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The deformation, movement and breakup of a wall-attached droplet subject to Couette
flow are systematically investigated using an enhanced lattice Boltzmann colour-gradient
model, which accounts for not only the viscoelasticity (described by the Oldroyd-B
constitutive equation) of either droplet (V/N) or matrix fluid (N/V) but also the surface
wettability. We first focus on the steady-state deformation of a sliding droplet for varying
values of capillary number (Ca), Weissenberg number (Wi) and solvent viscosity ratio (β).
Results show that the relative wetting area Ar in the N/V system is increased by either
increasing Ca, or by increasing Wi or decreasing β, where the former is attributed to the
increased viscous force and the latter to the enhanced elastic effects. In the V/N system,
however, Ar is restrained by the droplet elasticity, especially at higher Wi or lower β, and
the inhibiting effect strengthens with an increase of Ca. Decreasing β always reduces
droplet deformation when either fluid is viscoelastic. The steady-state droplet motion is
quantified by the contact-line capillary number Cacl, and a force balance is established to
successfully predict the variations of Cacl/Ca with β for each two-phase viscosity ratio
in both N/V and V/N systems. The droplet breakup is then studied for varying Wi. The
critical capillary number of droplet breakup monotonically increases with Wi in the N/V
system, while it first increases, then decreases and finally reaches a plateau in the V/N
system.
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1. Introduction

The deformation and motion of a droplet adhering to a solid wall subject to shear flow
is a fundamental phenomenon ubiquitous in industrial and biomedical applications, such
as enhanced oil recovery (Rock et al. 2020), degreasing cleaning processes (Yeganehdoust
et al. 2021) and cell control in microfluidics (Ye, Shen & Li 2018; Minetti et al. 2019). Over
the past few decades, a large number of researches have been carried out on such a topic
in Newtonian fluid systems. Dimitrakopoulos & Higdon (1997) numerically investigated
the yield conditions for the displacement of a liquid droplet from a solid surface with the
consideration of gravitational effects. They found that with increasing gravity, the critical
shear rate decreases for a viscous droplet but increases for an inviscid droplet. Ding & Spelt
(2008) investigated the critical Weber number (ratio of the inertial force to the interfacial
tension force) for the onset of droplet motion, and the critical Weber number was found to
increase and approach a constant value with an increase of inertial effects. Han et al. (2021)
carried out experiments on the deformation and motion of a wall-attached oil droplet in
water under different surface wettabilities, and a mathematical model was established
to determine the critical shear water flow velocity above which the oil droplet starts
to move. However, non-Newtonian viscoelastic fluid flow is often encountered in these
applications. For example, polymer flooding is an effective technique for enhancing heavy
oil recovery, in which not only can the heavy oil exhibit viscoelastic property depending
on composition, temperature or shear conditions (Souas, Safri & Benmounah 2021), but
also the displacing fluid is viscoelastic due to the presence of polymers (Lu et al. 2021;
Xie et al. 2022). In order to optimize these applications and facilitate the wide deployment
of polymers, it is essential to elucidate the viscoelastic effects on the dynamical behaviour
of a wall-attached droplet in shear flow.

To understand the viscoelastic effects on droplet behaviour, considerable efforts have
been devoted to a simpler system where a spherical droplet is suspended in a matrix
fluid subject to a simple shear flow. Elmendorp (1986) and Mighri, Carreau & Ajji (1998)
both experimentally revealed that a suspended viscoelastic droplet is less deformed than a
Newtonian one, and Elmendorp (1986) attributed such a difference to the high normal
stresses created inside the viscoelastic droplet. The reduced deformation is consistent
with the predictions of a phenomenological model proposed by Maffettone & Greco
(2003) and the numerical results of Ramaswamy & Leal (1999) and Yue et al. (2005).
Even though the deformation of a viscoelastic droplet is reduced relative to a Newtonian
droplet, Aggarwal & Sarkar (2007) numerically found that the deformation exhibits a
non-monotonic variation with an increase of elasticity at high capillary number (Ca,
measuring the relative importance of viscous force to interfacial tension), which was
recently confirmed by phase-field lattice Boltzmann simulations (Wang et al. 2020a).
Consistent with the experiments of Varanasi, Ryan & Stroeve (1994), Mukherjee &
Sarkar (2009) showed that the non-monotonic variation between deformation and droplet
elasticity occurs only at a sufficiently high two-phase viscosity ratio (defined as the ratio
of droplet viscosity to matrix viscosity), below which a decrease in the deformation
is obtained. On the other hand, the influence of the matrix viscoelasticity on droplet
deformation or breakup has been extensively investigated (Gupta & Sbragaglia 2015).
For example, Mighri et al. (1998) experimentally observed that droplet deformation is
promoted by the matrix viscoelasticity, whereas in the experiments of Guido, Simeone &
Greco (2003) and Flumerfelt (1972), droplet deformation and breakup were inhibited. Yue
et al. (2005) carried out a systematic numerical study and found that droplet deformation
first decreases and then increases with increasing matrix viscoelasticity. The decreased
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droplet deformation at low matrix viscoelasticity can be explained as reduced viscous
stretching due to the decreased droplet orientation angle, while the increased droplet
deformation at high matrix viscoelasticity is attributed to the strengthened elastic force
caused by the highly stretched polymer molecules. Aggarwal & Sarkar (2008) further
showed that the most stretched polymer molecules are located near the droplet tips, as
opposed to Yue et al. (2005) who observed the maximum stretching occurring near the
droplet equators.

Based on the literature review above, it is clear that the viscoelasticity of either droplet
or matrix fluid is crucial in determining the droplet morphology under shear. It is therefore
expected that the viscoelasticity is also a key factor to influence the behaviour of a
wall-attached droplet in shear flow, where moving contact lines are involved. So far, the
majority of the studies that consider both viscoelasticity and moving contact lines have
focused on droplet dynamic wetting (Min et al. 2010; Han & Kim 2014; Wang, Do-Quang
& Amberg 2015) and droplet splashing on solid surfaces (Wang, Do-Quang & Amberg
2017; Venkatesan & Ganesan 2019), and only a few on the deformation and motion of
an attached droplet under shear flow. Liu et al. (2018) indicated that a wall-attached
droplet deforms more when driven by a matrix fluid with higher elasticity owing to
the increased horizontal stress difference. Varagnolo et al. (2017) experimentally and
numerically investigated the sliding of a viscoelastic droplet on an incline. They found that
the polymer stiffness and concentration are key factors influencing the relation between Ca
and the Bond number (the ratio of gravity to interfacial tension).

In addition to numerical and experimental studies, force balance analysis has also been
applied to predict the destabilization and motion of an attached droplet under shear. For
instance, Spelt (2006) developed a force balance among viscous drag, form drag, wall
shear stress and capillary force at the contact line for a pinned droplet in two-dimensional
Newtonian systems. Ding & Spelt (2008) verified this force balance in a three-dimensional
system and proposed a scaling argument capable of predicting the critical conditions
for the onset of droplet motion. By allowing the contact line to move, Ding, Gilani &
Spelt (2010) identified three typical modes of droplet movement, namely quasi-steady
sliding, partial entrainment/breakup and entire entrainment. Their results showed that the
contact-line speed of a quasi-steadily sliding droplet increases linearly with Ca, which was
later found to hold at each of the two-phase viscosity ratios (Liu et al. 2020). It is apparent
that the existing force balance analysis was limited to Newtonian systems, and the force
balance for a wall-attached droplet in a viscoelastic system has not been established, so it
remains unknown as to how the droplet contact-line speed varies with Ca and the polymer
concentration.

In this work, we numerically investigate the deformation, motion and breakup of an
attached droplet subject to a Couette flow for a Newtonian droplet in a viscoelastic
matrix (N/V system) and a viscoelastic droplet in a Newtonian matrix (V/N system).
The viscoelasticity is described by the Oldroyd-B constitutive equation (Oldroyd 1950),
which is one of the simplest constitutive equations (Hu et al. 2021; Boyko & Stone 2022;
Varchanis et al. 2022) characterizing a viscoelastic fluid with shear-independent viscosity,
non-zero first normal stress and zero second normal stress in steady shear (Aggarwal
& Sarkar 2008). The elastic effect is usually characterized by the Weissenberg number
(Wi), defined as the ratio of the first normal stress to the viscous stress (Poole 2012), or
alternatively by the Deborah number (De) (Aggarwal & Sarkar 2008; Wang et al. 2020a),
i.e. the ratio of the fluid relaxation time to the characteristic time of the flow process.
For the current problem, Liu et al. (2018) showed that the expressions of Wi and De are
essentially the same, so Wi will be used only later on. Another important dimensionless
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number for the viscoelastic fluid is the solvent viscosity ratio, which is a measure of the
polymer concentration. The solvent viscosity ratio is defined as β = μs/μ (Verhulst et al.
2009), where μ is the zero-shear viscosity of the viscoelastic fluid calculated as a sum of
the polymeric viscosity of the solute μp and the Newtonian viscosity of the solvent μs
(Malaspinas, Fiétier & Deville 2010). To carry out the numerical investigation, we use the
lattice Boltzmann method (LBM), which has been rapidly developed into a powerful tool
for complex fluid flows in recent decades (Malaspinas et al. 2010; Su et al. 2013; Zou et al.
2014; Wang et al. 2020b; Chen et al. 2021). Focusing on binary fluids with viscoelasticity,
several LBM models have been proposed and have had great success in the simulation
of droplet dynamics over a wide range of elastic properties (Wang et al. 2020a; Wang,
Wang & Liu 2022). However, most of the models are limited to the case where the droplet
does not touch the wall surface. To break this limitation, not only should the wetting
boundary condition be carefully selected, but also attention should be paid to the stress
singularity caused by the incompatibility between the no-slip boundary condition and the
movement of contact lines (Sui, Ding & Spelt 2014; Liu, Gao & Ding 2017). In order to
relieve the stress singularity, several numerical strategies have been proposed, including
precursor layer (de Gennes 1985), Navier slip (Dussan 1979), surface-tension relaxation
(Shikhmurzaev 1993) and diffuse-interface or phase-field formulations (Jacqmin 2000).
In the present study, we build upon the model recently developed by Wang et al. (2022),
which uses the colour-gradient model for immiscible two-phase flow (Halliday et al.
2006; Halliday, Hollis & Care 2007) and the diffusion–advection LBM for the solution
of elastic stress tensor (Malaspinas et al. 2010). As a diffuse-interface method, the
colour-gradient LBM simulates the contact-line dynamics with an artificially enlarged
interface thickness, and it was shown that the interface-capturing equation recovered from
the colour-gradient LBM is equivalent to the phase-field Allen–Cahn equation by some
appropriate approximations (Subhedar et al. 2020). As a result, the contact lines, like in
the phase-field method, are allowed to numerically move by virtue of finite diffusion (Sui
et al. 2014). Moreover, the geometrical wetting boundary condition proposed by Ding &
Spelt (2007) is incorporated to realize the desired contact angle while maintaining low
spurious currents at moving contact lines, which is of great importance to stable and
accurate solution of interfacial flows with viscoelasticity and contact-line dynamics.

The paper is organized as follows. In § 2, the numerical method for viscoelastic
two-phase flow and the relevant boundary conditions are introduced. The LBM model
is then validated in § 3 by the static contact angle test and the steady-state deformation of
an Oldroyd-B droplet suspended in Newtonian shear flow. In § 4, we investigate droplet
deformation and movement under the effects of Ca, Wi and β, and analyse how the critical
capillary number of droplet breakup varies with Wi in both N/V and V/N systems. Finally,
conclusions are drawn in § 5.

2. Numerical method

In addition to an extra equation for capturing the interface, two-phase flow with
viscoelasticity is governed by the incompressible Navier–Stokes equations and the
Oldroyd-B constitutive equation, which are given by (Wang et al. 2022)

∇ · u = 0, (2.1)

∂ρu
∂t

+ ∇ · (ρuu) = −∇p + ∇ · τ s + ∇ · τ p + F s, (2.2)
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τ p + λ
(

∂τ p

∂t
+ (u · ∇)τ p − τ p · ∇u − (∇u)T · τ p

)
= μp(∇u + (∇u)T), (2.3)

where u is the fluid velocity, ρ is the total density, t is the time, p is the pressure and τ s is
the viscous stress tensor related to the solvent viscosity μs by τ s = μs(∇u + (∇u)T).
Tensor τ p is the elastic stress tensor, and it is related to the conformation tensor A
through τ p = μp(A − I)/λ, where A statistically estimates the orientation of the polymer
molecules (Wang et al. 2020a), λ is the relaxation time of the polymer molecules and I is
the second-order unit tensor. Equation (2.3) can be equivalently expressed in the form of
A as

∂A

∂t
+ (u · ∇)A = A · ∇u + (∇u)T · A − 1

λ
(A − I). (2.4)

Using the continuum surface force model (Brackbill, Kothe & Zemach 1992), the
interfacial tension force F s in (2.2) is given by

F s = σκnδΓ , (2.5)

where σ is the interfacial tension parameter, n is the unit vector normal to the interface,
κ is the curvature of the interface related to n by κ = −∇ · n and δΓ is the Dirac delta
function (Liu et al. 2020). Depending on the value of μp, the current model is applicable to
a two-phase system where either fluid is viscoelastic or both fluids are viscoelastic. When
both fluids are viscoelastic, their corresponding μp values are used in the computation of
τ p; whereas, when either fluid is Newtonian, μp is simply set to zero so that μ = μs and
β = 1.0.

Following our recent work (Wang et al. 2022), we use the colour-gradient LBM to
solve the two-phase hydrodynamics (Gunstensen et al. 1991; Halliday et al. 2006, 2007)
and the advection–diffusion LBM to solve the viscoelastic constitutive equation, i.e.
equation (2.4) (Malaspinas et al. 2010). On solid walls, including moving and stationary
walls, the no-slip velocity boundary conditions are applied, with the implementation
using the halfway bounce-back scheme proposed by Ladd (1994). Based on the halfway
bounce-back scheme, the wall surface lies between the first layer of fluid nodes and the
first layer of solid nodes. In addition to no-slip boundary conditions, the wetting boundary
conditions are also imposed on the solid walls to obtain the desired contact angle θ . Here,
we use the geometrical wetting boundary condition proposed by Ding & Spelt (2007)
because of its simplicity and high accuracy, which is given by

nw · ∇ρN = − tan
(π

2
− θ

) ∣∣∣∇ρN − (nw · ∇ρN)nw

∣∣∣ , (2.6)

where nw is the unit vector normal to the wall surface pointing into the fluid and ρN is the
colour indicator defined by

ρN(x, t) = ρR(x, t) − ρB(x, t)
ρR(x, t) + ρB(x, t)

, −1.0 ≤ ρN ≤ 1.0. (2.7)

The two limit values ρN = 1.0 and ρN = −1.0 correspond to pure red fluid and pure blue
fluid, respectively. Equation (2.6) can be implemented by assigning the ρN values to the
first layer of solid nodes so that ∇ρN at the first layer of fluid nodes can be properly
computed (Huang, Huang & Wang 2014).

In the advection–diffusion LBM solution, the distribution functions hαβi are introduced
for evolving Aαβ , that is, the component of A. Clearly, the distribution functions hαβi
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pointing into the fluid domain at the first layer of fluid nodes are also unknown after
the streaming step, which need to be imposed through appropriate boundary conditions.
Since there is no information on the conformation tensor at the solid walls (Alves,
Oliveira & Pinho 2020), the unknown distribution functions cannot be constructed from
the relationship between macroscopic variables and distribution functions. On the other
hand, Malaspinas et al. (2010) proposed an ad hoc method for the construction of unknown
distribution functions exactly on the solid surface, which is not applicable to the present
case where the solid surface is located halfway between solid and fluid nodes. Therefore,
we here obtain the unknown hαβi using the halfway bounce-back scheme, which will be
shown to produce accurate results. Finally, we also note that, to compute the elastic force
∇ · τ p, the derivatives of A and the velocity derivatives are evaluated by the second-order
biased difference for the first layer of fluid nodes but by the central difference for the other
fluid nodes.

It is noted that the solution of the conformation tensor and the elastic stress tensor is
accomplished in the whole computational domain occupied by the two-phase fluids. When
one fluid is Newtonian, e.g. the red fluid, the theoretical value of λR is zero. To avoid zero
denominators in the calculations of the elastic stress tensor, we assign a small value to λR,
e.g. λR = 0.01λB, instead of λR = 0. Such a treatment is expected to have negligible effect
on the numerical results, since the conformation tensor A = I for λ = 0 in the Newtonian
fluid region. By using the Chapman–Enskog expansion, the Oldroyd-B constitutive
equation is recovered with the error terms ϑ∇2A + 4ϑ∇ · (A∂tu − u∇ · (Au)), where ϑ

is a constant related to the evolution relaxation time χp of the lattice advection–diffusion
scheme by ϑ = (χp − 0.5)/4 (Malaspinas et al. 2010). It is clear that, to minimize the
error terms, the smaller the value of ϑ the better. However, too small a value of ϑ is often
detrimental to the stability of LBM simulations. To strike a balance between numerical
stability and accuracy for a wide range of elasticity, the value of χp was suggested to
keep ϑ/μp ≤ 10−5 (Malaspinas et al. 2010) or PrWi ≤ 10−3 (Ma et al. 2020), where
Pr = ϑ/(γ̇ R2) is a dimensionless diffusion parameter and γ̇ and R are the characteristic
shear rate and the droplet radius, respectively, which are defined later on. In this work, the
values of PrWi used are all of O(10−5) to O(10−3).

3. Model validations

In this section, the LBM model along with the halfway bounce-back and wetting boundary
conditions is validated by simulating the static contact angle and the transient droplet
deformation under simple shear in viscoelastic fluid systems.

3.1. Static contact angle test
A hemispherical droplet with radius R = 25 is initially placed at the centre of the bottom
wall in a computational domain of Lx × Ly × Lz = 100 × 100 × 75. No-slip and wetting
boundary conditions with zero velocities are used on both bottom and top walls in the z
direction, while periodic boundary conditions are applied in both x and y directions. Static
contact angles of 60◦, 90◦ and 120◦ are simulated in three types of fluid systems, i.e. a
Newtonian droplet in a Newtonian matrix (N/N), a Newtonian droplet in an Oldroyd-B
viscoelastic matrix (N/V) and an Oldroyd-B viscoelastic droplet in a Newtonian matrix
(V/N). The interfacial tension parameter is σ = 0.001. The fluid viscosity is specified as
μ = 0.1 for the Newtonian fluid and μs = μp = 0.05 and λ = 5000 for the viscoelastic
fluid. We point out that too small a value of λ (e.g. λ ≤ 50) may lead to numerical
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System θtheo θsimu Eθ

N/N 60◦ 60.2332◦ 0.389 %
N/V 60◦ 60.2208◦ 0.368 %
V/N 60◦ 60.2186◦ 0.364 %
N/N 90◦ 89.9480◦ 0.058 %
N/V 90◦ 89.9510◦ 0.054 %
V/N 90◦ 89.9507◦ 0.055 %
N/N 120◦ 120.6717◦ 0.560 %
N/V 120◦ 120.6412◦ 0.534 %
V/N 120◦ 120.6359◦ 0.530 %

Table 1. Comparison of the static contact angles between theoretical and simulated values.

instability and too large a value of λwould dramatically increase the computational time to
reach the steady state. We therefore compromise and choose λ = 5000 in the present test.
After the simulation reaches the steady state, the simulated contact angle θsimu is computed
from the measured droplet height and radius (Wang, Huang & Lu 2013). Table 1 shows
a comparison between the simulated contact angles and their corresponding theoretical
values θtheo, where the relative error is defined by Eθ = (|θsimu − θtheo|/θtheo) × 100 %.
It is seen that the relative errors are all below 1 % for three tested contact angle
values in the N/N, N/V and V/N systems, which indicates that the present model is of
high accuracy in simulating the contact angle in both Newtonian and viscoelastic fluid
systems.

3.2. An Oldroyd-B droplet deformation in Newtonian matrix subject to simple shear
Verhulst et al. (2009) presented experimental and numerical results on the deformation
of an Oldroyd-B droplet suspended in a Newtonian matrix under simple shear flow.
Following the work of Verhulst et al. (2009), we compute the time evolution of the
droplet deformation parameter D (defined by the long axis L and short axis B of
the deformed droplet as D = (L − B)/(L + B)) and the orientation angle Θ (the angle
between the long axis of the droplet and the horizontal direction) in a N/V system to
assess whether the halfway bounce-back scheme is applicable to obtain the unknown
distribution functions for the conformation tensor at solid surfaces. A droplet (red fluid)
with radius R is initially put in the centre of a computational domain, which has a
size of Lx × Ly × Lz = 8R × 8R × 8R. In both x and y directions, periodic boundary
conditions are applied. The top and bottom walls move with equal velocity uw but in
opposite directions so that a characteristic shear rate γ̇ = uw/4R is created. The governing
parameters of this problem are the Weissenberg number Wi = λBγ̇ , capillary number
Ca = μBγ̇ R/σ , two-phase viscosity ratio defined as m = μR/μB and the solvent viscosity
ratio β. To make quantitative comparison with Verhulst et al. (2009), the simulations are
carried out at β = 0.68 and m = 1.5 for two sets of simulation parameters: (1) Wi = 1.01
and Ca = 0.14 and (2) Wi = 2.31 and Ca = 0.32. Figure 1 plots the time evolution of the
droplet deformation parameter D and the orientation angle Θ , where the dimensionless
time is defined as t′ = tγ̇ /Ca. By comparing with the results of Verhulst et al. (2009),
good agreement is obtained for both transient and steady-state values of the deformation
parameter and orientation angle.
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Figure 1. Time evolution of the (a) deformation parameter and (b) orientation angle for an Oldroyd-B droplet
in a Newtonian matrix subject to simple shear flow. Two different cases are considered: (1) Wi = 1.01 and
Ca = 0.14 and (2) Wi = 2.31 and Ca = 0.32, with both at β = 0.68 and m = 1.5. The present results are
represented by the discrete symbols, while the results of Verhulst et al. (2009) are represented by the lines of
different styles.

4. Results and discussion

4.1. Problem description
Figure 2 illustrates the initial simulation set-up where a hemispherical droplet (red fluid)
with radius R immersed in a second fluid (blue fluid) rests on the stationary bottom wall.
The top wall, separated by a distance H from the bottom wall, moves in the positive x
direction with a constant velocity of uw. For the sake of simplicity, the droplet and matrix
fluid are assumed to have equal densities and have similar affinity to the solid surface so
that θ = 90◦. Periodic boundary conditions are applied in both x and y directions, while the
halfway bounce-back and wetting boundary conditions are imposed on the solid surfaces.
Like the deformation of a spherical droplet under simple shear flow, several important
dimensionless numbers, e.g. Wi, Ca, solvent viscosity ratio β and the Reynolds number
(Re), commonly characterize the behaviour of the attached droplet. The definitions of Wi,
Ca and β are the same as those given in § 3.2 except that the characteristic shear rate
now becomes γ̇ = uw/H, and Re is defined by Re = ρBγ̇ R2/μB, which is fixed at 1.0
so that inertia plays a trivial role. The computational domain has a size of L × W × H =
11.2R × 8R × 2R, and a grid-independence test indicates that the grid resolution with R =
25 is sufficient to produce satisfactory results and is therefore used for the subsequent
simulations. Based on these parameters, the resulting confinement ratio is R/H = 0.5,
which was often used in previous studies of a wall-attached droplet under shear (Ding
et al. 2010; Liu et al. 2020; Chen et al. 2021). With such a confinement ratio, the influence
of the top wall cannot be fully ignored, as shown in Appendix A.

In what follows, we first focus on low values of Ca, and analyse the roles of
viscoelasticity in steady-state droplet deformation and motion. To facilitate the analysis, we
quantify the viscous stress n · τ s and the elastic stress n · τ p exerted on the droplet surface
and compare their differences in the N/N, N/V and V/N systems. Furthermore, the role of
the elastic force per unit volume, ∇ · τ p, is also discussed to estimate the flow modification
by the polymer stress, as previously done (Yue et al. 2005; Aggarwal & Sarkar 2008;
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uw
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y

x

Figure 2. A hemispherical droplet initially resting on the bottom wall subject to a Couette flow. The top wall
moves in the x direction with a constant speed of uw. The computational domain has a size of L × W × H =
11.2R × 8R × 2R, where R is the initial droplet radius.

Mukherjee & Sarkar 2009). It is noted that all the stresses or their components
appearing below are normalized by μBγ̇ , and ∇ · τ p and its components are normalized
by μBγ̇ /R.

4.2. Deformation of attached droplet in N/V and V/N systems

4.2.1. Effect of Ca
It is known that in a Newtonian fluid system the droplet would eventually reach a steady
shape and slide on the solid wall with a constant velocity at low values of Ca (Ding
et al. 2010; Liu et al. 2020). In N/V and V/N systems, we run the simulations with
Wi = 1.0, β = 0.5 and m = 1.0 for varying Ca. Like in the Newtonian fluid system,
the steady-state droplet is achieved in both N/V and V/N systems as Ca is increased
up to 0.35. Three dimensionless parameters are introduced to quantify the steady-state
droplet deformation, namely the relative wetting area Ar = (A − A0)/A0, relative droplet
height hr = (h − h0)/h0 and relative droplet surface area Sr = (S − S0)/S0, which are
plotted against Ca in figure 3. Herein, the variables A, h and S are the wetting area,
droplet height and droplet surface area in the steady state, and their corresponding
variables in the initial state are A0, h0 and S0, respectively. In figure 3(b), an inset is
included to show the steady-state droplet shapes for a representative capillary number
of Ca = 0.35 at the x–z mid-plane (upper half) and x–y bottom plane (lower half) in the
N/N, N/V and V/N systems, where the droplet shapes are represented by the contours
ρN = 0.

With an increase of Ca in the N/N system, the droplet deforms into a bulge shape in the
shear direction (see the inset in figure 3b). The droplet surface area Sr and the wetting area
Ar obviously increase, while the droplet height hr decreases in a small range (figure 3a,b).
In the N/V system, Sr, Ar and hr exhibit the same variations in trend with Ca as those in the
N/N system. However, the increase in Sr is smaller, Ar spreads more in the x direction and
hr is reduced more rapidly, as compared with the results in the N/N system. In terms of the
V/N system, the droplet deforms the least with minimum variations in Ar, Sr and hr among
all three systems. In addition, the curvature radius of the contact line appears always larger
at the front than at the rear, especially for higher Ca (see the inset in figure 3b) which
is consistent with previous findings in a Newtonian system (Ding et al. 2010) and in a
surfactant-covered-droplet system (Liu et al. 2020).

To understand the viscoelastic effect on the steady-state droplet deformation, we
compute the traces of the conformation tensor, defined by trA = Axx + Ayy + Azz, at
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Figure 3. (a) The steady-state relative wetting area Ar and relative droplet height hr and (b) the relative droplet
surface area Sr as functions of Ca in three different systems. The inset in (b) shows the steady-state droplet
shapes for a representative capillary number of Ca = 0.35 at the x–z mid-plane (upper half) and x–y bottom
plane (lower half) in the N/N, N/V and V/N systems, represented by solid, dashed and dash-dot-dot lines,
respectively. The other simulation parameters are Wi = 1.0, β = 0.5 and m = 1.0.

Ca = 0.15 in N/V and V/N systems, and the results are displayed in figure 4. Since trA
is directly proportional to the extension of the polymer molecules (Verhulst et al. 2009),
one can observe two obvious extension regions, i.e. (I) and (II), in the N/V system (see
figure 4a). Region (I) is located near and outside the bulge tip of the droplet, similar to
that reported by Verhulst et al. (2009) and Afkhami, Yue & Renardy (2009) where the
deformation of a Newtonian droplet suspended in viscoelastic matrix subject to simple
shear flow was considered. The local extensional flow around the droplet tip leads to
severe velocity gradients and increases the stretching of polymer molecules. Region (II) is
located around the advancing contact line, where larger velocity gradients are induced
by the droplet motion on the stationary bottom wall. In addition, the eigenvector np
corresponding to the primary eigenvalue of the conformation tensor A is often used as
an indicator of the orientation of polymer molecules (Yue et al. 2005; Aggarwal & Sarkar
2007). As an example, figure 4(c) shows the distribution of np in the N/V system. It is
seen that the polymers around the receding contact line are nearly parallel to the wall,
while the polymers around the advancing contact line are distributed on the wall with
a large inclination angle to the x direction. Therefore, the polymers near the advancing
contact line are easier to be stretched, thus leading to the high values of trA.

In figure 5, we plot the corresponding distributions of the viscous stress component
(n · τ s)x and the elastic stress component (n · τ p)x on the droplet surface, as well as the
vectors of n · τ s and n · τ p on the droplet interface in the x–z mid-plane, where the results
obtained in the N/N system are also displayed for comparison. As a result of the polymer
extension, the elastic stress n · τ p in the N/V system not only forms a pulling force outside
the bulge tip of the droplet, but also expands the bottom wetting area (figure 5b(ii)). In
comparison with the N/N system (figure 5a), the viscous stress n · τ s in the N/V system is
generally smaller, especially in the top region (figure 5b(i)). This is because the Newtonian
solvent viscosity of the viscoelastic fluid is only half that of the Newtonian matrix at
β = 0.5. Moreover, due to the expansion of the droplet on the wall, the droplet height is
reduced, which in turn lowers the viscous stress on the top of the droplet. This can be
explained as follows. (1) In Couette flow, the velocity of the ambient fluid increases along
the height direction, and the sliding velocity of a droplet is relatively small in the creeping
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Figure 4. Contour plots for trA at the x–z mid-plane and the x–y bottom plane in (a) N/V and (b) V/N systems.
The dominant polymer orientation np presented by line segments with equal length at the x–z mid-plane in
(c) N/V and (d) V/N systems. The dashed rectangles with labels (I) or (II) in (a,b) are used to highlight the
regions with high trA. The simulation parameters are Ca = 0.15, Wi = 1.0, β = 0.5 and m = 1.0.

flow condition. Accordingly, when the droplet height gets lower, the velocity difference
between the droplet and the ambient fluid at the top surface is smaller, which leads to a
lower shear rate and thus a decreased viscous stress. (2) The wall confinement still plays a
role in the present problem. For a droplet with lower height, the flow passage that allows
the ambient fluid to pass through becomes wider, which decreases the velocity of the
ambient fluid near the top of the droplet and also contributes to a decreased viscous stress.
On the other hand, even though n · τ p contributes to pull the droplet front, it is weak in
pushing the droplet rear, leading to a smaller droplet deformation and thus to a lower Sr.
It is also noticed that the maximum pulling stress n · τ p is positioned outside the droplet
bulge tip in the N/V system, deviating from the location of the maximum viscous stress
n · τ s in the N/N system. Such a deviation is attributed to the finite relaxation of the elastic
polymer molecules, consistent with previous results obtained from the investigation of a
suspended droplet subject to a simple shear flow by Yue et al. (2005), Aggarwal & Sarkar
(2008), Verhulst, Moldenaers & Minale (2007) and Gupta & Sbragaglia (2014).

We then analyse the viscoelastic effect in the V/N system. It is seen in figure 4(b) that
the polymer extension mainly occurs around the receding contact lines (region (I)) where
the polymer molecules exhibit an obvious inclination angle to the bottom wall (figure 4d).
A similar strong extension region was numerically obtained in the two-dimensional study
of Varagnolo et al. (2017). The distributions of (n · τ s)x in the V/N system (figure 5c(i))
resemble those in the N/N system, but with lower values due to the solvent viscosity
difference. Compared with the N/V system, the pulling effect of (n · τ p)x at the droplet
front is weaker, and the compressive effect on the droplet rear is almost negligible
(figure 5c(ii)). As a consequence, the overall viscous and elastic forces are the lowest and
accordingly the droplet deformation is the smallest in the V/N system. With an increase of
Ca, the droplet deforms more due to an increased stretching effect of n · τ s on the droplet
tip in all the N/N, N/V and V/N systems. However, the normalized elastic stress is found to
vary little with Ca for both N/V and V/N systems. This means that in figure 3, the increase
of droplet deformation with Ca in the N/V and V/N systems is mainly attributed to the
increased viscous stress.
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Figure 5. Contour plots of the normalized (n · τ s)x on the droplet surface and vector distributions of the
normalized n · τ s on the interface at the x–z mid-plane for (a) N/N, (b(i)) N/V and (c(i)) V/N. Contour plots of
the normalized (n · τ p)x on the droplet surface and vector distributions of the normalized n · τ p on the interface
at the x–z mid-plane for (b(ii)) N/V and (c(ii)) V/N. The stresses and their x components are all normalized by
μBγ̇ . The simulation parameters are Ca = 0.15, Wi = 1.0, β = 0.5 and m = 1.0.

From the elastic stress vectors at the contact lines, as shown in figure 5(b(ii),c(ii)), it
is noticeable that n · τ p in both N/V and V/N systems tends to expand the wetting area.
However, compared with the N/N system, an obvious increase in Ar is only observed in
the N/V system, and Ar is even lower in the V/N system. What causes a lower Ar in
the V/N system? Ramaswamy & Leal (1999) pointed out that the viscoelastic effect not
only directly acts on the droplet interface through n · τ p, but also modifies the flow field.
Aggarwal & Sarkar (2008) further explained that the flow modification is induced by the
viscoelastic stress gradients over the flow domain. To clarify this, we investigate the elastic
force ∇ · τ p at Ca = 0.15 and Wi = 1.0, and plot the results in figure 6. It is clear that in
the N/V system, ∇ · τ p at the x–z mid-plane and x–y bottom plane generates outward
stretching forces outside the droplet front and in the front and rear contact-line regions,
consistent with the effect of n · τ p on the droplet deformation. By contrast, in the V/N
system, ∇ · τ p exhibits severe variation across the rear contact-line region, which is first
pointed inward and then outward across the diffuse interface from outside to inside of
the droplet. Overall, the inward ∇ · τ p in the rear contact-line region is more dominant,
thereby inhibiting the spreading of the viscoelastic droplet in the Newtonian matrix.

In addition to droplet deformation, another meaningful indicator characterizing the
droplet behaviour is the sliding velocity of the droplet, which depends on the force balance
in the moving direction. Following the arguments by Ding et al. (2010) and Chen et al.
(2021), the driving force exerted on the droplet interface is balanced by the wall resistance
in the x direction. In the N/V and V/N viscoelastic systems, the driving force is tentatively
expressed by the sum of the shear stresses αμsμBsγ̇ R2 + αμpμBpγ̇ R2 and the form drag
force αiρR2(γ̇ R − Vcl)

2, where Vcl is the steady-state sliding velocity of the moving
droplet. Assuming that the contact angle hysteresis is neglected, the wall resistance can
be written as α′

μsμRsVclR + α′
μpμRpVclR. Thus, the force balance in the x direction is

expressed as

αμsμBsγ̇ R2 + αμpμBpγ̇ R2 + αiρR2(γ̇ R − Vcl)
2 = α′

μsμRsVclR + α′
μpμRpVclR, (4.1)

where α′
μs , α′

μp , αμs , αμp and αi are the coefficients to be determined, which may be
relevant to fluid properties, droplet shape and flow conditions (Chen et al. 2021).
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Figure 6. Vectors of ∇ · τ p at the x–z mid-plane and x–y bottom plane in (a) N/V and (b) V/N systems for
Ca = 0.15, Wi = 1.0, β = 0.5 and m = 1.0. The length of the arrow represents the magnitude of ∇ · τ p that is
normalized by μBγ̇ /R. In each panel, the solid contour lines correspond to ρN = 0.9, 0 and −0.9, respectively,
from inside to outside of the droplet. The vectors at ρN = 0 in the bottom plane are highlighted in red.

In the N/V system, the parameter μRp is zero. Using the definitions of the two-phase
fluid viscosity ratio (m) and the solvent viscosity ratio of the matrix fluid (β), (4.1) is
further derived as

N/V: αμsβμBγ̇ R + αμp (1 − β)μBγ̇ R + αiρR(γ̇ R − Vcl)
2 = α′

μsmμBVcl. (4.2)

By dividing (4.2) by the interfacial tension parameter σ , we have

N/V: αμsβCa + αμp(1 − β)Ca + αiReCa
(

1 − Cacl

Ca

)2

= α′
μsmCacl, (4.3)

where Cacl is the contact-line capillary number defined with Vcl as (Liu et al. 2020)

Cacl = μBVcl

σ
. (4.4)

The sliding velocity Vcl is normally much smaller than uw and the corresponding Cacl/Ca
is often of O(10−1), which means that (Cacl/Ca)2 is a small quantity of O(10−2) in (4.3).
Therefore, the form drag αiReCa(1 − Cacl/Ca)2 can be simplified as αiCa(1 − 2Cacl/Ca)

with Re = 1.0 in the present study. Then, (4.3) for the N/V system is written as

N/V:
Cacl

Ca
=

(
αμs − αμp

)
β + αμp + αi

α′
μsm + 2αi

. (4.5)

Following a similar derivation procedure, the prediction for Cacl/Ca in the V/N system is
obtained as

V/N:
Cacl

Ca
=

(
ᾱμs − ᾱμp

)
β + ᾱμp + ᾱi

ᾱ′
μsβm + ᾱ′

μpm (1 − β) + 2ᾱi
, (4.6)

where ᾱμs , ᾱμp , ᾱi, ᾱ′
μs , ᾱ′

μp are the coefficients to be determined for the V/N system.
The wall friction in the denominator of (4.6) consists of both viscous and elastic
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Figure 7. The contact-line capillary number Cacl as a function of the capillary number Ca at Wi=1.0, β = 0.5
and m = 1.0. An inset is included to show a local enlarged view of the Ca–Cacl plot for Ca ≥ 0.24. The
simulated data are shown by discrete symbols and the fitting lines for the N/N, N/V and V/N systems are
represented by solid, dashed and dash-dot-dot lines, respectively.

contributions and it is different from that in the N/V system. Under constant β and m
conditions, Cacl is expected to vary linearly with Ca for either N/V or V/N system.
In particular, the linear relation between Cacl and Ca has been demonstrated for each
two-phase viscosity ratio in the Newtonian system (β = 1.0) (Ding et al. 2010; Liu et al.
2020).

To reflect the variation in the sliding velocity, we plot Cacl versus Ca for the N/N,
N/V and V/V systems in figure 7, where Wi = 1.0, β = 0.5 and m = 1.0. As anticipated,
the linear relation between Cacl and Ca is obtained not only in the N/N system, but also
in the N/V and V/N systems. By using least-squares linear fitting, the fitted slopes are
0.2236 in the N/N system, 0.2269 in the V/N system and 0.2212 in the N/V system. This
means that the droplet is slightly faster in the V/N system but slower in the N/V system
when compared with the droplet in the N/N system, which is also reflected in the inset of
figure 7. As previously shown in figure 5, the normalized elastic driving force is barely
affected by Ca, while the viscous driving force in the N/V system is not as strong as
that in the V/N system or in the N/N system due to the lower droplet height caused by
spreading on the wall. Thus, it leads to a lower slope of Cacl against Ca in the N/V system.
Meanwhile, even though the sum of the driving forces in the V/N system is smaller than
that in the N/N system, the corresponding velocity is higher due to lower wall resistance
arising from smaller wetting area. With the value of β = 0.5 used in this section, the above
analysis indicates that the coefficient 0.5(αμs + αμp) in the numerator of (4.5) related to
driving force is less than αμs in the N/N system, while the coefficient in the denominator
of (4.6) related to wall friction in the V/N system, 0.5(ᾱ′

μs + ᾱ′
μp), is smaller than ᾱ′

μs

in the N/N system. In Appendix B, we further investigate the variation of Cacl with Ca
in both N/V and V/N systems for varying Wi, β and m, and the results are compared
with those obtained in the N/N system to show the role of viscoelasticity in the droplet
motion.
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Figure 8. (a) The steady-state contact-line shapes for Wi = 0.1, 5.0, 10 in the N/V system and for Wi = 0.1,
10 in the V/N system. (b) The relative wetting area Ar and relative droplet height hr and (c) the relative droplet
surface area Sr as functions of Wi in the N/V and V/N systems. The other simulation parameters are Ca = 0.15,
β = 0.5 and m = 1.0.

4.2.2. Effect of Wi
To investigate the effect of viscoelasticity on droplet deformation, Wi is varied from 0.1,
0.25, 0.5, 1.0, 2.0, 5.0, 8.0 to 10 in the N/V system, and from 0.1, 0.25, 0.5, 1.0, 2.0, 5.0,
10, 20 to 40 in the V/N system. Steady-state droplet deformation with a constant sliding
velocity is eventually achieved under various Wi conditions in both N/V and V/N systems.
Based on the steady-state results, we plot the contact-line shapes at several representative
Wi, along with the variations of Ar, hr and Sr with Wi in figure 8.

We first consider the N/V system. As Wi increases, the wetting area Ar increases and
the droplet height hr decreases monotonically. However, the droplet surface area Sr varies
little for Wi ≤ 1.0, and then obviously increases for Wi above 1.0 (see figure 8b,c). This
indicates that the droplet deformation is different from the deformation of a spherical
droplet suspended in an Oldroyd-B simple shear flow where the droplet deformation first
decreases and then increases with Wi (Yue et al. 2005; Aggarwal & Sarkar 2008). To
understand the cause of the difference, we perform a force analysis at two representative Wi
values, i.e. Wi = 0.1 and 5.0, and the results including the distributions of the normalized
viscous stress n · τ s and the elastic stress n · τ p on the droplet surface, as well as the
distributions of the normalized ∇ · τ p at the x–z mid-plane and x–y bottom plane, are
presented in figure 9.

As indicated in Yue et al. (2005) and Aggarwal & Sarkar (2008), the decreased
deformation for a suspended droplet at Wi ≤ 1.0 in the N/V system is mainly caused by the
reduced viscous stretching force due to the decrease in droplet orientation angle caused by
elasticity. For the attached droplet in the N/V system with weak elasticity, e.g. Wi = 0.1,
the confinement of the bottom wall resists the droplet rotation. A small difference is
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Figure 9. Vector distributions of ∇ · τ p at the x–z mid-plane and x–y bottom plane for (a) Wi = 0.1 and
(b) Wi = 5.0; and (c) contour plots of the normalized (n · τ s)x and (n · τ p)x on the droplet surface and vector
distributions of the normalized n · τ s and n · τ p at the x–z mid-plane for Wi = 5.0 in the N/V system. In
(a,b), the solid contour lines correspond to ρN = 0.9, 0 and −0.9, respectively, from inside to outside of the
droplet. The vectors at ρN = 0 in the bottom plane are highlighted in red. Various stresses or components are
normalized by μBγ̇ , while ∇ · τ p is normalized by μBγ̇ /R. The other parameters are chosen as Ca = 0.15,
β = 0.5 and m = 1.0.

observed between the angular position of the maximum (n · τ s)x and that of the maximum
(n · τ p)x (similar to figure 5c(i),c(ii) and thus not shown here), which marginally expands
the wetting area and lowers the droplet height. Also, the flow modification caused by
∇ · τ p is negligible (figure 9a). Both effects lead to a less reduced viscous force n · τ s,
so the droplet deformation quantified by Sr is almost a constant for Wi ≤ 1.0. After
further increasing Wi, the increased polymer elasticity in the matrix fluid induces a much
stronger stretch locally outside the droplet front (see e.g. Wi = 5.0 in figure 9c). The locally
increased n · τ p with Wi was also observed by Aggarwal & Sarkar (2008) for a suspended
droplet in simple shear flow. However, it is noted that the maximum n · τ p occurs near
the droplet tips for a suspended droplet, but around the advancing contact lines for the
wall-attached droplet. Such a distribution of n · τ p promotes the droplet spreading on the
wall, which turns out to exhibit increased Ar and Sr and decreased hr.

On the other hand, the flow modification by ∇ · τ p (figure 9b) acts equally with n · τ p in
promoting droplet spreading in the N/V system. We also surprisingly find that for Wi ≥ 5.0
the moving contact line eventually develops into a prolate shape with smaller curvature
radius at the front than at the rear (see figures 8a and 9b), which is opposite to the curvature
radius distribution of the moving contact line at Wi = 1.0 (see figure 3b). For high Wi, i.e.
Wi ≥ 5.0, the smaller curvature radius at the front is attributed to the fact that ∇ · τ p
increases rapidly especially near the leading edge of the contact line (see e.g. figure 9b), as
opposed to the relatively even distribution of ∇ · τ p in the advancing contact line region
at Wi = 1.0 (see e.g. figure 6a).

We then consider the V/N system, and the variations of Ar, hr and Sr with Wi are
given in figure 8. It is clear that increasing Wi slightly decreases the droplet surface
area Sr and almost has negligible influence on the wetting area Ar and the droplet
height hr. This indicates that the droplet deformation is inhibited to some extent by the
droplet viscoelasticity, which is consistent with the trend in the observation obtained for
a viscoelastic droplet suspended in a Newtonian shear flow (Aggarwal & Sarkar 2007).
To elucidate the behaviour of the attached droplet, we plot the distributions of ∇ · τ p
for Wi = 0.1 and 5.0 and n · τ s, n · τ p for Wi = 5.0 in figure 10. By comparing these
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Figure 10. Vector distributions of ∇ · τ p at the x–z mid-plane and x–y bottom plane for (a) Wi = 0.1 and
(b) Wi = 5.0; and (c) contour plots of the normalized (n · τ s)x and (n · τ p)x on the droplet surface and vector
distributions of the normalized n · τ s and n · τ p at the x–z mid-plane for Wi = 5.0 in the V/N system. In
(a,b), the solid contour lines correspond to ρN = 0.9, 0 and −0.9, respectively, from inside to outside of the
droplet. The vectors at ρN = 0 in the bottom plane are highlighted in red. Various stresses or components are
normalized by μBγ̇ , while ∇ · τ p is normalized by μBγ̇ /R. The other parameters are chosen as Ca = 0.15,
β = 0.5 and m = 1.0.

forces, we find that the viscous force n · τ s varies little with Wi, and the elastic force
n · τ p mainly acts at the droplet interface near the contact line (see figure 10c). It is also
noticed that the increased inward-pointing elastic force ∇ · τ p becomes dominant at high
Wi (see figure 10b), which overcomes the outward-pointing n · τ p and causes the moving
contact line to contract in the x direction. As a result, the viscoelastic droplet is squeezed
in the x direction but marginally expands in the y direction for high Wi, as observed in
figure 8(a).

To show how Wi influences the sliding velocity of the droplet in the N/V and V/N
systems, we plot the variation of Cacl/Ca with Wi in figure 11. It is observed that
the variations of Cacl/Ca turn out to generally match the variations of Ar displayed in
figure 8(b). In both N/V and V/N systems, the wetting area varies little with Wi for
Wi < 1.0, and the sliding velocities are almost a constant. Upon further increasing Wi
above unity, Cacl/Ca decreases (increases) with an increase (decrease) of Ar in the N/V
(V/N) system due to the enhanced (reduced) wall friction.

4.2.3. Effect of solvent viscosity ratio β

In this section, we choose Ca = 0.15 and Wi = 1.0, but decrease β from 1.0 to 0.1 at three
typical two-phase viscosity ratios, i.e. m = 0.5, 1.0 and 2.0. Note that for each two-phase
viscosity ratio, the elastic effect strengthens with decreasing β and vice versa. The droplet
deformation is quantified by Ar, hr and Sr in the steady state. The corresponding results
in the N/V system are presented in figure 12(a(i),a(ii)). It is seen that a decrease of
solvent viscosity ratio β leads to an increase in the wetting area Ar, but to a decrease
in the droplet height hr and the droplet surface area Sr. As anticipated, the elastic force
is more pronounced at lower β, which promotes the droplet spreading on the wall. This
will reduce the droplet height, so the droplet is exposed to a weaker shear flow, which
reduces the droplet surface area Sr. We also notice in figure 12(a(i),a(ii)) that the variations
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Figure 11. Plot of Cacl/Ca as a function of Wi in both N/V and V/N systems for Ca = 0.15, β = 0.5 and
m = 1.0. The simulated results in the N/V and V/N systems are represented by the red triangles and blue
circles, respectively. The dashed and dash-dot-dot lines are used to show the variation of Cacl/Ca with Wi in
the N/V and V/N systems, respectively.

of Ar, hr and Sr with β are similar at different values of m, while the droplet always
deforms the most at m = 2.0 and the least at m = 0.5 for each β. The increased droplet
deformation with m was also identified in our previous studies, which considered a clean
or surfactant-covered droplet attached on the substrate subject to a Newtonian Couette flow
(Liu et al. 2020). The reason is that a higher droplet viscosity leads to an increased wall
friction, which slows down the droplet motion and thus increases the viscous stretching
acting on the droplet surface.

We then focus on the V/N system, and investigate the effect of β on Ar, hr and Sr at
different values of m, which is shown in figure 12(b(i),b(ii)). It is clear in figure 12(b(i))
that Ar and hr both tend to converge to zero with decreasing β for each m. The main reason
is that the decrease of β enhances the droplet elastic effect, which causes the contact line
to contract in the x direction (see figure 10b), thus inhibiting the development of wetting
area and droplet height. Like in the N/V system, Sr is found to decrease with decreasing
β as well in the V/N system. However, Sr varies with a steeper slope in the V/N system.
The reason is that, on the one hand, n · τ p acting as a driving force to promote droplet
deformation is smaller and, on the other hand, the inhibiting effect induced by ∇ · τ p
contributes more at lower β.

We next investigate how Cacl/Ca is influenced by β at three different values of
two-phase viscosity ratio in both N/V and V/N systems. The obtained results are shown in
figure 13. In the N/V system, it is seen that with a decrease of β, Cacl/Ca monotonically
increases for m = 0.5 and 1.0 but monotonically decreases for m = 2.0. This means that
the presence of viscoelascity in the matrix fluid promotes the droplet motion for m below
unity, but inhibits the droplet motion for m above unity. The difference in droplet motion
as functions of β and m can be explained as follows. As β decreases, the elastic viscosity
of the matrix fluid increases, which brings two competing effects on the droplet. On the
one hand, it promotes the droplet motion through the stretching of the droplet interface.
On the other hand, the elastic stretching enlarges the wetting area of the droplet which in
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Figure 12. Relative wetting area Ar, relative droplet height hr and relative droplet surface area Sr as functions
of decreasing β for the two-phase viscosity ratios of m = 0.5, 1.0 and 2.0 in the (a) N/V and (b) V/N systems.
The other parameters are fixed at Ca = 0.15 and Wi = 1.0.

turn increases the wall friction. At m = 0.5 and 1.0 where the wall friction is relatively
small due to lower wetting area (see figure 12a(i)) and droplet viscosity, the promoting
effect dominates and thus the sliding velocity shows an increasing trend with decreasing
β; whereas at m = 2.0, the wall friction becomes important so that the sliding velocity
decreases with decreasing β. Unlike that in the N/V system, it is seen in figure 13 that the
sliding velocities (Cacl/Ca) under three tested m conditions in the V/N system all increase
with decreasing β. As learnt from the droplet deformation trends, it is easier for the droplet
to maintain its initial hemispherical shape, droplet height and wetting area at smaller β.
As a result, the droplet would undergo a larger shear force, which promotes the droplet
motion and increases the steady-state sliding velocity. In particular, we notice for β < 0.4
that the droplet in the V/N system always slides faster than in the N/V system.

According to (4.5) and (4.6), for each m, Cacl/Ca is related to β by Cacl/Ca =
(β + a1)/(b1m + c1) in the N/V system and by Cacl/Ca = (β + a2)/(b2m + c2βm + d2)
in the V/N system, where (a1, b1, c1), (a2, b2, c2, d2) are the fitting parameters related to
(αμs , αμp , αi, α′

μs , α
′
μp) and (ᾱμs , ᾱμp , ᾱi, ᾱ′

μs , ᾱ
′
μp), respectively. By using least-squares

fitting on the simulated data in the N/V system, the obtained values of (a1, b1, c1) are
(−11.34, −87.42, 2.98 × 10−4) for m = 0.5 (N/V-Case 1), (−27.11, −121.18, −5.06 ×
10−6) for m = 1.0 (N/V-Case 2) and (24.54, 68.02, 1.79 × 10−4) for m = 2.0 (N/V-Case
3). Similarly, the fitting parameters of (a2, b2, c2, d2) in the V/N system are (0.14, 0.90,
8.74, 0) for m = 0.5 (V/N-Case 1), (0.19, 0.73, 4.81, 0) for m = 1.0 (V/N-Case 2) and
(0.37, 0.87, 2.82, 0) for m = 2.0 (V/N-Case 3). With these fitting parameters, the predicted
curves can be obtained, which are plotted in figure 13. Clearly, the simulated results match
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Figure 13. The variation of Cacl/Ca with decreasing β for different two-phase viscosity ratios in the N/V
and V/N systems. The simulation results are represented by the discrete symbols, i.e. upper-filled symbols for
m = 0.5, open symbols for m = 1.0 and lower-filled symbols for m = 2.0, while the predicted curves from
(4.5) and (4.6) are represented by dashed, solid and dash-dot-dot lines for m = 0.5, 1.0 and 2.0, respectively.
The other parameters are fixed at Ca = 0.15 and Wi = 1.0.

well with the predicted ones in both N/V and V/N systems, justifying the effectiveness of
the derived relationships. Moreover, one easily finds that both c1 and d2 simplified from
the coefficients of the form drag term are nearly zero, indicating that the form drag term
makes a negligible contribution to the sliding velocity of the droplet under the creeping
flow condition for both N/V and V/N systems. Similarly, the form drag term has been
commonly neglected in modelling of the droplet motion for the N/N system. For example,
Ding & Spelt (2008) found that the droplet shape does not have a strong effect on the force
balance; Liu et al. (2020) established a force balance without considering the form drag
term for a system with negligible inertia, and the resulting linear relationship between Cacl
and Ca was numerically verified.

4.3. Breakup of the attached droplet in N/V and V/N systems
It is known in Newtonian systems that an attached droplet could break up into daughter
droplets when Ca is increased above a critical value Cacr, known as the critical capillary
number (Ding et al. 2010). In this section, we focus on the variation of Cacr with Wi in
both N/V and V/N systems for m = 1.0 and β = 0.5. The results are presented in figure 14,
where the triangles and circles are used for N/V and V/N systems, respectively, with the
open ones representing no-breakup situation and the filled ones representing breakup
situation. The critical capillary number Cacr lies between two nearest filled and open
symbols at each Wi. The insets show the droplet shapes close to breakup or in steady
state for the Ca–Wi conditions enclosed in the corresponding box.

As seen from figure 14, Cacr monotonically increases with Wi in the N/V system. The
trend is consistent with the droplet deformation results obtained under different values
of Wi in § 4.2.2, which can be explained as follows. With an increase of Wi, the droplet
spreads more on the wall with reduced droplet height, so a larger Cacr is needed to obtain
a driving force sufficient to induce the droplet breakup. To show the influence of Wi on the
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Figure 14. Capillary number at which the droplet obtains a steady shape or undergoes breakup as a function of
Wi for m = 1.0 and β = 0.5 in the N/V and V/N systems. Each inset shows the droplet shape close to breakup
or in the steady state for the cases enclosed in each box. The dashed and dashed-dot-dot lines show the variation
of Ca with Wi in the N/V and V/N systems, respectively.

breakup process, we plot snapshots of droplet breakup in the N/V systems with Wi = 5.0,
Ca = 0.6 in figure 15(a). By comparing the results with those at lower Wi, e.g. Wi = 0.1
and Ca = 0.435 in the inset of figure 14, it is seen that the droplet is stretched to be more
parallel to the shear flow at higher Wi, where the generated daughter droplet is prone to
adhering to the wall soon. In addition, we notice an interesting phenomenon at Wi = 10
in the N/V system, which is shown in the inset of figure 14. The hemispherical droplet
eventually develops into a long strip shape at Ca = 0.625; while at capillary number
slightly below Cacr, i.e. Ca = 0.65, a neck is first formed during the droplet evolution
process, and then the embryonic form of the daughter droplet contacts the wall and merges
with the main droplet so that no breakup would finally happen.

In the above discussion, we have shown that the droplet viscoelasticity exhibits an
overall inhibiting effect on droplet deformation and the inhibiting effect varies little in
the V/N system for Wi ≥ 10 (see figure 8). Therefore, one would expect Cacr to exhibit an
increasing trend with Wi before reaching a plateau. However, this expectation only holds
for Wi ≤ 2.5 in the V/N system, which can be seen from the results shown in figure 14.
A noticeable difference is that Cacr undergoes a slight decrease for Wi varying from 2.5
to 5.0. To clarify the cause for the slight decrease of Cacr, we plot the snapshots of droplet
breakup for Wi = 5.0 and Ca = 0.45 in figure 15(b). It is clear that a larger amount of the
droplet is exposed to the shear flow due to smaller wetting area of the droplet at higher Wi,
which causes the droplet to break up at a lower Cacr.

5. Conclusions

A numerical method is presented to study the deformation and breakup of an attached
droplet on a solid wall subject to a three-dimensional Couette flow. Two different systems
are considered, namely a N/V system and a V/N system. The numerical method is
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Figure 15. Snapshots of droplet breakup process for (a) Wi = 5.0, Ca = 0.6 in the N/V system and for
(b) Wi = 5.0, Ca = 0.45 in the V/N system. The other parameters are fixed at β = 0.5 and m = 1.0.

built upon our recent work (Wang et al. 2022), which uses the colour-gradient LBM
for two-phase hydrodynamics and the advection–diffusion LBM to solve the Oldroyd-B
constitutive equation, but additionally introduces the geometrical wetting boundary
condition to deal with the fluid–surface interaction. We first focus on low values of
capillary number (Ca), and analyse the effects of Ca, Weissenberg number Wi and solvent
viscosity ratio β on the steady-state droplet deformation. In the N/V system, the droplet
wetting area increases with an increase of Ca and Wi, or with a decrease of β. In the
V/N system, the droplet wetting area decreases with an increase of Wi or a decrease of β,
and the inhibiting effect of the droplet viscoelasticity is strengthened with an increase of
Ca. The elastic effects are quantified by the elastic stress exerted on the droplet surface,
n · τ p, and the flow modification induced by the elastic force, ∇ · τ p. It is found that
the overall elastic effects of n · τ p and ∇ · τ p both enhance the droplet spreading in the
N/V system. Whereas in the V/N system, the droplet deformation is inhibited by the flow
modification ∇ · τ p, which is dominant over the weak promoting effect of n · τ p. For the
viscoelastic fluid with equal elastic polymer viscosity and Newtonian solvent viscosity,
i.e. β = 0.5, the elastic contribution in the V/N system is usually not so strong as the
viscous contribution in promoting the interface deformation, so the droplet deformation,
quantified by the droplet surface area Sr, is smaller than in the Newtonian system. Whereas
for the N/V system, Sr varies little for Wi < 1.0, but obviously increases for higher Wi
due the increased elastic driving forces. Decreasing β always reduces droplet deformation
when either fluid is viscoelastic. A force balance is established for the prediction of the
droplet motion (represented by the contact-line capillary number Cacl) in both N/V and
V/N systems. Consistent with the theoretical predictions, the numerical simulations not
only show that Cacl linearly increases with Ca in either N/V or V/N system, but also verify
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Figure 16. The relative droplet surface area Sr and the contact-line capillary number Cacl versus the
confinement ratio R/H in the N/N, N/V and V/N systems for Ca = 0.15, Wi = 1.0, β = 0.5 and m = 1.0.

the relationship between Cacl/Ca and β for each two-phase viscosity ratio. In particular,
the droplet in the V/N system is found to slide faster than that in the Newtonian system
regardless of the two-phase viscosity ratio m. Whereas in the N/V system, as compared
with the droplet motion in the N/N system, the droplet slides faster for m < 1.0 but
slides more slowly for m > 1.0. Additionally, the critical capillary number of the droplet
breakup, Cacr, is investigated for varying Wi in both N/V and V/N systems. Results reveal
that Cacr evidently increases with Wi in the N/V system, while it first increases and then
decreases marginally before reaching a plateau in the V/N system.
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Appendix A. Effect of wall confinement

To show the effect of wall confinement, a series of simulations are conducted with R/H =
0.2, 0.3, 0.4, 0.5 and 0.625 for Ca = 0.15, Wi = 1.0, β = 0.5, m = 1.0 in the N/N, N/V
and V/N systems, and the results are shown in figure 16. It is seen that an increase of
wall confinement not only increases the droplet deformation, as quantified by the relative
droplet surface area Sr, but also enhances the droplet motion (quantified by Cacl) in all
three systems. The results also indicate that the effect of the top wall is small enough to
be ignored when R/H ≤ 0.3, consistent with Ding & Spelt (2008) where R/H = 0.3 was
used to minimize the role of the top wall and at the same time to keep a relatively low
computing cost.

963 A18-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

34
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-0295-1251
https://orcid.org/0000-0002-0295-1251
https://doi.org/10.1017/jfm.2023.340


N. Wang, S. Li, L. Shi, X. Yuan and H. Liu

0.12

0.08

0.04

0 0.1 0.2 0.3 0.4

0.12

0.09

0.06

0.03

0 0.1 0.2 0.3 0.4

0.12

0.09

0.06

0.03

0

0.12

0.09

0.06

0.03

0

0.1 0.2 0.3 0.4

0.1 0.2 0.3 0.4

C
a cl

C
a cl

Ca Ca

N/N,

N/N, β = 0.1, Wi = 1,

N/N, fitted

N/V, fitted

V/N, β = 0.1, Wi = 1, V/N, fitted

N/V, β = 0.5, Wi = 5, N/V, fitted

V/N, β = 0.5, Wi = 5, V/N, fitted

N/N,

N/V, β = 0.1,

N/N, fitted

N/V, fitted

V/N, β = 0.1, V/N, fitted

N/V, β = 0.5, N/V, fitted

V/N, β = 0.5, V/N, fitted

N/N,

N/V, β = 0.1,

N/N, fitted

N/V, fitted

V/N, β = 0.1, V/N, fitted

N/V, β = 0.5, N/V, fitted

V/N, β = 0.5, V/N, fitted

N/N,

N/V, β = 0.1,

N/N, fitted

N/V, fitted

V/N, β = 0.1, V/N, fitted

N/V, β = 0.5, N/V, fitted

V/N, β = 0.5, V/N, fitted

m = 1
m = 0.25

Wi = 1

m = 0.5

Wi = 1
m = 2

Wi = 1

(a) (b)

(c) (d )

Figure 17. The contact-line capillary number Cacl as a function of Ca at (a) β = 0.1, Wi = 1.0; β = 0.5,
Wi = 5.0 with m = 1.0, (b) β = 0.1, Wi = 1.0; β = 0.5, Wi = 1.0 with m = 0.25, (c) β = 0.1, Wi = 1.0;
β = 0.5, Wi = 1.0 with m = 0.5 and (d) β = 0.1, Wi = 1.0; β = 0.5, Wi = 1.0 with m = 2.0. For the sake of
comparison, the corresponding Newtonian results are also plotted in each panel. The simulated data are shown
by discrete symbols and the fitted curves for the N/N, N/V and V/N systems are represented by lines of different
styles.

Figure Wi β m N/N N/V V/N

Figure 7 1.0 0.5 1.0 — 0.2212 0.2269
Figures 7, 17(a) 0 1.0 1.0 0.2236 — —
Figure 17(a) 5.0 0.5 1.0 — 0.2132 0.2429
Figure 17(a) 1.0 0.1 1.0 — 0.2148 0.2408
Figure 17(b) 0 1.0 0.25 0.2679 — —
Figure 17(b) 1.0 0.5 0.25 — 0.2739 0.2719
Figure 17(b) 1.0 0.1 0.25 — 0.2873 0.3073
Figure 17(c) 0 1.0 0.5 0.2498 — —
Figure 17(c) 1.0 0.5 0.5 — 0.2514 0.2513
Figure 17(c) 1.0 0.1 0.5 — 0.2557 0.2734
Figure 17(d) 0 1.0 2.0 0.1827 — —
Figure 17(d) 1.0 0.5 2.0 — 0.1779 0.1904
Figure 17(d) 1.0 0.1 2.0 — 0.1657 0.2024

Table 2. Fitted slopes of the Cacl–Ca lines under different parameter conditions.
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Appendix B. Variation of Cacl with Ca at varying Wi, β and m

In addition to figure 7 (Wi = 1.0, β = 0.5, m = 1.0), more simulations are conduced
to show the effect of viscoelasticity on Cacl–Ca curves under different values of Wi,
β and m in the N/V and V/N systems. Figure 17 shows the results at m = 1.0 for two
groups of parameters: (i) β = 0.1, Wi = 1.0 and (ii) β = 0.5, Wi = 5.0. Note that the
groups (i) and (ii) correspond to a lower β and to a higher Wi, respectively, as compared
with the parameters in figure 7. It is found that like in figure 7, the linear relationship
between Cacl and Ca still holds at different β and Wi values. However, unlike in figure 7,
the slopes are evidently different in the V/N, N/V and N/N systems for either group (i)
or group (ii). By keeping Wi = 1.0, the Cacl–Ca curves are further investigated with
β = 0.1 and 0.5 for three typical viscosity ratios, that is, m = 0.25, 0.5 and 2.0, and the
obtained results are displayed in figures 17(b), 17(c) and 17(d), respectively. At each m, the
corresponding Newtonian results are also plotted for comparison. Clearly, all the Cacl–Ca
curves exhibit linear behaviour, and the fitted slopes are listed in table 2. Again, the slopes
of the viscoelastic systems are usually different from that of the Newtonian system. In the
V/N system, the droplet always slides faster than that in the Newtonian system regardless
of the m value. In the N/V system, as compared with the droplet motion in the N/N
system, the droplet slides faster for m < 1.0, but slides more slowly for m > 1.0. These
results suggest that the viscoelasticity generally influences the droplet motion, while the
insignificant effect of the viscoelasticity on the droplet motion, as reflected in figure 7, is
only a coincidence.
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