period has therefore been shown to be false. Multiple intersections of nebulae can be dealt with similarly.

4. Now suppose that $\rho \leq 1$. If $\tau = \rho$ we have shown that there are no asymptotic periods. If, on the other hand, $\tau < \rho$, it follows that

$$f(z) = g(z) + a$$
 function of order less than ρ ,

and the asymptotic periods of f(z) are therefore the same as those of the integral function g(z). The latter is of order ρ and so has no asymptotic periods if $\rho < 1$ and at most a single sequence $k\omega$ if $\rho = 1$.

5. I take this opportunity of correcting a slight error in a former paper "On the asymptotic periods of meromorphic functions." On p. 37, line 14, there is mention of the line joining a point u to the origin. It should be made clear that this line must be one on which the set E is everywhere dense. If there is no such line it is easy to see that we get one of cases (a), (β) , (δ) . If there is, we get cases (γ) , (ϵ) , or (ζ) according as the projections on the perpendicular line correspond to cases (a), (β) , or (γ) .

¹ Quart. J. of Math. (Oxford), 5 (1934), 34-42.