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1. Introduction. Let M be a a-finite von Neumann algebra and a = {a,}teA be a
representation of a compact abelian group A as *-automorphisms of M. Let F be the dual
group of A and suppose that T is totally ordered with a positive semigroup 2 c T . The
analytic algebra associated with a and 2 is

where spa(a) is Arveson's spectrum. These algebras were studied (also for A not
necessarily compact) by several authors starting with Loebl and Muhly [10].

In the case where the fixed point algebra

Mo = {a € M : a,(a) = a for every t in A),

is a Cartan subalgebra of M it was shown in [13] that one can construct a "system of
coordinates" for M and use it to study the a-weakly closed Af0-bimodules of M. Using this
analysis one can identify the a-weakly closed ideals of Ma(2), the algebras that lie
between the algebra Ma(S,) and M, and other A/*(2)-bimodules. These results were used
to study isomorphisms between two such algebras.

In the present paper we do not assume that Mo is a Cartan subalgebra or even abelian.
We show (Section 2) that one can construct a "system of coordinates" for M (namely,
represent each operator T in M as a "generalized matrix" {T(x, v): (JC, V) G R}, where R
is an equivalence relation on some measure space (X, //)).

We use this representation to characterize the a-weakly closed A/0-bimodules of M. If
M fl Z(A/0)' c Mo (where Z(M0) is the center of Mo), then it is shown that for every such
bimodule % there is a Borel subset Q cR such that

% = {T e M : T(x, v) = 0 for (x, y) not in Q).

In Section 4 we use this analysis to study M-reflexivity of M0-bimodules. Among other
things we show that a is inner if and only if M D Z(M0)' c Mo and every a-weakly closed
A/0-bimodule is A/-reflexive.

Section 5 deals with isomorphisms <p : Mar(21)-»Br|(22). It is proved (Theorem 5.1)
that if M n Z(M0)' c Mo and B D Z(B0)' c Bo and tp is an algebraic isomorphism such that
ip(a*) = i[>(a)* for a eM0, then there is an isomorphism of the equivalence relation Rt

(associated with (M, a)) onto R2 (associated with (B, 77)) that carries Pt onto P2. Here P,
and P2 are the support sets of M^S,) and B'1^); namely,

A/^S,) = {T e M : T(x, v) = 0 for (x, y) not in P,},

5"(22) = {T e B : T(x, y) = 0 for (x, v) not in P2}.

This result is related to the results of [13, Section 5], [11] and [12].
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32 BARUCH SOLEL

2. Preliminaries. Let M be a a-finite von Neumann algebra acting on a Hilbert
space H and let or be a a-weakly continuous representation of a compact abelian group A
as *-automorphisms of M. Write F for the dual of A. For each p e F we define a a-weakly
continuous linear map ep, on M, by

£p(x) = I a,(x)(t,p) dt (x e M),
JA

where dt is the normalized Haar measure on A. Let Mp be ep(M). Then it is clear that
Mp = {x e M : <*,(*) = (t, p)x , t e.A} and Mo is the fixed point algebra. For every p e F
define the projection

^, = sup{««* : u is a partial isometry in Mp}.

Then /_p = sup{u*u : u is a partial isometry in Mp) as M_p = M*. The following result is
well known (see [17]).

LEMMA 2.1. For every p , q e F,

(1) /p e Z(M0) (//ie center of Mo);
(2) MPM, s M p + , and Mp* = M_p;
(3) if x e Mp and x = v \x\ is its polar decomposition, then v e Mp and \x\ 6 Mo.

We will need the following result.

LEMMA 2.2. For every p e F there is a sequence of partial isometries {vpn}™=0 with the
following properties.

(1) v*nvPtm = Oifm*n;
oo

(2) E vPimvPtm=fp;
m=0

(3) for each m^l, vp<mvPim =£ <m_iUp.m_i;
00 00

(4) Mp= E fp,mM0 (i.e. eac/i jceMp can 6e written as E upmxm, wnere xmeM0
m=0 m=0

and the sum converges in the o-weak operator topology);
(5) Mp = MovpOMo (i.e. Mp is the o-weak closure of the subspace spanned by

{Avp>0B:A,BeM0}).

Proof. The existence of the partial isometries {vp,n}™=0 satisfying (l)-(4), was proved
in [16, Proposition 2.3 and Theorem 2.4] for the case F = Z. The proof in the general case
is almost identical. For (5) simply note that for ra^l, v*pmvpm^u*,oUp>o and therefore
vp,m = Vp,mvp,oVp,ovp,mvPim e M0vPi0M0. •

With the partial isometries {vpm : m 3=0,p eF} defined as above we can define maps
{f}p}per on Mo by the formula

= 2 vp,mTv*p,m.
m=0
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We have the following results ([17, Lemma 2.4]).

LEMMA 2.3.
(1) Pp is a well defined homomorphism from M'o onto fpM'o that maps Z(M0) onto

fPZ(M0).
(2) fip, restricted to f-pM'o is a *-isomorphism of f_pM'o onto fpM'o that maps f_pZ{M0)

onto fpZ(M0);
(3) Pppq(T) = Pp+q{f-qT) =fqPP+q(T);
(4) PP(fq) = &(&(/ ) ) =fPPP+q(I) =fPfP+q-

Since Mo is a-finite there is a faithful normal state w on Mo. Define w on M by

w(x) = w(eo(x)) (x e M).

Then w is a faithful normal state on Mo such that

w°eo=w and w°a, = w (teA).

Considering the Gelfand-Naimark-Segal construction for w we may assume that M
has a separating and cyclic vector poeH such that

w(x) = (xp0, p0) = (eo(x)po, p0) (x e M).

As Z(M0) is an abelian von Neumann algebra on a separable Hilbert space H, there
is a locally compact complete separable metric measure space (X, n) such that H is
(unitarily equivalent to) the direct integral of Hilbert spaces {H(x)} over (X, (i) and
Z(M0) is (unitarily equivalent to) the algebra of diagonalizable operators relative to this
decomposition [5, Theorem 14.2.1]. Also, Z(MQ)' is the algebra of decomposable
operators.

For every p e F, f}p defines a ""-isomorphism from f_pZ(Mn) onto fpZ(M()). There are
subsets {fp:per} oi X such that x^>X/p(

x) is the decomposition of fp. (Here %B is the
characteristic function o f f l c l . ) Then /3p induces a *-isomorphism, denoted also by f}p,
from Z.°°(/_p, n \f-p) onto L°°(fp, fi \fp). Therefore there is an invertible Borel transfor-
mation $p from /_,, onto ?p such that, for g e U°(J_P, /J. \fp), we have

and

(H/P)°&~Ml/-p (per).

We now define a groupoid G as follows.

G = {(x,p):xe?p,per},

(x,p){y,q) = {x, p+ q) if y = $~1(x) (and undefined otherwise) and (x, p)~x =

0;\x), -P).
Using Lemma 2.3 it is easy to check that G is indeed a groupoid with this

multiplication and inverse operation. (For definitions see [3].) We can make it a measured
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groupoid by defining the measure v on G by:

I fdv=\
JG ->X

for a Borel function / on G.
We will denote by R the principal groupoid associated with G; i.e. R = {(x, v): y =

fi~l(x), peF, x efp). Thus R is a measured equivalence relation (see [2]).
Let N be M D Z(M0)'. Then, for f e A, a,(N) = N. Hence Lemma 2.1 can be applied to

the algebra N (in place of M) to get projections Qp e Z(N0) (where No = N D Mo =
o)') such that

Qp = sup{ww* : M is a partial isometry in Np = N C\MP}.

In fact we have the following result.

LEMMA 2.4. Let {Qp} be as above.

(1) Qp is the largest subprojection of f_p, in Z(M0~), such that for every Q =£ Qp,
Q s Z(M0) we have PP(Q) = Q.

(2) For every non-zero projection F^l-Qp, FeZ(M0), there is a non zero
projection F'^F in Z(M0) such that PP(F')F' = 0.

(3) QP = Q-P^fpf-P.
(4) QPQq^QP+q-
(5) ForTeMp, QPT = TQP.
(6) QpMp = Mp

Proof. By applying Lemma 2.2(2) to N we can write Qp as a sum E umu%,, where

um e Mp (~)Z(M0)'. Now, for a partial isometry w e QPMP we have w = ww*w =
E umu*mw e Z(M0)' (as um e Z(M0)' and u£w e Mo). Hence weNp and, since A/p is
generated by partial isometries, QPMP « Np. Since Np « QPMP by the way Qp was defined,
Np = QpMp. We have QpMpGp = 2PMP = Np = (7V_P)* = (G-pM_p)* = MpQ_p. Hence
MpQ_p(l-Qp) = 0 and, thus, Q_p(l - Qp)=f-pQ-p{l - GP) = 0. By symmetry g p =
2 _ p ^ / p / _ p . Therefore, epMp = Mpgp fo rpeT. Hence PP(Qp)^Qp. By applying /3_p

we get g p «/3_P(QP) and, since this holds for all peV, Qp = Q_p «)3P(G_P) = )3P(GP).
Hence QP = PP(QP). For GeZ(iW0), G « Q P we have, /3p(G) = E «P>mG<», =
E (wP.«Gp)Gu;,« = G S up>mGp<» = G)8p(Gp) = QQP = G-

To complete the proof of part (1) suppose that Q' is a projection in Z(M0) such that
PP(Q) = Q f°r every Q^Q'. Then, for every Q in Z(M0) and m 3= 0, we have

Up.mQ'QUp'.m = Mp,m<mj8p(GG') = «p,m<mGG'-

H e n c e «p.mG'G = up,mu*p,mQQ'uPim = GG'«p,m-

Thus Q'upme Z(M0)' for every m 5= 0. But then G'Mp c Â p and G' ^ QP- This completes
the proof of (1). To prove (2), fix a non-zero projection F s = l - G p in Z(M0). If
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F(l- /_p)=£0 then, letting F ' = F(1- /_ P ) we have j8p(F') = O and we are done. So
assume F ^/_p. By the maximality property (1) of Qp there is a projection F" =£ F such
that pp(F")*F". Now either F ' = F" - j8p(F")F" or F ' = P;\pp(F") - /SP(F")F") will do.
This proves (2).

(3) was already proved above and (4) follows from NpNqc.Np+q. For (5), let T
be in Mp\ then TQpeZ(M0)' and thus TQP = QPTQP. Also T*Qp = QpT*Qp, since
GP = g_p. Hence 7Qp = QPTQP = (Gpr*<2p)* = (T*gp)* = QPT. •

LEMMA 2.5. Assume that Z(M) (1MO = CI.
(1) For every p,q e F, f-pPq(Qp) ^ Qp.
(2) For every peF either QP=I or Qp = 0.
(3) N = {/? e T : Qp = /} is a subgroup of F.

Proof. Let Q be a subprojection, in Z(M0), of f-ppq(Qp). Then

0 = Gi8,(fip) =UQUQP) = P,W-«(Q))MQP) = P«(P-,(Q)QP)-
Write F = P-q{Q)Qp; then F ^ GP « / - , and 0 = &(F). We have j8p(G) = ft,(0,(F)) =
PpPq{f-qF) = PP+q(f-qF) = Pp+q(f_qf_pF) = Pq(flp{f_qF)) = /3,(/_pF), as /_,F « Qp.
Hence PP(Q) = pq{f.pF) = /8,(F) = g. Since G is arbitrary in Z(il^,), f.pp9(Qp) ^ Qp.
This proves (1). To prove (2) first note that, for every p e F,

Hence if Qp±0, \J Pq{Qp) = I and, from (1), f-p^Qp. Hence if 0 P *O, then
q

Qp =fp =/_p. Now write F = 1 — _£. Then, for q € F, we have

=fqfip(Qpfip(F)) =fqPP(

Hence if F^O, then \J fiq(F) = I and £ = 0 . Therefore if Qp^0, then F = 0; i.e.

Part (3) follows from the fact that, forp,q eT, Qp = <2_p and Qp+q2= QpQq. •

Combining Lemma 2.5 with Lemma 2.4 we see that M n Z(M0)' is generated by
U{Mp : p e N} where N = {p e F : Qp = / } .

As was mentioned above, we assume that there is a separating and cyclic vector
p0 e H and that ,

( O^-OPO, PO) = <*A>, Po> (x e M, t e yt).
It follows that for t eA, W,xpo= a,{x)p0 defines a unitary operator on H and t-* W, is a
homomorphism, continuous in the strong topology. Also note that W,xW* = at(x) for
xeM.

Let W, = £ (t, p)Epbe its spectral decomposition. Then it is easy to check that
per

Epxp0= ep(x)p0, per, xeM.
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Now, let N be as above and write, for y e T/N,

Ep.

Then {FY}Yer/N is an orthogonal family of projections with sum /. Let

U,= 2 (s,y)Fr, se{TlN).

For s e T/N, p,q e T we have

UsxU*yp0=Usx(s, a(q))ypo= (s, x(q))(s, n(p + q))xypo= (s, n(p))xyp0

for x € Mp, y e Mq (where JT is the quotient map T—» F/Af). Thus UsxU* = (s, jr(p))x for
every s e (T/N)\ p eT. In particular U,MPU* c M , 5 e (r/JV)*, p e F. Hence £/,Aft/JT £
Af and we write * , \

This defines a a-weakly continuous homomorphism d of (r/N)' into Aut(Af). Also
Usxp0 = UsxU*p0 = 6s(x)p0 and, if we write 0y(x) = f(rwj (y, s)5s(x) ds (where di is the
Haar measure), we get FYxp0 - <t>Y(x)p0 (x eM, y e T/N).

The image of <f>0 is the fixed point algebra of 6; i.e. 0O(M) = Ms = M C\ {Us}'. Hence
0o is an expectation onto M D Z(M0)'.

LEMMA 2.6.

(1) ForpeT, ye T/N,

fO ifn(p)±y

(2) <j>n{p)(M) is spanned, as a a-weakly closed subspace, by U{M, :lep+N}.

Proof. For (1) simply observe that (0y ° ep)(x)p0 = FYEpxp0 = £pxp0 if n(p) = y and
is 0 otherwise. For (2) note that M is spanned, as a a-weakly closed subspace, by
U{Mq : q e T } ; t h u s <t>»(p){M) i s s p a n n e d b y \J{<t>n(p)(Mq) : q e T } = \J{Mg : q e p + N } .

•
LEMMA 2.7. Fix p eT and a partial isometry V e (f>Y(M), where y- n(p). Then, for

every projection F e Z(M0), we have

VFV* = W*PP(F).

Proof. Note that PP(F) is the projection onto [MPF(H)] and for every q ep + N,
f}q(F) = Pp(F); hence &(F)= V [MqF{H)\ = [(j>Jl(p){M)F{H)), since <^(p)(M) is

qep+N

spanned by U{Mq : q ep + N}. As [VF(H)]^[<t>Jl(p)(M)F(H)] = [p

W*PP(F). Also [W*MPF(H)] = [VFV*Mp(H)] (as F e Z(M0) and F*MpeM n Z(M0)')-
Hence W*/3P(F) = VFV*. •
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3. The "matrix" representation. We will assume throughout the rest of the paper
that Z(M) n Mo = C/.

Recall that (X, n) is a locally compact complete separable metric space such that H is
the direct integral of Hilbert spaces {H(x)} over (X, fi) and Z(M0) is the algebra of
diagonalizable operators relative to this decomposition.

For every (x, y) e R (the measured equivalence relation defined above) there is some
p e F such that y = $p

l(x). We have p + N = {p + q : q e N} = {/ e F : $7\x) = y}.
Hence this defines a Borel map d : R^T/N that is a 1-cocycle; i.e. for almost every
(x,y,z)eRi2K

d(x, y) + d(y, z) = d(x, z).

(See [2] for cocycles on an equivalence relation.)

LEMMA 3.1. Fix p e F and a partial isometry V e <f)Y(M), y = Jt(p). Then, for almost
every x e X, there is a partial isometry V(x, fip(x)) from H(x) into H(fip(x)) such that

(V£)($p(x)) = D(x, $p(x))V(x, $p(x))£(x),

where D(x, $p(x)) = yfj^J (*)•
Proof. Let {§,} a countable set in H that spans H. Fix § e H and a projection F in

Z(M0). We have

f \\D-1(x,$p(x))(V£)0p{x))\\2dtix)= f

= f
Since this holds for every Borel subset FcX, \\D~\x, $P(x))(V^)0p(x)\\ =
\\(VV)(x)£(x)\\ *.e. on X.

(Here V*V = J V*V(j:)d^(A:) is the decomposition of V*V.) For every i there is a
null set Ni c Z such that

\\D-\x, $p{x)){V&)0p(x))\\ =

for every x $ Nj. Let N' = UA/,. The above holds for every x $ N' and every i. Since
{£,(*)} spans H(x) for almost every x, the map

can be extended to a partial isometry V(x, Pp(x)) from H(x) (with initial projection
V)(x)) into H(Pp(x)) (with final projection VV*(/3p(x))). •
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For an arbitrary T e </>Y(M) (y = Ji(p)) let T = V \T\ be its polar decomposition and
let

T(x, $p(x)) = D(x, $p(x))V(x, $p(x)) \T\ (x),

where |T| = J® |T| (x)dn{x) (as T*T e <po(M) = MD Z(M0)') and D and V are as in the
last lemma. Then for a.e.x in X T(x, $p(x)) is a bounded operator from H(x) into
H(PP(x)) such that for § e H,

T(x, $p(x)Mx) = D(x, $p(x))V(x, $p(x)) \T\ (*)§(*)

= D(x, $p(x))V(x, $P(x))(\T\ §)(*) = (V |T| §)(&(*)) = ( r iX /^W)

for almost every x.
Clearly r(ac, $p(x)) = T(x, $q(x)) if p - q e N; so that we get a "matrix" repre-

sentation of T e <t>Y{M) over R. For an arbitrary T e M we define

r (x , .y) = <PY(T)(X' y)> where y = d(x, y).

For r e <t>Y(M) we have || r(x, y)\\ « || T|| D(A:, y) and for r e M,

\\T(x, y)\\ ^ \\<PY(T)\\ D(x, y)« | |r | | D(x, y).

LEMMA 3.2. Let "U^M be an M0-bimodule. Then for TeM, T€°U if and only if
</)Y(T)e % for all y e T/N.

Proof. Assume T ell. Let V be a partial isometry in (f>Y(M) satisfying VZ(M0)V* c
Mo. Since <j>0(M) = M (1 Z(M0)' and Z(M0) is an abelian von Neumann algebra, the
results of [1, Theorem 6.2.2] show that $0(V*r) lies in the a-weakly closed convex hull
of {UV*TU* : U is a unitary operator in Z(M0)}. Hence V<j>0(V*T) lies in the a-weakly
closed convex hull of {(VUV*)TU*: U is a unitary operator in Z(M0)} (since

Since 0y(Af) is generated by {e p (M) :pe^ '(y)} we have 0y(Af) =

( V ^)0y(M) and we can find a countable set of partial isometries {Vk}c((>Y(M)
\pejr-'(y) /

such that HVkVt = V{fp:peJt~1(y)} and VkeMp for some p e w"'(y). (See Lemma
2.2(2).)

For each such Vk we have Vk<t>0(V*kT) e <tt. Also note that Vfc0o(V*r) = VkVt4>Y(T)
(since it holds for every T e U{<j>x(M): X e T/N} and <p0, <j)Y are a-weakly continuous).
Hence <t>Y(T) = E VkV*k<pY(T) = E V ^ 0 ( ^ r ) e <U. Since T is a a-weak limit of finite
linear combinations of {4>Y{T): yeV/N} (using an approximate identity on (T/N)~), it
follows that T lies in °U. •

LEMMA 3.3. Let F and G be projections in M'o and write F = J® F(x) dn(x),
G = $ G(x) dn(x). Let <U(F, G) = {T eM : (/ - G)TF = 0}. Then %F, G) is an Mo-
bimodule and %F, G) = {TeM:(l- G(y))T(x, y)F(x) = 0 for almost all (x,y)eR).
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Proof. ^(F, G) is clearly a a-weakly closed M0-bimodule. Fix § e H;
I = J ® f (*) ̂ ( * ) - T h e n for r e M, y e r/JV and p e ^"'(y),

((i-G)0y(r)F|)(/8l,(x)) = ( i - -

As | runs over a countable-set {§,} that spans H, {£,(*)} would span H(x) and the
equality above would hold for almost every xeX. Hence <t>y{T) e %(F, G) for all y e TIN
if and only if (1 - G{y))T(x, y)F(x) = 0 for almost every (x, y) e R. Lemma 3.2, applied
to ^l(F, G), completes the proof. •

THEOREM 3.4. Let °U be a o-weakly closed M0-bimodule of M. Then we can find
a-weakly closed subspaces %(*, y), (x, y) e R, of M(x, y) such that M0{y)°U{x, y)M0(x) c
°U(x, y) for almost every (x, y)eR and

aU={TeM: T(x, y) e °U(x, y) for almost every (x, y) eR}.

Proof. Since M has a separating vector, all a-weakly closed, linear subspaces of M
are reflexive by Theorem 2.3 of [9]. Hence

aU = {TeM:T%e [<H§] for all § e H}.
Since °U is an M0-bimodule, the projection onto [°Ut;] commutes with Mo and

"U = {T€M: T[M0^] c [<tt|] for all f} .

So if F(^) and G(^) are the projections onto [%£] and [Mo£] respectively, then F( | ) and
G(£) are in MQ and

In fact

where i/0 is a dense countable set in H. Hence

«U = {T e M : (/ - G(|)(y))T(*, y)F(|)(^) = 0

for %eHo and almost every (x, y) e R}. Set

<H(x, y) = {5 e M(x, y): (1 - G(§)(y))SF(§)(*) = 0 for all § e tf0}.

Then we have

<K = { r e M : T(x, y) e %(*, y) for almost every (x, y) e R}.

It is easy to check that M0(y)°U(x, y)M0(x) c °U(x, y). •

LEMMA 3.5. Let Hi (i = 1, 2) 6e a Hilbert space, M, c B(H() be a o-finite factor,
v : Hx^> H2 be a partial isometry such that vM2v* c A/j and \*Mrv c M2. Lef °ll c M2\MX be
a o-weakly closed subspace such that M2°llM1 c °ti. Then either °U = {0} or °U = M2vMj.

Proof. Let u be a maximal partial isometry in °U such that u*u =£ v*v and uu* =s w*.
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(w* - uu*)%(v*v - u*u) = 0.

Hence, since °U = M2
SUM1,

M2(w* - uu*)M2
<UMl(v*\ - u*u)M1 = 0.

Since M, (i = 1, 2) is a factor this implies that either °U, = M2°\LM^ = 0 or at least one of the
two projections, v*v-u*u or vv*-uu*, is zero. Suppose v*v = u*u. Then v = w*v =
vu*u e M2u s <%; and °ll = M2\Mi. Similarly, if w* = uu*, then % = M2\MX. •

COROLLARY 3.6 If M f) Z(M0)' c Mo, then for every a-weakly closed M0-bimodule 'U
of M and almost every (x, y) e R, either °ll(x, y) — 0 or °U(x, y) = M(x, y); i.e. there is a
subset Qc,R such that

*U = {T e M : T(x, y) = 0 if (x, y) $ Q}.

In particular, this is the case if a is inner.

Proof. Since M n Z(M0)' c Mo, R = G and M{x, y) = M0(y)up(x, y)M0(x), where
y = fip(x) and up satisfies MOUPMQ = Mp. Now apply Lemma 3.5. •

COROLLARY 3.7. If M 0 Z(M0)' c Mo and °U is a o-weakly closed M0-bimodule of M,
then there are projections {ep}per in Z(MQ) such that °ll is the a-weakly closed subspace
spanned by U{epMp :peT}.

Suppose M (1 Z(M0)'c Mo. Then we see that there is a bijective correspondence
between the Borel subsets of R (modulu sets of measure zero) and the a-weakly closed
A/0-bimodules of M. Write

%Q) = {TeM: T{x, y) = 0 if (x, y) * Q}.

Then one can easily show that °ll(Q) is an algebra if and only if Q ° Q c Q (where
(x, y) • (y, z) = (x, z) is the multiplication in R); °U{Q) is self adjoint if and only if
Q = Q'1 (where (x, y)~l = (y, x)); and %«2.) c= %Q2) if and only if Q, s Q2.

For the case where Mo is a Cartan subalgebra of M similar results were proved
in [13].

Recall that we assume Z(M) n Mo = C/. We have the following result.

LEMMA 3.8. If M H Z(M0)' c Mo, then for T eM, teA, we have

al(T)(x,y)=(p,t)T(x,y)

for almost every (x, y)e R (= G) (where y = $p(x)).

Proof. a,{T){x, y) = ep(a,(T))(x, fax)) = (p, t)ep(T)(x, fax)) = (p, t) T(x, y).
(Here ep = $„). •

PROPOSITION 3.9. a is inner if and only if G = R and the map c : R—> T defined by
c(x, y) =p, where fip(x) =y, is a coboundary; i.e. there is a Borel map g : X—* F such that
c(x, y) = g(y) ~ g(x) for almost every (x, y) e R.
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Proof. If a is inner, then G = R as MDZ(M0)' cM0; also we have then a group
t—* U, of unitary operators in Z(M0) such that a,(T) = U,TU* (T e M, t eA). There is a
function g : X—»F such that for almost every x eX, (g(x), t) = U,(x) (identify U, with a
Borel function on X). For T € ep(M) we have, for almost every x eX,

(p, t)T(x, fax)) = a,(T)(x, fax)) = U,(fax))T{x, fax))u:(x)

, fax)).
HenCe {p,t)=g{fax))-g{x).

For the other direction, suppose such g exists and write U,(x) = {g(x), t); then this
defines a group of unitary operators in Z(M0) satisfying a,(T) = U,TU*. •

4. M-Reflexivity. For a a-weakly closed subspace °U of M we let J£(°U) =
{(P, Q):P,Q are projections in M such that P°UQ = 0} and

={TeM: PTQ = 0 for every (P, g ) e

We say that °U is M-reflexive (see [7] and [8]) if

Now write

.%(%) = {(P, 2 ) : P,G are projections in M n Mi such that P°UQ = 0}

and

= {TeM: PTQ = 0 for every (P, Q) e %(°U)}.

LEMMA 4.1. Let °U.be a a-weakly closed M0-bimodule in M. Then °U is reflexive if and
only if

Proof. For a projection P e M we write

R(P) = sup{UPU* : U 6 Mo is a unitary operator}.

Then K(P) is a projection in M n M'o. If P%Q = 0 (P,Q are projections in M) then for all
unitary operators U,V in Mo, UPV*°UVQV* c UP°UQV* = 0 (as % is an M0-bimodule).
Hence (rt(P), /J(Q)) e ̂ (<tt) whenever (P, Q)ei?(%). In fact ^ 0 (^ ) =
{(/?(P), /?(G)): (P> Q) e ^?(<tt)}. Also, if P ,g are projections in M and (fl(P), /?(Q)) e
2&<U) then (P, G) e 2B(<U) (as P « /?(P), Q «/?(Q)).

If T £&£(%, then r e ̂ 4 ) , since ^ ( l ) g ^ ( * ) . If T e<f&i%, then for
every (P, Q) e #(%), (K(P), /?(Q)) e ̂ , W and, therefore, H(P)rU(Q) = 0 P*
Q « /?(G), P r g = 0 and T e ^^ (%) . Therefore yiP(<tt) = S^<tt) .

LEMMA 4.2. For y e T/N and a projection E e Z(M0), E<t>Y(M) is M-reflexive.

Proof. For y e T/N and a projection E e Z(M0), we have

%lE<t>y(M)) = {(P, Q) : P,G 6 M n Mi, PE[<j,r(M)Q(H)] = 0}.
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Since [<t>y(M)Q(H)] = PP(Q)(H) for every p e n~\y),

= {(/>, Q): P,e e M n Mi EPpp(Q) = 0}

(p e n~\y) is now fixed). If T e 5^(£0 y (M)) , then PTQ = 0 whenever EPPP(Q) = 0.
Hence, for A e T/N, Pfa(T)Q = 0 whenever EPpp(Q) = 0. (Note that y%o(E<pY(M)) is a
CT-weakly closed M0-bimodule and, thus, tf>A(5^(E0y(A/))) c if^E^M))). Note that
<Px(T)Q(H) «= |8,(G)(/0 and fc(r)(/ - Q)(//) c /8,(1 - Q)(/f) for every 9 e ar^A). Fix
such 9. Then

Hence PPq(Q)<pk(T) = 0 whenever PPp(Q)E = 0. Since (1 - E)Pp(I)E = 0 we have
(1 - E)fgcl>k(T) = 0; i.e. (1 - E)<f>k{T) = 0. Suppose y =£ A and write

F = sup{£)(l - Pp-q{Q)) : g is a projection in Z(M0)}.

Then, by Lemma 2.4(2), if F =£1, there is a non zero projection F' «= 1 — F in Z(M0) such
that Pp-q(F')F' = 0. But then F ' = F'(l - PP-q{F'))« ^- Hence F = /. Since for every
0 e Z(Jlfo), ^ ( 1 " PP{Q))Pq{Q) = 0 we have,

But (1 - PP(Q))Pq(Q) = Pq(Q(l - PP-q(Q))); hence

Therefore T = E<pY(T) e E(f>Y(M). •

COROLLARY 4.3. Suppose Mr\Z(M0)' c Mo and y is an automorphism of M with
y{a) = aforae Z(M0). Then for every M0-bimodule % y(°U) = <%.

Hence every von Neumann subalgebra M 3B 2 Mo is an image of a faithful normal
expectation from M onto B.

Proof. Let y be an automorphism as above and note that for every pair of
projections P,Q in Z(M0) and peT, Py(Mp)Q = 0 if and only if PMpQ = 0. The
M-reflexivity of Mp now implies that y(Mp) = Mp. Corollary 3.7 shows that y(°U) = °U for
every M0-bimodule °U. The last statement of the corollary follows from Takesaki's
Theorem [18] applied to w{x) = (xp0, p0) since a|"(a) = a for a e Z(M0)

(as w(ax) = (axpo, po) = (eo(ax)po, p0) = (aeo(x)po, p0)

o, Po) = (xap0, p0), ae Z(M0), xeM). •

THEOREM 4.4. The following statements are equivalent.
(1) a is inner.
(2) For every non-zero projection F e Z(M0) there is a non-zero projection

Q e Z(M0), such that for every O^peT, we have QPP(Q) = 0.
(3) M fl Z(M0)' c Mo and every o-weakly closed M0-bimodule is M-reflexive.
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Proof. The equivalence of (1) and (2) can be derived from [4, Theorem l.l(iii)] or
[6, Theorem 4.9]. One can also use Proposition 3.9 (applied to FMF instead of M) and
the fact that a cocycle is a coboundary if and only if its only essential value is {0}. (See
[15, Theorem 3.9(4)].) If a is inner, then clearly M n Z{M0)' c Mo. We will now show
that if a is inner and °U is a a-weakly closed M0-bimodule then °U. is Af-reflexive. Using
Corollary 3.7 we can see that °U is the a-weakly closed subspace spanned by
U{epep{M):peT} (here N = {0}) for some projections {ep}per in Z(Af0). For every
projection Q in Z(M0) that satisfies QPp(Q) = 0 for every O ^ p e F we have
Pg(Q)PP(Q) = 0 if q*P- Fix qeT and write G = /3,(G). Then for every p*q,
GepPp(Q) = 0 and, thus, ((1 - eq)G,Q) e «%(%). » T e <f%i%, then

(l-eg)Pq(Q)TQ=0

for every q e F. Hence for every q e F, (1 - eq)pq(Q)eq(T)Q = 0. Since pq(Q)sq(T)Q =
eq{T)Q, we have

Now (2) implies that I = \/{Q e Z(M0): QPP(Q) = 0 for every p ^ O } . Therefore,
eq(T) e eqeq(M) and T e <tt.

We now turn to the proof that (3)=>(2). For this fix 0 # F in Z(M0) and let
aU = {TeFMF:£0(T) = 0}. This is a a-weakly closed M0-bimodule and thus is Af-
reflexive (assuming statement (3)).

Since M f l M j c Z(M0) ( a s M O M j c M n Z(M0)' c Mo), we have

= {(P, L):P,L are projections in Z(M0) such that P^L = 0}

= {(P, L):P,Le Z(M0), Fpp(F)Ppp(L) = 0 for every p # 0}.

Since F <£ y%i%, there is some (P, L) e i?o(^) such that FPL^O. Write Q = PFL.
Then for p # 0, /3P(Q) «s PP(L)« ft,(F)(l - FP) and 0/3p(Q) = 0. This proves (2). •

5. Isomorphisms. We assume now that M and B are factors, Ax and A2 are
compact abelian groups, a and rj are representations of >!, and A2, respectively, as
"-automorphism groups on M and B respectively. Write F, = A, and define Mp (p e F^
and Bo (q e F2) as in Section 1.

We will assume that MnZ(M0) ' = M0 and B n Z(B0)'= Bo. Also let 2 , c F , be a
positive semigroup for i = 1,2; i.e. Z . + ^ c S , and 2, D (-2,) = {0}. We write M"^)
and 5I)(22) for the associated analytic subalgebras of M and 5 respectively; i.e. M"(S1) is
the a-weakly closed subspace spanned by U {Mp :p eZt} and Bt)(22) is the a-weakly
closed subspace spanned by U {Bq : q e 22}-

Also, let i ? [C^ ,xJ f i and {Pp:p eFj} be the equivalence relation and the maps
associated with (M, a) and fi2e^x-^ and {Pq: q e F2} be the ones associated with
(B, IJ). Let

P2=
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and note that
M"^) = {TeM: supp T c Px),

B"(22) = {T eB: supp TcP2},

where supp T = {(x, y) e /?,: T(x, y) =£ 0} is defined up to a set of measure zero (and so is
the inclusion supp T cP/ above).

If 2, totally orders T, (i.e. 2,- U (-2,) = T,), then />• U P"1 = fi, (up to a set of measure
zero), where (x, y)'1 = (y, x).

The main result of this section is the following theorem.

THEOREM 5.1. Let M"^) and Br>{L2) be as above, and let ip be an algebraic
isomorphism from Ma(£x) onto B*^) such that, for a e Mo, we have y>(a)* = il>(a*).
Then

(1) tp(M0) = B0. (Write y:A",—*X2 for the invertible Borel map that implements

(2) Br)(22) is the o-weakly closed subspace spanned by U{ip(Mp) : p e 2 J .
(3) y x y{P\) = p2 (where (y x y)(x, y) = (y(x), y(y))) and, if 2, totally orders T,,

i = l,2,then(yxy)(Rl) = R2.

When V> is the identity map we get the following result.

COROLLARY 5.2. If M = B, My(20 = iW(22) and 2, totally orders T, (i = 1, 2), tfiew
/?! = R2 and Px = P2 (although the maps {$1} and {$1} might be different). Hence the
equivalence relation R and the partial order P associated with an analytic subalgebra
(satisfying M D Z(M0)' = Mo) is unique.

REMARK. In special cases more can be said about an isomorphism tp as in the
theorem. For the case when Mo and Bo are Cartan subalgebras see [13] and for the case
where M 0 ^ , ) and fi')(22) are analytic crossed products with T, = Z and 2, = Z+, see [11]
and [12].

For the proof of the theorem we need a few lemmas. In the discussion and lemmas
that follow we assume that the hypothesis of the theorem holds.

LEMMA 5.3 ij)(M0) = B0.

Proof. For a e Mo, a* is in Mo. Hence ty(a*) = ip(a)* lies in Bn(I.2) D fiI)(22)* = Bo,
so that ip(MQ) c Bo.

Now, if r eB o , then TeZ(BQ)' c V(Z(M0))'. Hence y-\T)eM nZ(M0)'= Mo.
Hence ^(Mo) = Bo. •

Let \1>(MP) be the a-weak closure of ip(Mp) ^ B11^) f o r p e T . It is a a-weakly
closed B0-bimodule of B and, thus, there is a Borel set Cp c P2 such that ip(Mp) = %(CP),
where %Q) = {TeM: supp T c Q).

For an operator T we write rp (T) for the range projection of T. Using the
definition of J5p in Section 2 one can see that for a projection F e Z(A/0), /J (F) =

{ ( T F ) r M }
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LEMMA 5.4. For p e T , and a projection F in Z(M0) we have

V O W ) = V{rp(Si/,(F)) : 5 e <U(CP)} e Z(B0).

Proof. First note that

: 5 e <ft(Cp)} = V {rp(ip(TF)) :TeMp}

since °U,(CP) = ip(Mp). Now, for T e Mp and F e Z(M0) write g = rp(rF). Let L be a
projection in Z(M0). Then, by Lemma 2.7 and Lemma 2.1 (3), LT = Tfi_p(L) (write
T = \T\ V* and use LV* = V*fi_p(L) as V* e M_p). Hence, for a unitary operator U in
Z(M0), we have

U*T = Tp_p(U*).
Thus,

UQU*TF = UQTp_p(U*)F = UQTFp_p(U*) = UTFp_p(U*)

= UTp_p(U*)F = UU*TF = TF,

so that (/£>£/* 2*0 for every unitary UeZ(M0); hence QeMnZ(M 0 ) ' = Mo.
Since V> restricted to Mo, is a *-isomorphism of Mo onto Z?o (Lemma 5.3) and

rp(TF) e Mo for every T e Mp, we have

V(ft,(F)) = V(^{rp(TF) : T e Mp}) = V{^rp(TF)): T e Mp).

Notice that, for T eMp,

V(rp(TF))tl>(TF) = y(rp{TF)TF) = ^(TF);

hence i/»(rp(rF))^rp(^(rF)). Also

y>-l(rp(y(TF))TF = ^-1(rp(^(TF))V(rF)) = xp-\y(TF)) = TF;

hence

^-1(rp(V(TF))rp(rF) = rp(rF) and xl>(rp(TF)) ^rp(y(TF)).

Therefore \p(rp(TF)) = rp(y>(TF)) and we have,

V(/3P)(F) = V{rp{y(TF): T e Mp} = V{rp(Sy(F)): 5 e °U{CP)}. •

For a map 0 : Xi—*Xj we write

LEMMA 5.5. Suppose L is a Borel subset of X2 and A e 22 satisfies

n (x2 x£)c cp.
Then

y : -X\—»• ^ 2 implements \j> (viewed as an isomorphism of Z(M0) — L°°(Xi, ju^ onto
Z(B0)~U°(X2,ii2)).
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Proof. Let L be the projection in Z(B0) associated with L. For TeBx, TL is
supported on g(j8f) n (^2 x £); hence on Cp (1 (X2 x L). Thus TL e ^(C^L. We have,
using Lemma 5.4,

P2MF)L) = V{rp(Txl>(F)L :TeBx}^ V{rp(Sy(F)L) : S e

= xp(Pl
p(Fxl>-\L))) = V o # o xp-\y,(F)L)

for every projection F in Z(Af0). Thus

n (z2 x£ )c g ( y o pi c y-i) n (x2 x £).

LEMMA 5.6. Cp =g(y <> jS^ y'1)-

Proof. For A e 22 let LA be the largest subprojection of %l>(f_p)f}\~\l) in Z(J50) such
that g(fij) D ( ^ x A ) ^ Cp, where LA is the associated Borel subset of X2. For Aj =£ A2 let
Lo = LXlLh; then, by Lemma 5.5,

sG&I.) n (X2 x £0) s
and

But this implies that Lo = 0, as g($\) C\ g($U is empty. Hence g(^l) n (X2 x LA) =
Cp D (*2 x LA) for A e 22. For F e Z(M0) we now have,

Pl(xl>(F)L) = V{rp(7ty(F)L): T e Bx] = V{rp(Sy(F)L : 5 e %CP)}

Hence

cp n (z2 x 4)=g(fi) n (x2 x 4 )= g ( y o $p o y-i) n (^2 x 4).

Since K{LA : A e 22} = V(/-P) and <tt(Cp)V(/_P) = <tt(Cp), Cp = g(y °$P°Y~1)-

LEMMA 5.7. We have P2 = (J{CP : P e 2 J = y x y(Pi) and

f/ie closure is in the o-weak topology.

Proof. Let % = {J{%l>{Mp) :p e 2,}. Since °U is a a-weakly closed fi0-bimodule of B,
there is a set C c P 2 such that aU = (U{C). Since t/;(Mp)c% for p e T , , CpcC; hence

). But also «cU{<tt(C/ , ) :peZ,}c<te(UCp). Hence <tt =

. Write (3 = ^ \ U C P and assume v2((2)>0. (v2 is a measure on R2). Then
p p

there is some O^TeB and Ae22 such that TeBA and supp Tc.Q. Hence y
Now Lemma 5.6, applied to ty~l, yields
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Hence supp xj)~l(T) c:g(y~1 ° $1° y). Therefore, there is some q eZj and a projection
Z e Z(MQ) such that 0 ^ Zy-i(Ty G M ?

Hence 0¥=%l)(Z\p~\T)) = i{)(Z)T and supp V>(Z)Tc Q n C, = 0. This contradiction
shows that P2 = [J{CP : p e^} and completes the proof of the lemma. •

To complete the proof of Theorem 5.1 just note that if PiUP]~l = Ri and
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