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II[lSTRACT 
A theory based on classical fluid mechanics for 

an incompressible, chemically non-reacting, atmos­
pheric mixture of air and entrained snO\~ particles is 
derived. These continuum equations of motion are then 
expanded to include turbulent flow. The reduced, one­
dimensional equations of this theory are further 
refined by order-of-magnitude analysis and correla­
tion of the turbulent terms to mean flow parameters. 
The resulting one-dimensional, turbulent equations of 
motion for the snow contain apparent turbulent forces 
which enhance entrainment of snow where gradients of 
the air flow are high. These turbulent equations of 
motion are then solved numerically for snow particle 
velocity and concentration as a function of height 
above the surface. The results are similar to obser­
ved profiles of snow concentration ann the super­
position of the solution of this turbulent 111ixture 
theory for snow entrainment with an appropriate 
solution for the saltation layer 11111 eventually 
lead to a working continuum theory for blowing snow. 

1. THEORY 
The following continuum mixture theory for 

entrained snow in an atmospheric flow is based on the 
classical fluid mechanics principles of conservation 
of mass (continuity) and conservation of momentum for 
an incompressible, chemically non-reacting mixture 
(Hill and others 1980). Consider the flow of a mix­
ture of N constituents. For three-dimensional mixture 
motion the equations of motion for the ~th constit­
uent (1 ( ~ ( N) are: 

~ + ~ v • U~ = 0 (continuity) (1) 

and 

P~ U ~ = P~ E. + Q~ + v • ~~ (momentum) , (2) 

where T~ is the stress tensor for the ~th constit­
uent, PE is mass density of the ~th constituent per 
unit voTume of the mixture, ~ = P~/Pref~ is the 
dimensionless concentration of the ~th constituent, 
Pref; is a reference density indicative of the mass 
densl ty per unit vol ume that the ~th constituent 
would achieve in a static condition, and ~ is the 
sUbstantive derivative of the concentration of the 
~th constituent: ~s is the velocity vector of the 
~ constituent, ~~ 1S the substantive derivative of 
the velocity vector of the ~ constituent, and E. is 

body acceleration vector, which acts on all constitu­
ents. Finally, D~ is the drag force of the ~ th 
constituent, whTch is a vector-valued function of the 
concentration of the ~th constituent and the other 
constituents of the mixture. 

For the case of an atmospheric mixture of snow 
particles and air in three-dimensional motion, the 
following set of twelve equations result: 

~s + ~s ! • u 
-s = 0 

~a + ~a ! . ~ 0 

Ps .Q.s Ps E. + Qs 

Pa .!la = Pa E. + ~ + v . ~a 

(3) 

(4) 

( 5) 

(6) 

The subscripts a and s indicate the air constituent 
and the entrai ned sno~l, respecti vely. 

The form and extent to which D participates as a 
force in the momentum equation is-the result of con­
stitutive assumption. For the case of an air/snow 
mixture, the following form is adopted: 

Q.a = - Qs = ~s D(Qs - Qa)' (7) 

where 0 is a numerical constant often referred to as 
a drag coefficient. In other words, the transfer of 
momentum between the air and the snow is a vector 
function of snow-particle concentration and the velo­
city differences between the air and the snow part­
icles. 

It would be possible to ma nipulate these equations 
for solutions for ~a' Qs and ~s; however, they would 
1 ack the accuracy of a theory wili ch takes into account 
the forces resulting from turbulent motion super­
imposed on these mean flows. 

Adopting the standard notation for turbulent fluc­
tu~tions of the mean flow parameters (Hinze 1959), we 
write: 

Qa = !Ia + Q~ 

.!!.s = ![s + .!!.s 
~ = ~ + 4>' 

Ps = Ps + Ps ' 

(8) 
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where, for example, .lIa is the time-average value of 
the air-velocity vector, and ~a is the turbulent 
fluctuation of the air velocity vector about its own 
time-average value. 

Additional time averages can be taken of any prod­
uct or sum of mean and fluctuating flow parameters; 
hOl~ever, the following conventions (Hinze 1959) must 
be observed. If f and g are functions of time, 

IT = 1 

Ig = fg 

TI = al 
ax ax 
l' = 0 

(f'g'f')=O 

rgr '* l' 9' 0 

(f'g'f'g') '* 0 

substituting the functions of Equation 
the mean flow parameters in the continuity 
for the snow (Equation (3)) results in: 

~ (~ + 4>') + (~ + 4>') 'V • (Us + Us') dt - - -

Expanding the substantive derivative: 

at 
(~ + 4>') + (:!Is + ~~) :!.. (~ + 4>') + 

+ (~ + 4>')~ • (lIs + .!!.~) = o. 

(9) 

(8) into 
equation 

O. (l0) 

(11 ) 

Expanding and separating the terms into mean flow and 
turbulent fluctuation parameters: 

d4> _ 
- + U at -s 

a4> ' 
_'V~ + ~_'V • U + - + U' • _v 4>' + 4>' v • U' + -s at -s -5 

o 

(12 ) 
The above may he rewritten in the form: 

~ + v· (~Us) + 
4>t - -

+ :!.. • (~~~ + 4> I ."[s) = 0 • (13 ) 

At this point it is advantageous to take the time 
average of each term in Equation (13), resulting in 
the third and fifth terms being identically zero as 
per the ti,oe average conventions: 

(14) 

Expanding the second term: 

a 4> - - - (-:-r;-;-r 
-- + Us • 'V 4> + 4> v·Us + _v· 4> _U ) at - - -- O. (15) 

Rewriting the first and second terms as a substantive 
deri vati ve: 
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d4> 
dt 

+ ~ 'i . .lIs + 'i . (4)' ~ ') = o. 

Note that the sum of the first and second 
the continuity equation for the mean flow 
and this sum has already been established 
(3)) as zero. 

This leads to the identity: 

:i. (4)' ~~) = 0, 

(16) 

terms is 
parameters 
(Equation 

(17) 

and hence the turbulent continuity equation for the 
snow can be written solely as a function of mean flow 
parameters: 

or 

a4> _ _ _ 
-+ lJ 'i 4> + 4> v· ~s 0 at -s 

a4> 
+ ~ • (~!Is) = o. 

at 
(l8) 

substituting the mean flow and fluctuating turbu­
lent parameters (Equation (8)) into the mean flow 
parameters of the momentum equation for the snow 
(Equation (5)) and the constitutive drag force (Equa­
tion (7)) and combining Equations (5) and (7) results 
in: 

d 
(ps + piS) (- (!Is + .l!s)) = (ps + ps) ~­

dt 

(19 ) 

Expanding the substantive derivative on the left side, 
expanding the distributive terms and noting that it 
will be advantageous to take an additional time aver­
age of all the resulting terms, 

• V u' --s 

a.l!s 
+ P~ 

at 
+ 

By the time-average conventions, terms two, four, 
five, seven, and twelve on the left side are identi­
cally zero. Also, on the right side, time averages of 
fluctuations in terms one, three and four are identi­
cally zero. Therefore 

Ps 
at 

where 

+ Ps:!Is . !:!Is = Ps.!? - ~ D (:!Is -!ra) - fT' 

(21) 
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[T = P~ 
at 

+ ![s P~ VU'+-'-U' ·vU + - -s Ps -s --5 

+ PS!:!.~ • ~!:!.'S + cp'D(!:!.~ -~) . (22) 

Equation (21) is the turbulent momentum equation for 
the snow. The terms in FT all contain even ordered 
products of fluctuations. The apparent forces 
described by these terms are analogous to the apparent 
or Reynold's forces of the turbulent Navier-Stokes 
equations for fluid flow. 

Equation (18), which is the turbulent continuity 
e~uation, and Equation (21), which is the turbulent 
,nomentum equati on, are the three-dil'1ens i onal turbul­
ent p.'1uations of motion for the snow. 

The flow regime can be established by expanding 
the equations of motion for the air (Equations (4) and 
(6)) by turbulent analysis and solving simultaneously 
with the turbulent equations of motion for the snow 
(Equations (18) and (21)). The flow parameters cp, !:!.S 
and !:!.a can therefore be determi ned for all space 
vari abl es. 

As an initial step to testing turbulent mixture 
theory the turbul ent equati ons of moti on for the 
snow are reduced to the one-dimensional case. In one­
dimensional flow there are gradients of the flO\~ 
parameters in only one direction. This is analogous 
to boundary-layer flow over an infinite flat surface 
with the body force PsQ being parallel to the 
directions of the gradients. 

In the following, using Cartesian coordinates, 
the positive Y axis is vertical and the only body 
acceleration is -by. Gradients of flow parameters do 
not exist in the X and Z directions, and transient 
effects are neglected. 

Applying the above constraints to the turbulent 
equations of motion for the snow (Equations (18) and 
(21)) results in 

and 

d _ _ 
- (cp vs) = 0 
dy 

d _ 
- Vs dy 

(23 ) 

(24) 

It is possible to solve this Y co~pon~nt o! the turb­
ulent Inomentum equation and the one-d1mens10nal, 
turbulent continuity equation for t~e snow-fall . 
velocity Vs and the snow concentrat1on cp as a.fu~c~lon 
of height for turbulent mixture flow over an 1nflnlte 
flat surface. 

First, however, it would be advantageous to ex~m­
ine the relative orders of magnitude of the ter~s 1n 
FT and then write the remaining terms as funct10ns of 
th~ mean fl ow parameters (Dre\~ 1975) . 

[ " dvs dvs 
FTy cp' + ~- + Psg 

dy dy 

.,,-] dv~ 0 
+ ~ v' s +-

dy Psg (25) 

where Psg is the mass density of deposited (static) 
snow. The relative orders of magnitude of the para­
meters in FTy are 

Vs - 1 

cp - 1 

Vs 
, 

- 0 

cp' - 0 

y - 0, (26) 

where 0 is a parameter much smaller than 1. Then, 
subs tituti ng these values for F y' 

[ 

1(0) 
FTy Psg --+ (0) (0) - + 1 (0) 

(<5) <5 (<5) 

(0 ) 

(27) 

Only the fourth term of FTy is negl igible rel ative to 
the other three terms. 

The following constitutive assumptions are made 
for the values of the turbulent, fluctuating flow 
parameters in FTy as functi ons of the mean fl O~I para­
meters. These constitutive assumptions follow from 
the arguments of Prandtl's mixing-length theory for 
correlation of tllrbulent, fluctuating flow para­
meters to mean flow parameters for homogeneous tur­
bulence (Hinze 1959, Drew 1975). 

dUa 
cp' = ~E: 

dy 

v's ." 
dy 

(28) 

where E: and y are numeral constants with dimensions 
t and L, respectively. In other words, these cor~e-
1 ati ons state that the magni tude of any fl uctuat1 ng 
parameter of the mixture can be no greater than the 
fluctuations of the fluid velocity. Substituting Equa­
tions (28) into Equation (25) (with the negligible 
term dropped): 

d dUa 
FTy Psg [ dU, Vs ~E:-

dy 
- (y -) + 
dy dy 

dUa dUa dvs dUa 
+ <py -y 

dy dy dy 
+ <p y-

dy 

Expanding the derivatives : 

FTy = Psg 
[ 

dUa 
qcp vs­

dy 

- (y -) • d ~, ] 
dy dy 

+ 

(29) 

dUa 2 dvs dUa d2Ua] 
+ E:'(~ (-) - + y2~ 

dy dy dy dy2 (30) 

Note that the apparent forces of turbulence in Equa­
tion (3) are particularly effective when the air 
velocity gradients and the particle velocity are 
strongest. 

In summary, the one-dimensional, continuity equa­
tions and the equation of motion in the y direction 
can be written: 

d 

and 

Ps Vs 

- qps 

dy 

dUa 2 
(-) 

dy 

dUa 
.,,2 Ps­

dy 

(31) 

(32) 
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2. SOLUTION OF THE ONE-DIMENSIONAL TURBULENT EQUA­
TIONS OF MOTION FOR THE SNOW 

Examination of Equation (31), the turbulent con­
tinuity equation for the snow, leads to 

cpvs = constant. 

This requires the snow-particle fall velocity to 
vary inversely with the particle concentration. 

(33) 

Equation (32), the turbulent mo~entum e~uation 
for the snow, can be sol ved for vs' the snOl~-parti cl e 
fall velocity, as a function of height. 

For an air velocity the established logarithmic 
profile was adopted (Geiger 1965, Plate 1971) 

_ U* Y 
U (y) = - tN (-) (34) 
a k Yo' 

and it follows that 
d _ U* 1 

- Ua (y) - -­
dy k Y 

U 
_ -i!. y-2 

k 
(35) 

where U*, k, and Vo are respectively the friction 
velocity, the von Karman constant, and the roughness 
height. Rewriting the turbulent momentum equation for 
the snow, 

dvs 0 U 2 

Vs -+ g +- Vs - q (~) + dy Psg k 
V3 

(36) 

U 2 dvs U 2 

+q (~) CiY- 1'2 (~) O. 
k l k y3 

This is a non-linear differential equation of the form 

Vs v's + A(Y)v's + Bvs = C(Y). (37) 

This equation was solved by finite difference 
techniques for vs' which represents the snow-fall 
velocity as a function of height over a vertical 
interval of 2 m. The snow-fall velocity was calculated 
for an initial fall of 1.0 m s~ for three different 
windspeed profiles. These results for Vs as a function 
of height were then fitted with the logarithmic func­
tion curves, summarized below: 

(a) Ua (10 m) = 9.2 m -1 S , U* = 0.8, k 
V Vs (V) = 0.22 log -- + 0.63 

0.05 

(b) Ua (10m) = 12.5 m s-l, U* = 

Yo = 0.000 4, VS (Y) = 3.11 

0.5 , k = 

Y 
log --

0.05 

0.4, V 0 

0.4, 

+ 0.59 

(c) Ua (10 m) = 16.0 m S-l, U* = 0.63, k = 0.4, 
Y 

Yo = 0.000 4, Vs (Y) = 0.142 log - + 0.53. 
0.05 

0.1, 

The turbulent continuity equation (Equation (33)) 
can then be solved for the snow concentration profile 
using these known snow-fall velocity profiles. 

A graphical plot of cp and attendant windspeed and 
fall velocity profiles is presented in Figure l(a-c). 
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3. CONCLUSIONS 
The solution to the turbulent one-dimensional 

equations of motion for an air-snow mixture are 
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Fig.1(a). Horizontal windspeed, particle fall veloc­
ity and parti cle concentration vs height above the 
surface from the solution of the one-dimensional 
mixture theory equations. Ua10 = 9.2 m s-l, U*= 0.8, 
k = 0.4, Yo = 0.1. 
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Fig.1(b). Horizontal windspeed, particle fall veloc­
ity and particle concentration vs height above the 
surface from the solution of the one-dimensional 
mixture theory equations. Ua10 = 12 m S-l, U*= 0.5, 
k = 0.4, Yo = 0.000 4. 
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Fig.l(c). Horizontal windspeed, particle fall veloc­
ity and particle concentration vs height above the 
surface from the solution of the one-dimensional 
mixture theory equations. UalO = 16 m s-l, U*= 0.63, 
k = 0.4, Yo = 0.000 4. 

encouraging. The solution shows that turbulence due 
to strong air-flow gradients in the vicinity of a 
solid surface allows the snow-particle fall velocity 
to decrease and subsequently the entrained snow 
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Fig.2(a). Windspeed, drifting snow mass flux and drift 
density vs height above the surface (Cuckoo's Nest 
research site, Bridger Bowl, Montana, 12 March 1982). 
Ulm = 11.2 ms-i. 

200 . 

•• 0 9 

50 

..... flux ---- -- --

Drift density ---

, 
o 
I 

«/~--- - --- -o 
5 10 15 

..... tlux , KQ / M
2 

•• c: J. 10- 3 
, ! 

3 - . Drift denslt" KO / M x 10 

Fig.2(b). Windspeed, drifting snow mass flux and dr ift 
density vs height above the surface (Cuckoo's Nest 
research site, Bridger Bowl, Montana,12 March 1982). 
U1m = 10.7 ms-i. 

concentration to increase. These results are con­
sistent with drifting snow mass flu x and dens i ty 
profil es measured on the wi nd\~ard fetch of a r.1ountai n 
ridge in Montana (Fig.2(a) and (b)}. 

As the mechanics of the saltation layer (0 t o 15 
cm above surface) becomes better understood the super­
position of this mixture theory solution for turbu­
lent entrainment and transport with a solution for the 
saltation layer will lead to a general continuum 
theory for blowing snow. 

In the case of two- and three-dimensional air/ 
snow turbulent mixture motion, there is an opportunity 
to determine wind-aided deposition or accumulation 
rates of new snow in stagnation region s of the flow 
such as on the lee of mountain slopes or in the lee 
of structures. 
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