COORDINATES FOR ANALYTIC OPERATOR ALGEBRAS
by BARUCH SOLEL

(Received 10 August, 1987)

1. Introduction. Let M be a o-finite von Neumann algebra and o = {a,},.4 be a
representation of a compact abelian group A as *-automorphisms of M. Let I be the dual
group of A and suppose that I' is totally ordered with a positive semigroup Z < T'. The
analytic algebra associated with a and X is

M*X)={aeM:sp,(a) cX},

where sp,(a) is Arveson’s spectrum. These algebras were studied (also for A not
necessarily compact) by several authors starting with Loebl and Muhly [10].
In the case where the fixed point algebra

My={aeM: a,(a)=a for every tin A},

is a Cartan subalgebra of M it was shown in [13] that one can construct a “system of
coordinates” for M and use it to study the o-weakly closed M,-bimodules of M. Using this
analysis one can identify the o-weakly closed ideals of M*(X), the algebras that lie
between the algebra M *(Z) and M, and other M “(Z)-bimodules. These results were used
to study isomorphisms between two such algebras.

In the present paper we do not assume that M, is a Cartan subalgebra or even abelian.
We show (Section 2) that one can construct a ‘“‘system of coordinates” for M (namely,
represent each operator T in M as a “‘generalized matrix” {T(x, y) : (x, y) € R}, where R
is an equivalence relation on some measure space (X, p)).

We use this representation to characterize the o-weakly closed My-bimodules of M. If
M N Z(My)' = M, (where Z(M,) is the center of M,), then it is shown that for every such
bimodule % there is a Borel subset O < R such that

U={TeM:T(x,y)=0 for (x, y) not in Q}.

In Section 4 we use this analysis to study M-reflexivity of My-bimodules. Among other
things we show that « is inner if and only if M N Z(M,)' = M, and every o-weakly closed
M,-bimodule is M-reflexive.

Section 5 deals with isomorphisms @ : M*(Z,)— B"(Z,). It is proved (Theorem 5.1)
that if M N Z(M,)' = M, and BN Z(B,)' = B, and v is an algebraic isomorphism such that
y(a*) = yp(a)* for a € M,, then there is an isomorphism of the equivalence relation R,
(associated with (M, a)) onto R, (associated with (B, 7)) that carries P, onto P,. Here P,
and P, are the support sets of M %(Z,) and B"(Z,); namely,

MYZ)={TeM:T(x,y)=0 for (x, y) not in P},
B"(Z,)={T € B:T(x,y)=0for (x, y) not in P,}.
This result is related to the results of [13, Section 5}, [11] and [12].
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2. Preliminaries. Let M be a o-finite von Neumann algebra acting on a Hilbert
space H and let « be a o-weakly continuous representation of a compact abelian group A
as *-automorphisms of M. Write I' for the dual of A. For each p € I we define a o-weakly
continuous linear map ¢,, on M, by

6@ = [ @)@ p) di e M),

where dt is the normalized Haar measure on A. Let M, be ¢,(M). Then it is clear that
M,={xeM:a(x)=(tp)x,teA} and M, is the fixed point algebra. For every p €T
define the projection

f» =sup{uu* : u is a partial isometry in M, }.

Then f_, =sup{u*u : u is a partial isometry in M,} as M_, = M,. The following result is
well known (see [17]).

Lemma 2.1. For every p,qe T,

(1) £, € Z(My) (the center of M,);
@) MM, cM,,,and M;=M_,;
(3) if x e M, and x = v |x| is its polar decomposition, then v e M, and |x| e M,.

We will need the following result.

LemMA 2.2. For every p €T there is a sequence of partial isometries {v, ,}_o with the
following properties. '
(1) vy vy m=0if m#*n;

-
() I vpmVpm=Fps
m=0
(3) foreachm=1, v, .V, < Vp _1Vp m—1;
oo oo
4 M, = EO VpmMo (i.e. each x € M, can be written as % v, ,x,,, where x,, € M,
m= m=0

and the sum converges in the o-weak operator topology);
(5) M,=Myv, oM, (i.e. M, is the o-weak closure of the subspace spanned by
{Au, B : A,B € My}).

Proof. The existence of the partial isometries {v, ,}.-o satisfying (1)—(4), was proved
in (16, Proposition 2.3 and Theorem 2.4] for the case I' = Z. The proof in the general case
is almost identical. For (5) simply note that for m=1, v} v, <V} v, and therefore
Vp.m = Uy mUp.0Vp,0Vp,mVp,m € MoV, oMo. [ ]

With the partial isometries {v,, ., : m =0, p €'} defined as above we can define maps
{B,}per 0N Mg by the formula

*
UpmTVp me

Ms

ﬁp(T) =

0

m
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We have the following results ([17, Lemma 2.4}).

LEMMA 2.3.
(1) B, is a well defined homomorphism from M, onto f,M that maps Z(M,) onto
£,Z(My).
(2) By, restricted to f_,M is a *-isomorphism of f_,M onto f,M that maps f_,Z(M,)
onto f,Z(M,);
(3) ﬁpﬂq(T) = ﬂp+q(f—qT) =ﬁ1ﬂp+q(T);
@) Bo(f) = BoBo(D) = By saD) = o fy v

Since M, is o-finite there is a faithful normal state w on M,. Define w on M by
wx)=w(eolx)) (xeM).
Then w is a faithful normal state on M, such that
wegp=w and weaq,=w (teA).
Considering the Gelfand—Naimark—Segal construction for w we may assume that M
has a separating and cyclic vector py € H such that
w(x) = (xpo, Po) = {&o(X)po, Po) (x e M).

As Z(M,) is an abelian von Neumann algebra on a separable Hilbert space H, there
is a locally compact complete separable metric measure space (X, u) such that H is
(unitarily equivalent to) the direct integral of Hilbert spaces {H(x)} over (X, u) and
Z(M,) is (unitarily equivalent to) the algebra of diagonalizable operators relative to this
decomposition [5, Theorem 14.2.1]. Also, Z(M,)' is the algebra of decomposable
operators.

For every p € I, B, defines a *-isomorphism from f_,Z(M,) onto f,Z(M,). There are
subsets {f, : p €T} of X such that x— x;(x) is the decomposition of f,. (Here xp is the
characteristic function of B = X.) Then B, induces a *-isomorphism, denoted also by §,,

from L°°(f_,,, ul f_p) onto L“(fp, 1 |f,)- Therefore there is an invertible Borel transfor-
mation S, from f_, onto f, such that, for g e L™(f_,, u |f,,), we have

B.(&)=8°B;'
and
@if)eB,~ulf, (pel).

We now define a groupoid G as follows.

G={(x,p):xeﬁ,,pel"},

x5, p)(y,q)=(x p+q) if y=B,'(x) (and undefined otherwise) and (x,p)~'=
(B;'(x), —p).

Using Lemma 2.3 it is easy to check that G is indeed a groupoid with this
multiplication and inverse operation. (For definitions see [3].) We can make it a measured
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groupoid by defining the measure v on G by:

Jrav=] (S £b.co) p))

for a Borel function f on G.
We will denote by R the principal groupoid associated with G; i.e. R={(x,y):y=
B; Yx), peT, xef,}. Thus R is a measured equivalence relation (see [2]).
Let N be M N Z(M,)'. Then, for t € A, a,(N) = N. Hence Lemma 2.1 can be applied to
the algebra N (in place of M) to get projections Q, € Z(N,) (where Ny=NNM,=
N N Z(M,)') such that

Q, =sup{uu* : u is a partial isometry in N, = NN M,}.
In fact we have the following resuit.
Lemma 2.4, Let {Q,} be as above.

(1) Q, is the largest subprojection of f_,, in Z(M,), such that for every Q<Q,,
Q € Z(M,) we have B,(Q)= Q.

(2) For every non-zero projection F<1—Q,, FeZ(M,), there is a non zero
projection F' <F in Z(M,) such that B,(F')F'=0.

3) @p=0Q-p=<ff-p

(4) Qqu = Qp+q'

(5) ForTeM,, Q,T=TQ,.

(6) O,M,=M,NZ(M,)'(=N,).

Proof. By applying Lemma 2.2(2) to N we can write Q, as a sum Y, u,u’, where
m=0

Un € M,NZ(M;)'. Now, for a partial isometry we Q,M, we have w=ww*w=
L tpmw € Z(Mo)' (as u,, € Z(My)' and u,w e M,). Hence weN, and, since M, is
generated by partial isometries, O, M, < N,,. Since N, < Q,M, by the way Q, was defined,
N,=Q,M,. We have Q,M,Q0,=0,M,=N,=(N_,)*=(Q_,M_,)*=M,0Q_,. Hence
M,Q_,(1-Q,)=0 and, thus, 0_,(1-Q,)=f,0_,(1-Q,)=0. By symmetry Q, =
Q_,<f,f-p- Therefore, Q,M, =M,Q, for p €. Hence B,(Q,)<(Q,. By applying f_,
we get O, <B_,(Q,) and, since this holds for all peT, Q,=0_,<B,(Q_,)=B,(Q,)
Hence Q,=B,(Q,). For QeZ(M,), Q<Q, we have, B,(Q)=Xv,,0v),=
5 (Upm0)QVhm = Q £ U nQ,Vpm = 0B,(Q,) = 00, = 0.

To complete the proof of part (1) suppose that Q' is a projection in Z(M,) such that
B,(Q) = Q for every Q < Q'. Then, for every Q in Z(M,) and m =0, we have

up,mQ'Qu;.m = up,mu:,mﬁp(QQ’) = up,mu:,mQQ'~

up,mQ,Q = up,mu:,mQQ'up,m = QQlup,m'

Thus Q'u,, ,, € Z(M,)’ for every m =0. But then Q'M, c N, and Q' < Q,. This completes
the proof of (1). To prove (2), fix a non-zero projection F<1-Q, in Z(M,). If

Hence
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F(1—f_,)#0 then, letting F'=F(1—f_,) we have B,(F')=0 and we are done. So
assume F<f_,. By the maximality property (1) of Q, there is a projection F"=<F such
that B,(F") # F". Now either F' = F" — B,(F")F" or F' = B;(B,(F") — B,(F")F") will do.
This proves (2).

(3) was already proved above and (4) follows from N,N,cN,.,. For (5), let T

be in M,; then TQ, € Z(M,)' and thus TQ,=Q,TQ,. Also T*Q,=Q,T*Q,, since
Q,=Q_,. Hence TQ, =0, TQ, =(Q,T*Q,)* =(T*Q,)*=Q,T. .

LeMMA 2.5. Assume that Z(M) N M, = CL

(1) For every p,q €T, f_,B,(Q,)<Q,.
(2) For every p €T either Q,=1o0r Q,=0.
3) N={pel':Q, =1} is a subgroup of T.

Proof. Let Q be a subprojection, in Z(M,), of f_,B,(Q,). Then

Q = QB,(Qp) = £,9B,(Q5) = B, (B-(2))B4(Qp) = B,(B-o(2)Dy)-

Write F = 8_,(2)Q,; then F<Q,<f_, and Q = B,(F). We have 8,(Q) = B,(B,(F)) =
BoBoL-oF) = Borolf-oF) = By f-af o F) = Bo(By(f-gF)) = Bf-,F), 85 f  F<Q,.
Hence B,(Q) = B,(f-,F)=B,(F)=Q. Since Q is arbitrary in Z(M,), f_,B,(Q,)<Q,.
This proves (1). To prove (2) first note that, for every p T,

q\e/r B,(Q,) € Z(My) N Z(M) = CL.

Hence if Q,#0, \/ B,(Q,)=! and, from (1), f.,<Q,. Hence if Q,#0, then
q
0, =f, =f-p. Now write F =1— f,. Then, for g €T, we have

FBa(F) = QuBo(F) = £,8,(QpB,(F)) = £,8,(B,(F))
= foBo+o(F) = By (B,(F)) = 0.

Hence if F#0, then \/ B,(F)=1I and f,=0. Therefore if Q,+#0, then F=0; i.e.
O, =fH=1 “

Part (3) follows from the fact that, for p,qel, Q,=Q_, and Q,.,,=Q,0,. [ |

Combining Lemma 2.5 with Lemma 2.4 we see that M N Z(M,)’ is generated by
U{M,:peN} where N={pel:Q,=1I}.

As was mentioned above, we assume that there is a separating and cyclic vector

€ H and that
Po (@(x)po, Po) = (xpo, Po)  (x €M, te A).

It follows that for t € A, Wxp, = a,(x)p, defines a unitary operator on H and t— W, is a
homomorphism, continuous in the strong topology. Also note that WxW} = a,(x) for
XeEM.

Let W,= ¥ (¢, p)E, be its spectral decomposition. Then it is easy to check that
pel

E,xpo= £,(x)po, perl, xeM.

https://doi.org/10.1017/50017089500007527 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500007527

36 BARUCH SOLEL

Now, let N be as above and write, for y e /N,

F, = ES E,.

p+N=y

Then {F,},r is an orthogonal family of projections with sum /. Let

= 2 (s, v)F, se(T/N).

yelIN

For s eT'/N, p,q €T we have

UxUsypo= Ux (s, m(q))ypo= (s, m(q)) (s, 7(p + q))xypo = (s, 7(p) )xypo

for x € M, y € M, (where x is the quotient map I'—T/N). Thus UxU; = (s, w(p))x for
every s € (F/N) p €. In particular UM, U} c M, s e (T/N)", peT. Hence UMU? c

M and we write 8.(x) = UxU?* (s € (T/N)", x € M).

This defines a o-weakly continuous homomorphism & of (I/NJ into Aut(M). Also
Uxpo = Ux Uy po = 8,(x)po and, if we write ¢, (x) = [ /w5 (7, 5)6,(x) ds (where ds is the
Haar measure), we get F.xpo= ¢,(x)po (x € M, y eT/N).

The image of ¢, is the fixed point algebra of §; i.e. po(M)=M°=M N {U,}'. Hence
¢o is an expectation onto M N Z(M,)'.

LEMMA 2.6.

(1) ForpeT, yeI/N,

0 falp)#y

& ifa(p)=v

(2) @r(,)(M) is spanned, as a o-weakly closed subspace, by U{M,:1ep + N}.

¢Y°%v=£p°¢v={

Proof. For (1) simply observe that (¢,, £,)(x)po = E,E,xpo= E xp, if 7(p) =y and
is 0 otherwise. For (2) note that M is spanned as a o-weakly closed subspace, by

U{M, : q €T}; thus ¢(,)(M) is spanned by U{¢,,(p)(M ):qel}=U{M,:qep+N}.
[ ]

LemMa 2.7. Fix p €T and a partial isometry V € ¢, (M), where y = n(p). Then, for
every projection F € Z(M,), we have

VFV* = VV*B,(F).

Proof. Note that B,(F) is the projection onto [M,F(H)] and for every gep + N,
BAF) = By(F); hence B,(F)= \/ [M,F(H)]=[9n(MDF(H)), since gup(M) is

spanned by U{M,:qep+N}. As [VF(H)] S [@.,(M)F(H)])=[B,(F)(H)], VFV*=<
VV*B,(F). Also [VV*M,F(H)] = [VFV*M,(H)] (as F € Z(M,) and V*M,e M N Z(M,)").
Hence VV*B,(F)=VFV*. [ |
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3. The “matrix” representation. We will assume throughout the rest of the paper
that Z(M) N My =CL

Recall that (X, u) is a locally compact complete separable metric space such that H is
the direct integral of Hilbert spaces {H(x)} over (X, u) and Z(M,) is the algebra of
diagonalizable operators relative to this decomposition.

For every (x, y) € R (the measured equivalence relation defined above) there is some

pel such that y=p;'(x). We have p+N={p+q:qeN}={lel:B7'(x)=y}.
Hence this defines a Borel map d: R—T/N that is a 1-cocycle; i.e. for almost every
(x,y,z)eRP,

d(x, y) +d(y, z) = d(x, 2).

(See [2] for cocycles on an equivalence relation.)

LemMma 3.1. Fix p €T and a partial isometry V € ¢, (M), vy =m(p). Then, for almost
every x € X, there is a partial isometry V(x, ﬁ,,(x)) from H(x) into H (3p(x)) such that

(VE)(B,(x)) = D(x, B,(x))V (x, B,(x))E(x),
du
du-B, (x).
Proof. Let {&;} a countable set in H that spans H. Fix § € H and a projection F in
Z(M,). We have

L1071, BN VOB NI dut) = [ IVENB I s ,)5)

where D(x, Bp(x)) =

=] IV ) =1B,(FIVEI = |VFV*VElR

P

= IFV*VEIR = [ 10V V)REI? du).

Since this holds for every Borel subset FcX, |D7'(x, B,,(x))(V&)(B,,(x)H=
I(V*V)(x)E(x)|| a.e. on X.

(Here V*V = [ V*V(x)du(x) is the decomposition of V*V.) For every i there is a
null set N; € X such that
1D~ (x, B,(N(VEN B, DI = I(V*V)(x) &)

for every x ¢ N.. Let N'=UN,. The above holds for every x ¢ N' and every i Since
{&:(x)} spans H(x) for almost every x, the map

E(x)> D7 (x, B,0N(VE)(B,(x))

can be extended to a partial isometry V(x, B,(x)) from H(x) (with initial projection
(V*V)(x)) into H(B,(x)) (with final projection VV*(B8,(x))). B

https://doi.org/10.1017/50017089500007527 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500007527

38 BARUCH SOLEL

For an arbitrary T € ¢,(M) (y = n(p)) let T =V |T| be its polar decomposition and
let

T(x, B,(x)) = D(x, B,(x))V (x, B,(x)) IT| (x),

where |T| = [®|T| (x) du(x) (as T*T € ¢o(M) =M N Z(M,)') and D and V are as in the
last lemma. Then for a.e.x in X T(x, B,,(x)) is a bounded operator from H(x) into
H(B,(x)) such that for § € H, :

T(x, B,(x))E(x) = D(x, B,(x)V (x, B, (x)) IT| (x)&(x)
=D(x, B,(x)V(x, B,(N)T) E)x) = (V IT| §)(B,(x)) = (TE)(B, (x))
for almost every x.

Clearly T(x, Bp(x))= T(x, Bq(x)) if p—qeN; so that we get a “matrix” repre-
sentation of T € ¢,(M) over R. For an arbitrary T € M we define

T(x,y) = ¢,(T)(x,y), where y=d(x,y).

For T € ¢,(M) we have ||T(x, y)||<||T| D(x, y) and for T e M,

ITCx, I <lio, (T D(x, y) <|IT|| D(x, y).

Lemma 3.2. Let U =M be an My-bimodule. Then for T e M, T € U if and only if
¢,(T) € U, for all yeT/N.

Proof. Assume T € U. Let V be a partial isometry in ¢, (M) satisfying VZ(M,)V* c
M,. Since ¢o(M)=MNZ(M,)' and Z(M,) is an abelian von Neumann algebra, the
results of [1, Theorem 6.2.2] show that ¢o(V*T) lies in the o-weakly closed convex hull
of {UV*TU*: U is a unitary operator in Z(M,)}. Hence Vgo(V*T) lies in the o-weakly
closed convex hull of {(VUV*)TU*:U is a unitary operator in Z(M,)} . (since
VZ(My)V* = M,).

Since ¢,(M) is generated by {g,(M):pen”'(y)} we have ¢,(M)=

( V ﬁ,>¢y(M) and we can find a countable set of partial isometries {V,} c ¢,(M)

pex\(y)
such that ¥ V,Vi=V{f,:pen~'(y)} and V, € M, for some p e x7'(y). (See Lemma
2.2(2).)

For each such V, we have V,¢o(ViT) € U. Also note that Vi¢o(ViT) =V, Vi¢,(T)
(since it holds for every T € U{¢,(M):AeI'/N} and ¢,, ¢, are o-weakly continuous).
Hence ¢,(T)=Y V,Vi¢,(T)=Y Vipo(ViT) e U Since T is a o-weak limit of finite
linear combinations of {¢,(T):y eI/N} (using an approximate identity on (T/N)"), it
follows that T lies in . a

Lemma 3.3. Let F and G be projections in M and write F=[$ F(x)du(x),
G=[2G(x)du(x). Let U(F,G)={TeM:(I-G)TF=0}. Then U(F, G) is an M,
bimodule and U(F, G)={T eM :(1—-G(y))T(x, y)F(x) =0 for almost all (x, y) € R}.
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Proof. U(F, G) is clearly a o-weakly closed M,y-bimodule. Fix £eH;
E= [® E(x) du(x). Then for Te M, ye /N and p e 77 (y),

(1 = GOy (TIFE)(B,(x)) = (1 — G(B,(x)))(¢,(T)FE)(B, (x))
=1 - GBMT, B, ())F (X)E().

As & runs over a countable-set {§;} that spans H, {&(x)} would span H(x) and the
equality above would hold for almost every x € X. Hence ¢,(T) € U(F, G) for all ye /N
if and only if (1— G(y))T(x, y)F(x) =0 for almost every (x, y) € R. Lemma 3.2, applied
to U(F, G), completes the proof. [

THEOREM 3.4. Let U be a o-weakly closed My-bimodule of M. Then we can find
o-weakly closed subspaces U(x, y), (x, y) € R, of M(x, y) such that My(y)U(x, y)My(x)
U(x, y) for almost every (x, y) € R and

U={TeM:T(x, y)e U(x, y) for almost every (x, y) € R}.

Proof. Since M has a separating vector, all o-weakly closed, linear subspaces of M
are reflexive by Theorem 2.3 of [9]. Hence

U={TeM:TEec[UE] for all Ee H}.
Since A is an My-bimodule, the projection onto [%&] commutes with M, and
U={T e M : T[My5] = [UE] for all E}.

So if F(&) and G(£) are the projections onto [%&] and [M,&] respectively, then F(&) and
G(&) are in M and

U= {UF(), G(&)):EeH}.
In fact

U=M{UF (&), G(E)): E€ Hy},
where H, is a dense countable set in H. Hence

U={TeM:(I-GE)Y)NT(x y)F(E)x)=0
for £ € H, and almost every (x, y) € R}. Set
Ux, y)={S e M(x, y) : (1 = G(E)(y))SF(§)(x) = 0 for all § € Hy}.
Then we have
U={TeM:T(x,y)e U, y) for almost every (x, y) € R}.

It is easy to check that My(y)U(x, y)Mo(x) = U(x, y). [ |

LemMma 3.5. Let H; (i=1,2) be a Hilbert space, M; = B(H;) be a o-finite factor,
v: H,— H, be a partial isometry such that vMv* c M, and v*M\vc M,. Let U < M,vM, be
a o-weakly closed subspace such that My UM, < U. Then either U = {0} or U = M,vM,.

Proof. Let u be a maximal partial isometry in 9 such that u*u<v*v and uu* < vv*.
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Th
en (vwv* —uu*)U(viv —u*u) =0.
Hence, since U = M,UM,,
M,y(vw* —au* )M, UM, (v*v —u*u)M, = 0.
Since M; (i =1, 2) is a factor this implies that either U = M,UM, = 0 or at least one of the

two projections, v*v—u*u or vv* —uu*, is zero. Suppose v*v=u*u. Then v=vv*v=
vu*u e Mou < U; and U = M,vM,. Similarly, if vv* = uun*, then U = M,vM,. |

COROLLARY 3.6 If M N Z(M,)' = M, then for every o-weakly closed My-bimodule U
of M and almost every (x, y) € R, either U(x,y)=0 or U(x, y)=M(x, y); i.e. there is a
subset Q < R such that

U={TeM:Tx,y)=0if (x,y)¢ QO}.
In particular, this is the case if « is inner.

Proof. Since M NZ(M,)’ =My, R=G and M(x, y)= My(y)u,(x, y)My(x), where
y= ﬁp(x) and u, satisfies Myu,M,= M,. Now apply Lemma 3.5. [ |

CoroLLARY 3.7. If M N Z(M,)' = M, and U is a o-weakly closed My-bimodule of M,
then there are projections {e,},cr in Z(M,) such that U is the o-weakly closed subspace
spanned by U{e,M, : p €T}.

Suppose M N Z(M,)' = M,. Then we see that there is a bijective correspondence
between the Borel subsets of R (modulu sets of measure zero) and the o-weakly closed
M,-bimodules of M. Write

WQ)={TeM:T(x,y)=0if (x, y) ¢ Q}.

Then one can easily show that %(Q) is an algebra if and only if Q°Q c Q (where
(x,¥)-(y, z2) = (x, z) is the multiplication in R); U(Q) is self adjoint if and only if
Q= Q7" (where (x, y)™' = (y, x)); and U(Q,) = U(Q>) if and only if O, < Q5.

For the case where M, is a Cartan subalgebra of M similar results were proved
in [13].

Recall that we assume Z(M) N M, = CI. We have the following result.

Lemma 3.8. If M N Z(M,) = M,, then for Te M, t € A, we have

«(T)(x, y)={p, )T(x, y)
for almost every (x, y) € R (=G) (where y = 3,,(x))

Proof. a(T)(x, y) = &,(a(T)x, B,(x) = (p, 1) &,(T)(x, B,(x)) = (p, )T (x, y).
(Here ¢, = ¢,,). |

ProposiTion 3.9. « is inner if and only if G =R and the map ¢ : R—T defined by
c(x, y)=p, where B,, (x) =y, is a coboundary; i.e. there is a Borel map g : X— T such that
c(x, y) =g(y) — g(x) for almost every (x, y) € R.
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Proof. If « is inner, then G =R as M N Z(M,)' = M,; also we have then a group
t— U, of unitary operators in Z(M,) such that «,(T)= U,TU;} (T e M, t € A). There is a
function g : X — T such that for almost every x € X, (g(x), t) = U,(x) (identify U, with a
Borel function on X). For T € ¢,(M) we have, for almost every x € X,

(p, DT (x, B,(x)) = a(T)(x, B,(x)) = U(B,(x)) T (x, B,(x)) U} (x)
= U(B,(x))Ux)T(x, B, (x)).

Hence (p, 1) =8(B,(x)) ~ ().
For the other direction, suppose such g exists and write U/(x) = (g(x), t}; then this
defines a group of unitary operators in Z(M,) satisfying a,(T) = U,TU;. |

4. M-Reflexivity. For a o-weakly closed subspace U of M we let F(U)=
{(P, Q) : P,Q are projections in M such that PU%Q =0} and

FEL(U)={T e M : PTQ =0 for every (P, Q) € L(U)}.
We say that U is M-reflexive (see [7] and [8])) if

) U=LL(U).
Now write
Fo(U) = {(P, Q) : P,Q are projections in M N M{ such that PUQ =0}
and
FL(U)={T e M : PTQ =0 for every (P, Q) € Z(U)}.
LemMA 4.1. Let U be a o-weakly closed My-bimodule in M. Then U is reflexive if and
only if
FE(U) = U.
Proof. For a projection P € M we write
R(P) =sup{UPU™* : U € M, is a unitary operator}.
Then R(P) is a projection in M N M. If PUQ =0 (P,Q are projections in M) then for all
unitary operators U,V in My, UPU*UVQV* c UPUQV* =0 (as U is an My-bimodule).
Hence (R(P), R(Q)) e (%) whenever (P,Q)eZ(U). In fact ZL(U)=
{(R(P), R(Q)) : (P, Q) € L(U)}. Also, if P,Q are projections in M and (R(P), R(Q)) €
%) then (P, Q) € £(%) (as P<R(P), Q <R(Q)).
If TePE(U), then T € PL(U), since L(U)c L(U). If T e SZL(U), then for
every (P, Q) € £(U), (R(P), R(Q)) € %(U) and, therefore, R(P)TR(Q)=0 P <R(P),
Q <R(Q), PTQ =0 and T € L(U). Therefore SL(U) = SL(U).

LemMA 4.2. For y e T'/N and a projection E € Z(M,), E¢,(M) is M-reflexive.
Proof. For y e I'/N and a projection E € Z(M,), we have
Z(Ep,(M))={(P, Q): P,Q e M N My, PE[¢,(M)Q(H)]=0}.
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Since [¢,(M)Q(H)] = B,(Q)(H) for every p e x7'(y),
Zo(Ep, (M) ={(P, Q): P,Q e M N M, EPB,(Q) =0}
(p e x7\(y) is now fixed). If T € SL(E¢,(M)), then PTQ =0 whenever EPB,(Q)=0.
Hence, for A eT'/N, P$,(T)Q =0 whenever EPB,(Q) =0. (Note that YL, (E¢,(M)) is a
o-weakly closed M-bimodule and, thus, ¢;(¥%(E¢,(M))) c SL(E$,(M))). Note that
»W(TYQ(H) = B,(Q)H) and ¢,(T)(I — Q)(H) = B,(1 — Q)(H) for every q € x~'(A). Fix
such q. Then
Ba(Q)9A(T) = B(2)a(T)(1 — Q) + B(Q):(T)Q
= B,(Q)B,(I — Q)Pu(T)(1 = O) + 2(T)Q = $1(T)Q.
Hence PB,(Q)¢:(T)=0 whenever PB,(Q)E=0. Since (1—E)B,(I)E=0 we have
(1 - E),¢:(T)=0;i.e. (1 - E)¢$:(T)=0. Suppose y # A and write

F=sup{Q(1-B,_,(Q)): Q is a projection in Z(M,)}.
Then, by Lemma 2.4(2), if F # I, there is a non zero projection F' <1 — Fin Z(M,) such
that B,_,(F')F'=0. But then F'=F'(1—-f,_,(F'))<F. Hence F=1. Since for every
0 € Z(My), E(1 ~ B,(Q))B,(Q) =0 we have,

(1= B,(2)B,(2)p1(T) = 0.
But (1= ,(2))B,(Q) = B,(Q(1 = B,_,(Q))); hence

0=B,(D)ex(T) =fq¢A(T) = ¢u(T).
Therefore T = E¢,(T) € E¢,(M). .

CoroLLARY 4.3. Suppose M N Z(My)' = M, and vy is an automorphism of M with
y(a) = a for a € Z(M,). Then for every My-bimodule U, y(U) = U.

Hence every von Neumann subalgebra M 2 B o M, is an image of a faithful normal
expectation from M onto B.

Proof. Let y be an automorphism as above and note that for every pair of
projections P,Q in Z(M,) and pel, Py(M,)Q =0 if and only if PM,Q=0. The
M-reflexivity of M, now implies that y(M,) = M,. Corollary 3.7 shows that y(%) = U for
every My-bimodule %. The last statement of the corollary follows from Takesaki’s
Theorem [18] applied to w(x) = (xp,, po) since o}’ (a) =a for a € Z(M,)

(as w(ax) = (axpo, po) = (€o(ax)po, po) = (ago(x)po, po)
= (£o(x)apo, po) = (xapo, po), a € Z(My), x € M). [ ]

THEOREM 4.4. The following statements are equivalent.

(1) «is inner.

(2) For every non-zero projection F € Z(M,) there is a non-zero projection Q <F,
Q € Z(M,), such that for every 0#p €T, we have QB,(Q) =0.

(3) M NZ(M,)' = M, and every o-weakly closed My-bimodule is M-reflexive.
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Proof. The equivalence of (1) and (2) can be derived from [4, Theorem 1.1(iii)] or
[6, Theorem 4.9]. One can also use Proposition 3.9 (applied to FMF instead of M) and
the fact that a cocycle is a coboundary if and only if its only essential value is {0}. (See
[15, Theorem 3. 9(4)].) If « is inner, then clearly M N Z(M,)' c M,. We will now show
that if « is inner and % is a o-weakly closed My-bimodule then % is M-reflexive. Using
Corollary 3.7 we can see that % is the o-weakly closed subspace spanned by
U{e,e,(M):p eI’} (here N={0}) for some projections {e,},.r in Z(M,). For every
projection Q in Z(M,) that satisfies QB,(Q)=0 for every 0#pel we have
B.(Q)B,(Q)=0 if g#p. Fix qel' and write G =pB,(G). Then for every p #gq,
Ge,fB,(Q) =0 and, thus, ((1-¢€,)G,Q) € Z(U). If T € %(U), then

(1 - eq)ﬁq(Q)TQ =0

for every q e I'. Hence for every q €T, (1—¢,)B,(Q)e,(T)Q =0. Since B,(Q)e,(T)0 =
£,(T)Q, we have

(1-e,)e,(T)Q =0.

Now (2) implies that I=)\/ {Q € Z(M,) : 0B, (Q)=0 for every p#0}. Therefore,
g,(T)eee,(M)and T € U.

We now turn to the proof that (3)=>(2). For this fix 0% F in Z(M,) and let
U={T € FMF : ¢(T)=0}. This is a o-weakly closed M;-bimodule and thus is M-
reflexive (assuming statement (3)).

Since M N My Z(M,) (as M N My M N Z(M,) = M,), we have

Zo(U) = {(P, L) : P, L are projections in Z(M,) such that PUL =0}
={(P,L): P, Le Z(M,), FB,(F)PB,(L) =0 for every p #0}.

Since F ¢ $£,(U), there is some (P, L) € £(%) such that FPL #0. Write Q = PFL.
Then for p #0, B,(Q) <B,(L) < B,(F)(1 — FP) and QB,(Q)=0. This proves (2). [ |

5. Isomorphisms. We assume now that M and B are factors, A, and A, are
compact abelian groups, o and 7 are representations of A, and A,, respectively, as
*-automorphism groups on M and B respectively. Write I'; = A; and define M, (p €T))

and B, (g €TI;) as in Section 1.
We will assume that M N Z(M,)' =M, and BN Z(By)' = B,. Also let Z,cT; be a

positive semigroup for i =1,2; i.e. Z;+Z,c3; and =, N (-Z;) = {0}. We write M*(Z,)
and B"(Z,) for the associated analytic subalgebras of M and B respectively; i.e. M*(Z)) is
the o-weakly closed subspace spanned by | {M, :p €Z,} and B"(Z,) is the o-weakly
closed subspace spanned by | {B, : g € Z,}.

Also, let R, c X, X X, and {B}:p €T} be the equivalence relation and the maps
associated with (M, @) and R, < X, X X, and {B2:q €T,} be the ones associated with
(B, n). Let

Pi={(x,y)eR,:y=PB)x), peZ,},
P={(x,y)eRy:y=P%x), q ey}
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and note that
M*E)={TeM:suppT c P},
B"(2,)={TeB:suppT c P},

where supp T = {(x, y) € R; : T(x, y) #0} is defined up to a set of measure zero (and so is
the inclusion supp T < P, above).

If 3, totally orders T; (i.e. £; U (—2;) =T), then P,U P;' = R, (up to a set of measure
zero), where (x, y) ™' =(y, x).

The main result of this section is the following theorem.

THEOREM 5.1. Let M*(Z,) and B"(Z,) be as above, and let y be an algebraic
isomorphism from M%(Z,) onto B"(Z,) such that, for a € My, we have y(a)* = y(a*).
Then

(1) y(My) = B,. (Write y:X,— X, for the invertible Borel map that implements

¥ : Z(Mo) > Z(Bo).)

(2) B"(Z,) is the o-weakly closed subspace spanned by U{y(M,) :p € Z,}.

(3) ¥ X y(P) =P, (where (y X y)(x,y) = (v(x), Y(¥))) and, if Z; totally orders T},

i=1,2, then (y X y)(R)) =R..

When v is the identity map we get the following result.

CoroLLARY 5.2. If M =B, M¥(Z,)=M"(Z,) and Z; totally orders T; (i =1, 2), then
R,=R, and P,= P, (although the maps {B}} and {B2} might be different). Hence the
equivalence relation R and the partial order P associated with an analytic subalgebra
(satisfying M N\ Z(M,)' = M,) is unique.

ReMaRK. In special cases more can be said about an isomorphism 1 as in the
theorem. For the case when M, and B, are Cartan subalgebras see [13] and for the case
where M*(Z,) and B"(Z,) are analytic crossed products with I, = Z and X, = Z, , see [11]
and [12].

For the proof of the theorem we need a few lemmas. In the discussion and lemmas
that follow we assume that the hypothesis of the theorem holds.

Lemma 5.3 y(M,) = B,.

Proof. For a € My, a* is in M,. Hence y(a*) = y(a)* lies in B"(Z,) N B"(Z,)* = B,,
so that y(M,) c B,.

Now, if T € By, then T € Z(Bo)' < Yy(Z(M,))'. Hence v~ '(T)e M N Z(My)' = M,.
Hence VJ(M()) = Bo. [ ]

Let y(M,) be the o-weak closure of y(M,)c B"(Z,) for pel. It is a o-weakly
closed By-bimodule of B and, thus, there is a Borel set C, c P, such that y(M,) = %(C,),
where U(Q)={T eM :suppT c Q}.

For an operator T we write rp(T) for the range projection of T. Using the

definition of f§, in Section 2 one can see that for a projection Fe Z(M,), B,(F)=
V{tp(TF): T e M,}.
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LEMMA 5.4. For p e Ty and a projection F in Z(M,) we have

Y(B(F)) = V{rp(Sy(F)) : S € U(C,)} € Z(By).
Proof. First note that
VA{rp(Sy(F)) : S € U(C,)} = V{rp(Y(TF)) : T € M, }

since U(C,)=vy(M,). Now, for T e M, and F € Z(M,) write Q =rp(TF). Let L be a
projection in Z(M,). Then, by Lemma 2.7 and Lemma 2.1 (3), LT =TB_,(L) (write
T=|T|V* and use LV*=V*B_,(L) as V*e M_,). Hence, for a unitary operator U in
Z(M,), we have

U*T =TB_,(U*).
Thus,

UQU*TF = UQTB_,(U*)F = UQTFB_,(U*) = UTFB_,(U*)
= UTB_,(U*)F = UU*TF = TF,

so that UQU™* = Q for every unitary U € Z(M,); hence Q e M N Z(M,)’ = M.
Since y, restricted to M,, is a *-isomorphism of M, onto B, (Lemma 5.3) and
rp(TF) € M, for every T € M,,, we have

V(B (F)) = v(V{ip(TF): T e M, }) = V{y(rp(TF)) : T e M, }.
Notice that, for T e M,
Y(rp(TF))y(TF) = y(rp(TF)TF) = y(TF);
hence Y (rp(TF)) = rp(y(TF)). Also
¥~ (p(W(TF)TF = ¢~ (rp(y(TF))y(TF)) = ™' (y(TF)) = TF;
hence
¥~ (tp(Y(TF))rp(TF) = rp(TF) and y(rp(TF)) < rp(y(TF)).
Therefore ¢ (rp(TF)) = rp(y(TF)) and we have,
V(B,)(F) = V{tp(p(TF): T e M, } = V{rp(Sy(F)) : S € U(C,)}. u
For a map ¢ : X;— X; we write
8(9) ={(x, p(x)) € X; X X;}.
LEMMA 5.5. Suppose L is a Borel subset of X, and A € Z, satisfies
gBHN(X;xL)cC,.
Then
gD N (o x Lycg(yeBrov™),

where y : X,— X, implements  (viewed as an isomorphism of Z(M,) = L*(X,, u,) onto
Z(By) = L*(X3, p2))-
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Proof. Let L be the projection in Z(B,) associated with L. For TeB,, TL is

supported on g(B3) N (X, x L); hence on C, N (X, x L). Thus TL € %(C,)L. We have,
using Lemma 5.4,

WY(F)L)=V{tp(Ty(F)L : T € B} < V{rp(SY(F)L) : § € U(C,))}
=y(B(Fy (L) =y ° Bpo v (W(F)L)
for every prpjection Fin Z(M,). Thus
BN xLycgyeBye vy )N (X, x L). u

Lemma 5.6. C,=g(y°Bp°v™").

Proof. For A€Z, let L, be the largest subprojection of y( f-p)Bx'(I) in Z(By) such
that g(B3) N (X, x L,) = C,, where L, is the associated Borel subset of X,. For A, # 4, let
Ly= L, L;,; then, by Lemma 5.5,

gB) N (Xox Loycg(yeByov™).
and

g(B3) N (X x Lo)cg(yoBley™).

But this implies that L,=0, as g(B3)Ng(B3) is empty. Hence g(BHN (X, x L,) =
C,N(X,; X L,) for A€ Z,. For F € Z(M,) we now have,

Bi(w(F)L) =V {tp(Ty(F)L) : T € B} = V{rp(Sy(F)L : § € U(C,)}
=y B,y (Y(FL).
Hence
C, N (X, X l:A) = g(Bi) N (X, X I:A) =g(ye B;la oy ™ N(X,x L))
Since V{L;: e 25} = ¢(f_,) and U(C)P(f-,) = U(C,), C,=g(y°B,°v™"). u
LemMa 5.7. We have P,=\J{C, :p € Z,} = y X y(P,) and
B"(Z) = {y(M,):peZi},
where the closure is in the a-weak topology.

Proof. Let U=\J{y(M,):peZ,}. Since U is a o-weakly closed By-bimodule of B,
there is a set Cc P, such that %= U(C). Since y(M,)c U for peTl,, C,cC; hence

Up C) = U=UC). But also U\ HUC,):peZ}cUWUC,). Hence U=
p
Uu(JC,). Write Q =P,\UC, and assume v,(Q)>0. (v, is a measure on R;). Then
¥4 p

there is some 0# T € B and A € £, such that T € B, and supp T < Q. Hence y~"(T) #0.
Now Lemma 5.6, applied to y ', yields

Uy~ o Biov)) =y '(By).
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Hence supp ¥~ (T) cg(y~' B% o y). Therefore, there is some g € Z; and a projection

Z € Z(M,) such that 0% Zy (T) e M,.
Hence 0# y(Zy~(T))=v(Z)T and supp y(Z)T < QNC,=@. This contradiction
shows that P, = J{C, : p € Z,} and completes the proof of the lemma. ‘ [ |
To complete the proof of Theorem 5.1 just note that if P,UP;'=R; and
(y X y)(Py) = P; then (v X y)(R)) = R,. |
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