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ABSTRACT

A theory based on classical fluid mechanics for
an incompressible, chemically non-reacting, atmos-
pheric mixture of air and entrained snow particles is
derived. These continuum equations of motion are then
expanded to include turbulent flow. The reduced, one-
dimensional equations of this theory are further
refined by order-of-magnitude analysis and correla-
tion of the turbulent terms to mean flow parameters.
The resulting one-dimensional, turbulent equations of
motion for the snow contain apparent turbulent forces
which enhance entrainment of snow where gradients of
the air flow are high. These turbulent equations of
motion are then solved numerically for snow particle
velocity and concentration as a function of height
above the surface. The results are similar to obser-
ved profiles of snow concentration and the super-
position of the solution of this turbulent wixture
theory for snow entrainment with an appropriate
solution for the saltation layer will eventually
lead to a working continuum theory for blowing snow.

1. THEORY

The following continuum mixture theory for
entrained snow in an atmospheric flow is based on the
classical fluid mechanics principles of conservation
of mass (continuity) and conservation of momentum for
an incompressible, chemically non-reacting mixture
(Hi11 and others 1980). Consider the flow of a mix-
ture of N constituents. For three-dimensional mixture
motion the equations of motion for the £th constit-
uent (1 < £ < N) are:

s+ eV, Ug = 0 (continuity) (1)
and

pgUg=pgb+Dg+V. Tg (momentum) , (2)
where T is the stress tensor for the Eth constit-

uent, pr is mass density of the £th constituent per
unit voTume of the mixture, ¢ = pg/pprefe is the
dimensionless concentration of the £th constituent,
prefe is a reference density indicative of the mass
density per unit volume that the £th constituent
would achieve in a static condition, and $ is the
substantive derivative of the concentration of the
gth constituent, Ug is the velocity vector of the

£ constituent, U is the substantive derivative of
0

the velocity vector of the & constituent, and b is
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body acceleration vector, which acts on all constitu-
ents. Finally, D¢ is the drag force of the Eth
constituent, which is a vector-valued function of the
concentration of the £th constituent and the other
constituents of the mixture.

For the case of an atmospheric mixture of snow
particles and air in three-dimensional motion, the
following set of twelve equations result:

$g T 9g ¥V 1 U =0 (3)
byt 47" Uy =0 (4)
Ps g} =psb+Dg (5)
Pa ga =pab+Dy vV Ta (6)

The subscripts a and s indicate the air constituent
and the entrained snow, respectively.

The form and extent to which D participates as a
force in the momentum equation is the result of con-
stitutive assumption. For the case of an air/snow
mixture, the following form is adopted:

Da = - Dg = ¢5 D(Ug - Uy), (7)

where D is a numerical constant often referred to as
a drag coefficient. In other words, the transfer of
momentum between the air and the snow is a vector
function of snow-particle concentration and the velo-
gi%y differences between the air and the snow part-
icles.

It would be possible to manipulate these equations
for solutions for U,, Us and ¢g; however, they would
lack the accuracy of a theory which takes into account
the forces resulting from turbulent motion super-
imposed on these mean flows.

Adopting the standard notation for turbulent fluc-
tuations of the mean flow parameters (Hinze 1959), we
write:

Ua=Ua+ Vg
s * Us

Us= T
B (8)
$= ¢+ ¢
pS=ES+p.‘l§’
37
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where, for example, U; is the time-average value of
the air-velocity vector, and Uy is the turbulent
fluctuation of the air velocity vector about its own
time-average value.

Additional time averages can be taken of any prod-
uct or sum of mean and fluctuating flow parameters;
however, the following conventions (Hinze 1959) must
be observed. If f and g are functions of time,

=7

o:} -hll —|
-+ «

"

(72

ar
x
x

(9)

-
1
o

Fgf=0

T+ g =0

(Frg T g % 0 &

Substituting the functions of Equation (8) into
the mean flow parameters in the continuity equation

for the snow (Equation (3)) results in:

d . -

= (6 +¢')+(og+¢') Ve (Ug+UL) =0. (10)
Expanding the substantive derivative:
a oy 1 5T 1 e (]
T (6 +0') + (Ug +Ug) * v (g+4')+

%+ $'iv ¢ (O +Ug) =0 (11)
Expanding and separating the terms into mean flow and
turbulent fluctuation parameters:

= [
3 — o ]
_¢+U * Vg + ¢V ‘!S+l+£‘.’ly

TVt ' Y ot Ut
e = — = at e Ll

BRI STES TR XS AN R AN AN
(12)
The above may be rewritten in the form:
3 L 3
—_ + v Uo) # — +% ={g'U.) =+
e v (e Ug) o5 v oc(e'Ug)
+y . ($_gé ¥ Ud=0. (13)

At this point it is advantageous to take the time
average of each term in Equation (13), resulting in
the third and fifth terms being identically zero as
per the time average conventions:

$U)+V - (303 =0. (14)

"Vt VU +Y (UM =0. (15)

Rewriting the first and second terms as a substantive
derivative:

38
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o _
o fFLL 4y BT <o (16)

Note that the sum of the first and second terms is
the continuity equation for the mean flow parameters
and this sum has already been established (Equation
(3)) as zero.

This leads to the identity:
v (9 ) =05 (17)

and hence the turbulent continuity equation for the
snow can be written solely as a function of mean flow
parameters:

% a TLETE Bl D
ar
2¢ o
= +v- (30 =o. 18
2ty T (18)

Substituting the mean flow and fluctuating turbu-
lent parameters (Equation (8)) into the mean flow
parameters of the momentum equation for the snow
(Equation (5)) and the constitutive drag force (Equa-
tion (7)) and combining Equations (5) and (7) results
in:

ey 1 d T 1 =y '
(95 +p 5) (d_t (HS +!5” = (Ds + Dg) E‘

- (3 + ¢')D(Ug + U - T, - UL). (19)

Expanding the substantive derivative on the left side,
expanding the distributive terms and noting that it
will be advantageous to take an additional time aver-
age of all the resulting terms,

s g
= o = _ S——y
Ps 5% e o5 tegUg « VUG + pg Ug * 7T +
+_4’| e O N oy ¢ 7 - 1 1 aUS [} aE‘s
sUs * ¥ Ug + pUg Vus*"’s;*'ps; 7
S AR 1 ARy AR TR ST

=(ps+p3) b- 9D (Us - Uy) - $D (Ug - V) -

- ¥ D (Us - Ua) - ¢'D (U§ - UY) . (20)

By the time-average conventions, terms two, four,
five, seven, and twelve on the left side are identi-
cally zero. Also, on the right side, time averages of
fluctuations in terms one, three and four are identi-
cally zero. Therefore

_ 3l _ o _ T D

P — B U T =3 b-30 (T -, - Fr,
(21)

where
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e
i Mg e + 370+ pT. +
Ei=dy — ¥leog "Il ¥ el "1 0y
at
+og Ug t T U's + o'Dllg - Up) (22)

Equation (21) is the turbulent momentum equation for
the snow. The terms in Fr all contain even ordered
products of fluctuations. The apparent forces
described by these terms are analogous to the apparent
or Reynold's forces of the turbulent Navier-Stokes
equations for fluid flow.

Equation (18), which is the turbulent continuity
equation, and Equation (21), which is the turbulent
momentum equation, are the three-dimensional turbul-
ent equations of motion for the snow.

The flow regime can be established by expanding
the equations of motion for the air (Equations (4) and
(6)) by turbulent analysis and solving simultaneously
with the turbulent equations of motion for the snow
(Equations (18) and (21)). The flow parameters ¢, g
and U, can therefore be determined for all space
variables.

As an initial step to testing turbulent mixture
theory the turbulent equations of motion for the
snow are reduced to the one-dimensional case. In one-
dimensional flow there are gradients of the flow
parameters in only one direction. This is analogous
to boundary-layer flow over an infinite flat surface
with the body force pcb being parallel to the
directions of the gradients.

In the following, using Cartesian coordinates,
the positive Y axis is vertical and the only body
acceleration is =by. Gradients of flow parameters do
not exist in the Xyand Z directions, and transient
effects are neglected.

Applying the above constraints to the turbulent
equations of motion for the snow (Equations (18) and
(21)) results in

i
T (¢ Vs) = 0 (23)
dy
and i
Ps Vs & Vs = - pgby - $DVg - Fry . (24)

It is possible to solve this Y component of the turb-
ulent inomentum equation and the one-dimensional,
turbulent continuity equation for the snow-fall .
velocity vg and the snow concentration ¢ as a‘fuqc§1on
of height for turbulent mixture flow over an infinite
flat surface.

First, however, it would be advantageous to exam-
ine the relative orders of magnitude of the terms in
Fyy and then write the remaining terms as functions of
the mean flow parameters (Drew 1975).

o dvg e dvg
Fiy = psg | Vs ¢ ¥ L A o i
+¢ v —_— t— 4 Vg .
y dy Psg (25)

where pgq is the mass density of deposited (static)
snow. Thé relative orders of magnitude of the para-
meters in Fry are

vg ~ 1

T el

y ~86, (26)
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where & is a parameter much smaller than 1. Then,
substituting these values for Fy,

1(8) 1 (8)
+ (8) (8) —+1 (8) — + (8)(8)
5) 5 (8)

FTy = psg

(27}

Only the fourth term of FTy is negligible relative to
the other three terms.

The following constitutive assumptions are made
for the values of the turbulent, fluctuating flow
parameters in Fyy as functions of the mean flow para-
meters. These constitutive assumptions follow from
the arguments of Prandtl's mixing-length theory for
correlation of turbulent, fluctuating flow para-
meters to mean flow parameters for homogeneous tur-
bulence (Hinze 1959, Drew 1975).

_ dUg
¢ = ¢e a;‘
dU,

Viesy —, (28)
dy

where e and y are numeral constants with dimensions

t and L, respectively. In other words, these corre-
lations state that the magnitude of any fluctuating
parameter of the mixture can be no greater than the
fluctuations of the fluid velocity. Substituting Equa-
tions (28) into Equation (25) (with the negligible
term dropped):

I diTa d dTJ’a
FTy = psg VS ¢e -dy— ‘E d—y—) +
(29)
dUg diy dvg _ dUé d dUé
PR o—y — — iy — — (y —)
" T o 'Ew
Expanding the derivatives:
; 55 di, d20, -
y sg S dy dy?
_ a2y, &,
ey (=—) —%y1e — .
dy  dy dy dy? (30)

Note that the apparent forces of turbulence in Equa-
tion (3) are particularly effective when the air
velocity gradients and the particle velocity are
strongest.

In summary, the one-dimensional, continuity equa-
tions and the equation of motion in the y direction
can be written:

d
— (pvg) =0 (31)
dy ¥ Vs
and
_ o dvs L __ dU, &°T,
Ps Vs el psby - ¢Dvs - evps Vs T
_ (dﬁé 2 dvg . diy  d2U,
- —) —- e QP 32
EYPs ™ ) & Y% pg & o (32)
39
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2. SOLUTION OF THE OMNE-DIMENSIONAL TURBULENT EQUA-
TIONS OF MOTION FOR THE SNOW

Examination of Equation (31), the turbulent con-
tinuity equation for the snow, leads to

$Vg = constant. (33)

This requires the snow-particle fall velocity to
vary inversely with the particle concentration.

Equation (32), the turbulent momentum equation
for the snow, can be solved for vg, the snow-particle
fall velocity, as a function of height.

For an air velocity the established logarithmic
profile was adopted (Geiger 1965, Plate 1971)

= U Y
U.(y) = — N (=), 34
al¥) = ¢ Y, (34)
and it follows that
d Ue 1
= 1 =
F u =
@y v,
—_— e — Y-

where Ux, k, and Y, are respectively the friction
velocity, the von Karman constant, and the roughness
height. Rewriting the turbulent momentum equation for
the snow,

dv. D u, 2
v, —-—s+g+—7-ey(——-*) -
S dy bsg S M ;
(36)
U, 2 1 dvg u 23
t ey (k—*} ” ay—'Y?' (k—*) — =i .
Y Y

This is a non-linear differential equation of the form

Vg V'g + AlY)V'g + Bvg = C(Y). (37)

This equation was solved by finite difference
techniques for vg, which represents the snow-fall
velocity as a function of height over a vertical
interval of 2 m. The snow-fall velocity was calculated
for an initial fall of 1.0 m s7! for three different
windspeed profiles. These results for vg as a function
of height were then fitted with the logarithmic func-
tion curves, summarized below:

Ga) Uy (10vi} o 0.2 m g7, U =108, k= 0.8, Y. = 6.0,
- Y
v Y) = 0.22 log —— + 0.63
% 90.05

(b) U, (10m) = 12.5 m s, U, = 0.5, k = 0.4,
= Y
Yo = 0.000 4, Y) = 3.11 Jog —— * 0,59
g ¥a (1) 9 0.05

(¢) T, (10 m) = 16.0 ms™}, U, = 0.63, k = 0.4,
= X
Yo = 0.000 4, Y) = 0.142 log — + 0.53.
0 Vg ( ) g 0.05

-

The turbulent continuity equation (Equation (33))
can then be solved for the snow concentration profile
using these known snow-fall velocity profiles.

A graphical plot of ¢ and attendant windspeed and
fall velocity profiles is presented in Figure 1(a-c).

40
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3. CONCLUSIONMS . .
The solution to the turbulent one-dimensional
equations of motion for an air-snow mixture are

e Windspeed
200
i———e Fall velocity
e Concentration

100

Helght, cm

50

5
Windspeed, M/sec

i I |
0.5 -1.0
Particle fall velocity, M/sec

0.5 1.0

Particle concentration

Fig.l(a). Horizontal windspeed, particle fall veloc-
ity and particle concentration vs height above the
surface from the solution of the one-dimensional
mixture theory equations. Uy = 9.2 m Rl A Y
k = 0.4, Y, = 0.1,

200 OH—i Windspeed

Fail velocity

Concentration

150

100

Height, cm

5 10 15
Windspeed, M/sec

-0.5 -1.0
Particle fall velocity, M/sec

0.5 1.0

Particle concentration

Fig.1(b). Horizontal windspeed, particle fall veloc-
ity and particle concentration vs height above the
surface from the solution of the one-dimensional
mixture theory equations. Uj;g9 = 12 m 51, U= 0.5,
k = 0.4, Y, = 0,000 4,
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e—o——©6  Fall valochy

100

Helght, cm

Windspeed, M/sec

=-0.5 =1.0
Particle fall velolty,M/sec

0.5 1.0

Particle concentration

Fig.l(c). Horizontal windspeed, particle fall veloc-
ity and particle concentration vs height above the
surface from the solution of the one-dimensional
mixture theory equations. Ujjg = 16 m s™%, U = 0.63,
k = 0.4, Y, = 0.000 4.

encouraging. The solution shows that turbulence due
to strong air-flow gradients in the vicinity of a
solid surface allows the snow-particle fall velocity
to decrease and subsequently the entrained snow

moﬂ

Windspeed Sa = !
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1
1
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150

Drift density
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o
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Windspeed, M/ sec

1 =g 3
2 -2
Mass flux, Kg/M “sec x 10
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3 -3
Drift density, Kg/M x 10

Fig.2(a). Windspeed, drifting snow mass flux and drift
density vs height above the surface (Cuckoo's Nest
research site, Bridger Bowl, Montana, 12 March 1982).
U = 11.2 w s78.
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1 Windspeed — — —-— - '

: '

} i

\ Mass flux —-——- - - ——

. !
Drift density ———— i

Helght, em

Windspeed, M/sec
2 L

1 2 3
2 -
Mass flux,Kg/M sec x 10 3
2 4 L]

Dritt density, Ka/M>x 10”™%
Fig.2(b). Windspeed, drifting snow mass flux and drift
density vs height above the surface (Cuckoo's Nest

research site, Bridger Bowl, Montana,12 March 1982).
Upp = 10.7 m s71.

concentration to increase. These results are con-
sistent with drifting snow mass flux and density
profiles measured on the windward fetch of a mountain
ridge in Montana (Fig.2(a) and (b)).

As the mechanics of the saltation layer (0 to 15
cm above surface) becomes better understood the super-
position of this mixture theory solution for turbu-
lTent entrainment and transport with a solution for the
saltation layer will lead to a general continuum
theory for blowing snow.

In the case of two- and three-dimensional air/
snow turbulent mixture motion, there is an opportunity
to determine wind-aided deposition or accumulation
rates of new snow in stagnation regions of the flow
such as on the lee of mountain slopes or in the lee
of structures.
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