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A NOTE ON LAGRANGE INTERPOLATION
FOR |x|A AT EQUIDISTANT NODES

MICHAEL I. GANZBURG AND MICHAEL REVERS

In this note, we discuss the exceptional set E C [—1,1] of points XQ satisfying the
inequality

liminf rT1 log||x|A - Ln(fx, xo)\ < ̂  [(1 + x0) log(l + z0) + (1 - z0) log(l - x0)],

where A > 0, A ̂  2,4,. . . and Ln(f\,.} is the Lagrange interpolation polynomial of
degree at most n to f\(x) := \x\ on the interval [—1,1] associated with the equidistant
nodes. It is known that E has Lebesgue measure zero. Here we show that E contains
infinite families of rational and irrational numbers.

1. INTRODUCTION

Let Ln(f,.) be the Lagrange interpolation polynomial of degree at most n to a
continuous function / on [-1,1] associated with the equidistant nodes x^n := - 1
+ 2j/n,j = 0 , l , . . . , n , n e N and let fx(x) := \x\x.

In 1916 Bernstein ([1, 2, 7]) proved the surprising result that the sequence Ln(fi,x0)
is divergent as n -» oo for every x0 6 [—1,1], apart from the values x0 = —1,0,1.
Since the endpoints ±1 are interpolation points for every index n the sequence of the
interpolation polynomials cannot diverge there. On the other hand, for the point zero it
is proved in Natanson ([7, pp.30-35]) that lim Ln(fi,0) = 0. For other results in this

n—¥oo

direction, see also [9]. The classical result of Bernstein was revisited in the 1990s and
2000s. In particular, the rate of this divergence process was discussed in ([3, 5, 6, 8, 10]).
More precisely, the following nth root asymptotic relation for 0 < \xo\ < 1

(1) lim sup - log| \x\x - Ln{fx, x0) \ = - [(1 + *0) log(l + x0) + (1 - x0) log(l - x0)]
n

was established for A = 1 by Byrne, Mills and Smith [3] and for A = 3 by the second
author [8]. Recently, the first author [5] proved the conjecture posed in [8] that (1) holds
for all A > 0, A ̂  2 , 4 , . . . .
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Li and Mohapa t ra [6] showed t h a t for almost every XQ € [—1,1],

l
where (p*)*^=i is the increasing sequence of all positive prime numbers. The following

generalisation and strengthening of this result was proved in [5]:

(2) lim - l o g | | x | A - Ln(htx0)\ = 5 [(1 + *o) log( l + x0) + (1 - x 0 ) log( l - i 0 ) ] .
n—*oo Tl

for almost every x0 & [—1,1], A > 0, A ^ 2,4,... In this note, we discuss the exceptional
set E C [—1,1] of Lebesgue measure zero for which (2) does not hold for each x0 € E,
that is

(3) liminf - log||:r|A - Ln(/A,a;o)| < I [(1 + XQ) log(l + x0) + (1 - x0) log(l - i0)],

for A > 0, A / 2,4,... and x0 € E. It is easy to see that E - Eo U Et, where Eo and Se

are the subsets of [—1,1] for which (3) holds with liminf replaced by liminf and by
n-»oo n=27V-l-+oo

lim inf , respectively. In the following theorem we show that Eo and Ee contain certain
n=2N-KX>

infinite families of rational and irrational numbers.

THEOREM 1.

(a) Any rational number x0 G (-1,1) belongs to Ee.
(b) For any odd k and odd m > 0, satisfying \k\ < m, we have x0 := k/m € Eo.
(c) There exists an infinite family {0R}R^I of irrational numbers such that

PREE0D Ee for all real R^l.

To prove Theorem 1 we shall need the following result on Diophantine approximation:

LEMMA 2 .

(a) For any real R > 1 there exists an irrational number J3R € (0,1/3) and two
sequences of odd numbers (p«(-ff))̂ L1 and (</ra(/2))̂ _ such that

(4) 0< Pn(R) 1

qn(R)

(b) Tie family {0R}R^I is infinite.

PROOF: (a) To this end select a real number R ^ 1 and let us define an increasing
sequence (am(i?))m_1 by the following recurrence formula:

https://doi.org/10.1017/S0004972700034729 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034729


[3] Lagrange interpolation at equidistant nodes 477

where [x] stands for the integral part of a;. Then (with the shortened notation a, = <ij{R))

we set

m=l

Since (am)~= 1 is an increasing sequence, /3R is a well defined element and one simply
checks that 0 < 0R < 1/3. Next since aM/am is odd for M ^ m ^ 1, we can define the
odd numbers

qn(R) := a2n-i,
2n-l

MR) •= Y,(-l)m+1a2n-Jam,
m = l

for n e N. Then pn(R)/qn(R) = £ ( - l ) m + 1 a - \ and we have
m=l

o<JL__L<
0>2n a2n+l

MR)
Qn(R)

1

This establishes the mentioned inequalities in (4). It remains to show that PR is irrational.
Indeed, assuming that pR is rational, say PR = a/b, and taking account of the left-hand
inequality in (4), we obtain by a standard argument in Diophantine approximation the
following estimate

MR) ^ i
* qn(R) " bqn(RY

This obviously contradicts the right-hand inequality in (4) for n sufficiently large. There-

fore statement (a) of the lemma follows.

(b) This statement follows from the inequalities

To prove (5), a standard argument on PR leads us to the both-sided estimates

which are valid for all integers R ^ 1. Since the family of intervals j [3~3fi(l
-] OO

— 3~78),3~3R] > is mutually disjoint, then (6) implies (5) and thus the lemma is

proved. U

P R O O F OF THEOREM 1: (a) If x0 — k/m is a rational number with m > 0 and

|fc| < m, then for any p = 1,2,..., the node ip(m+it),2pm coincides with x0. Hence

(7) 0 = |xo|A - LNp{h,x0) < ((1 +xo)
l+x°(l - so)1-*")""1,
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for p = 1,2,..., where Np = 2pm. Thus x0 G Ee.

(b) Similarly, if Xo = k/m is rational for odd k and m with m > 0 and |A;| < m,
we find that the node

Therefore (7) is again valid for p = 1,2,..., and Np = (2p+l)m. That is, we have shown
that x0 € Eo.

(c) Let {/?/e}fi;>i be the infinite family of irrational numbers from the lemma. To
prove that /3R € E0C\ Ee for all R ̂  1, we first show that the following inequalities hold:

(8)

0)

lim inf cos

Indeed, let (pn(R))™=l and (Qn(R))™=1 be the sequences of odd numbers from the lemma.
Then combining |sinx| ^ |x| together with (4), we get

lim inf
n—*oo

2n-l\|l/(2n-D

= lim inf

lim inf
n-»oo

o-R

. \nqn(
S l n 9

L 2
Qn(R)

Pn(R)

This implies (8). Next using (4) again, we obtain

liminf|sin(7r/3fin)|1/(2n) ^ liminf|sin(7T^gn)|1/(2?n( i l ) )

= lim inf sin non (/

Thus (9) follows.

To proceed further, we use the following asymptotics for the interpolation errors

established in ([5, Theorem 4]):

(10)

(11)

- £ 2 n - i ( / A , X0) = Bx(2n - l ) - A -

- B2n
 A ' x 0 ^ ^

cos
7r(2n - l)x0

- L2n{f\,x0)
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where 0 < |io| < 1, A > 0,2?i = Bi(A) and B2 — 52(A) are some constants,

<pN{x) :=

and the error terms anii(x) satisfy the estimates

(12) \<*n,i(x)\ < dn-W\ i = l ,2.

Here d is independent of n, i = 1,2. Then using (8), (10) and (12), we have for R ^ 1

liminf|/3«A - £*,_!(/*,M1"2""1' < ^ " K 1 + fo)l+/>JI(l ~ /h)1"'"]1'2-
n—^oo

Thus PR € £•<,. Furthermore using (9), (11) and (12), we get for R ^ 1

linminf|/?«A - L 2 n ( / , , ^ ) | 1 / ( 2 n ) < 3-W2>[(l + / ? K ) 1 + " « ( 1 - ^ f l ) 1 ^ ] 1 7 2 .

This shows that /3R e jEe.This completes the proof of the theorem. D

REMARK 3. The theorem is new even for A = 1.

REMARK 4. If we drop the condition in statement (a) of the lemma that pn(R) and
qn{R) are odd numbers, then the existence of /3R satisfying (4) is well known in Diophan-
tine approximation (see [4]).
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