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Euler-type Relative Equilibria and their
Stability in Spaces of Constant Curvature

Ernesto Pérez-Chavela and Juan Manuel Sánchez-Cerritos

Abstract. We consider three point positivemassesmoving on S2 andH2 . An Eulerian-relative equi-
librium is a relative equilibrium where the three masses are on the same geodesic. In this paper we
analyze the spectral stability of these kind of orbits where the mass at the middle is arbitrary and
the masses at the ends are equal and located at the same distance from the central mass. For the
case of S2 , we found a positive measure set in the set of parameters where the relative equilibria are
spectrally stable, and we give a complete classiûcation of the spectral stability of these solutions, in
the sense that, except on an algebraic curve in the space of parameters, we can determine if the cor-
responding relative equilibrium is spectrally stable or unstable. On H2 , in the elliptic case, we prove
that generically all Eulerian-relative equilibria are unstable; in the particular degenerate case when
the two equal masses are negligible, we get that the corresponding solutions are spectrally stable.
For the hyperbolic case we consider the system where the mass in the middle is negligible; in this
case the Eulerian-relative equilibria are unstable.

1 Introduction

_e curved n-body problem has its origin in the papers written, independently, by
Bolyai and Lovachevski [1, 15], the ûrst discoverers of non-euclidean geometries in
the 1830s. Lovachevski studied a Kepler problem in a three-dimensional hyperbolic
space deûning a special potential that extended the gravitational force proposed by
Newton. Inspired by that paper, Killing proposed the same problem on a sphere of
dimension three, obtaining a generalization of Kepler’s three laws [11]. Other great
mathematicians who worked on these kinds of problems were Schering [20] in 1870
and Lipschitz [14] in 1873, who proposed diòerent potentials in the problem. Schering
revised the paper of Lovachevski and obtained an analytic expression given by the
cotangent potential, the same that we have used in this paper.

In 2005, Cariñena, Rañada, and Santander [13], working in the framework of dif-
ferential geometry and taking as a reference the cotangent potential deûned on S2 and
H2, studied in a uniûed way the two body problem deûned on spaces of nonzero con-
stant curvature. _e generalization for the n-body problem in spaces of constant cur-
vature was obtained by F. Diacu, E. Pérez-Chavela, and M. Santoprete [7, 8]. In those
papers the authors used the cotangent potential and the Euler-Lagrange equations
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with the corresponding constraints that maintain the particles on S2 = {(x , y, z) ∈

R3 ∶ x2 + y2 + z2 = 1} (the model that we use for a surface of positive constant Gauss-
ian curvature) embedded in R3, or H2 seen as a sphere (with the Lorentzian metric)
of imaginary radius −1 embedded in R2,1. We identify this with the upper part of the
hyperboloid of two sheets {(x , y, z) ∈ R3 ∶ x2 + y2 − z2 = −1} corresponding to the
Weierstrass model of hyperbolic geometry, the model that we are using throughout
this paper. In [4] you can ûnd a nice description of the history of this fascinating
problem.

Unlike the Newtonian case, the two body problem in spaces of constant curvature
is non-integrable, as showed by Schepetilov in 1996 [19]. For n ≥ 2, many researchers
have worked in one of the simplest non trivial orbits that exist, the so-called rela-
tive equilibria, where the mutual distances among the masses remain constant for
all time. For the case n = 3, Diacu, Pérez-Chavela, and Santoprete, [7], Diacu and
Pérez-Chavela, [6], as well as R. Martínez and C. Simó, [12] got interesting results
on Eulerian and Lagrangian solutions. Lagrangian orbits are given by equal masses
forming an equilateral triangle. Martinez and Simó wrote one of the few papers in
which the stability of Lagrangian periodic orbits has been studied on curved spaces.

To start our study we consider the motion of three point-particles moving on S2

or H2. Let q i , i = 1, 2, 3, be the position of the i-th particle. _e force function that
extends from the Newtonian case to S2 or H2 is

U(q) =
3

∑
i=1

3

∑
j=1, j/=i

m im j(σ)1/2q i ∗ q j
√

σ − σ(q i ∗ q j)2

(see [3]), where (∗) denotes the usual scalar product in the case of positive curvature
(that is, when we consider S2), or the Lorentz product, denoted elsewhere by ⊙, for
negative curvature (that is, when we work on H2); in the same way the symbol σ
stands for σ = 1 if we consider S2 or σ = −1 for H2.

Using a variational method we can write the equations of motion as follows

(1.1) q̈ i =
3

∑
j/=i

m j[q j − σ(q i ∗ q j)q i]

[σ − σ(q i ∗ q j)2]3/2
− σ(q̇ i ∗ q̇ i)q i , i = 1, . . . , n,

where (˙) represents diòerentiation with respect to time t. _e curved problem has
energy and angularmomentum as ûrst integrals; however, the linearmomentum is no
longer a constant of motion in contrast with the Euclidean case [7]. In this paper we
will study relative equilibria that are particular solutions of (1.1); the formal deûnition
is the following.

Deûnition 1.1 A relative equilibrium is a solution of the curved n-body problem in
which the mutual distances among the particles remain constant for all time t ∈ R.

It is well known that for the Newtonian three body problem, any three arbitrary
masses located at the vertices of an equilateral triangle generate a relative equilibrium
called a Lagrangian relative equilibrium . In the curved three body problem with cur-
vature k > 0 this kind of relative equilibria only exist if the three masses are equal;
the stability of this kind of equilateral relative equilibria has been widely studied by

https://doi.org/10.4153/CJM-2017-002-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-002-7


428 E. Pérez-Chavela and J. M. Sánchez-Cerritos

R. Martínez and C. Simó [12]. Another type of relative equilibria are the so-called
Eulerian-type relative equilibrium, that is, relative equilibria in which the particles
are, at each time t, on the same geodesic of the corresponding surface. Diacu, Pérez-
Chavela, and Santoprete give a deep discussion of whether or not three masses, where
two are equal and located at the ends of the conûguration, generate a relative equi-
librium. Recently, S. Zhu extended the results about those solutions and showed that
any three positive masses can generate Eulerian-relative equilibria [21].

_e stability of periodic orbits is one of the central problems in classical celestial
mechanics. A lot of eòort has been made to calculate and estimate limits of stability;
see, for example, [2, 16]. In the classical case the stability is fundamental to astrophys-
ical processes, which is why we have focused on these kinds of problems. It is well
known in the literature of dynamical systems that, in general, the analysis of the sta-
bility of equilibrium points of Hamiltonian systems is a really diõcult task, in particu-
lar for relative equilibria seen as critical points for the system in rotating coordinates,
usually we are only able to analyze their linear stability.

Deûnition 1.2 Consider the system ẋ = f (x) and its linearization ẋ = Ax, where
A = D f (c) and c is an equilibrium solution. We say that the solution c is spectrally
stable if the roots of the characteristic polynomial satisfy λ2 ≤ 0.

In general, when all masses in a relative equilibrium are on the same geodesic, we
call it as an Eulerian relative equilibrium. In this paper we restrict our analysis to
those Eulerian-relative equilibria in the three body problem where the two masses at
the ends of the conûguration are equal, the mass in the middle is arbitrary, and the
geodesic distance between the central and the othermasses is the same. Some authors
call these kinds of relative equilibria isosceles Eulerian-relative equilibria; for brevity,
we simply call them Eulerian-relative equilibria.

_e main results of this paper correspond to the positive curvature case, where
ûrst, we give an open set of initial conditions on the parameters that assure spectral
stability for the corresponding Eulerian-relative equilibria, showing that in this case
the Lebesgue measure of this kind of periodic solution is positive. _en we go deeper
in the analysis of the stability for all points in the parameter space, getting a total clas-
siûcation of the spectral stability for this kind of relative equilibrium. In other words,
for all points in the parameter space, except for those that are on an algebraic curve,
we can say if the corresponding relative equilibrium is spectrally stable or unstable. In
the extended abstracts [17] we announced without proof a preliminary version of this
result just for the case of three equal masses, the case for the two limit cases when the
mass in the middle is negligible, and the case when the two equal masses at the ends
are negligible. Since then, we have gone deeper in our research to get the material for
this paper which is new and original.
For the case of negative curvature there are two kinds of Eulerian-relative equi-

libria, the so-called elliptic and hyperbolic relative equilibria studied early in [7]. In
the ûrst case we show that all Eulerian-relative equilibria are unstable, except for the
particular degenerate case when the masses at the ends are negligible, where the cor-
responding relative equilibria are spectrally stable. For the hyperbolic case, due the
complexity of the equations, we only did the analysis when the mass in the middle is
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negligible; in this case, the corresponding relative equilibria are unstable. _is is in
agreement with the results in [9], where the authors prove analytically that all hyper-
bolic relative equilibria in the general curved two body problem are unstable. A pre-
liminary version of these results were stated without proof in the extended abstracts
[17].

_e paper is organized as follows. In Section 2 a�er the introduction we study the
positive curvature case where we state and prove our main results _eorems 2.5 and
2.8. In Section 3 we study the negative curvature case, where we present some results
about stability for elliptic and hyperbolic Eulerian relative equilibria.

2 The Positive Curvature Case

In the previous section we deûned the relative equilibria in terms of mutual distances,
that is, in terms of the isometric transformations. For the surfaces with positive curva-
ture we use as amodel the unitary sphere S2, where it is well known that the geodesics
are great circles and all isometries are uniform rotations inR3. _erefore, in this case,
we can characterize the relative equilibria on S2 in terms of the coordinates. _is fact
will facilitate the computations throughout the paper.

Proposition 2.1 A solution q i , i = 1, 2, 3, of the equations of motion on S2 is
a relative equilibrium if and only if q i = (x i , y i , z i), with x i = r i cos(ωt + α i),
y i = r i sin(ωt + α i), and z i = constant, where ω, α i and r i , i = 1, 2, 3, are constants,
with 0 ≤ r i = (1 − z2

i )
1/2 ≤ 1.

_is result is achieved from the principal axis theorem for SO(3). Since all isome-
tries in R3 are uniform rotations, we get that the relative equilibria are invariant so-
lutions of the equations of motion under the group SO(3). Now, the principal axis
theorem states that any A ∈ SO(3) can be written, in some orthonormal basis, as a
rotation about a ûxed axis. In the above proposition, without loss of generality, we
have ûxed the z-axis to obtain the result. In [18], the authors give a diòerent proof
using the stereographic projection.

Since the values of z i remain constant along the motion, setting ż i = 0, z̈ i = 0,
in agreement with [7], we obtain the values of the angular velocity ω that maintain
the same distances among the particles. We consider three positive point masses
m1 ,m2 ,m3 on the same geodesic of S2; without loss of generality we assume that
m3 is ûxed at (0, 0, 1) andm1 = m2 are at the opposite sides of a diameter of the circle
of radius r =

√
1 − z2 for a ûx z ∈ (−1, 0) ∪ (0, 1). In this case x1 = r cos(ωt + α),

y1 = r sin(ωt + α), x2 = r cos(ωt + α + π), y2 = r sin(ωt + α + π), x3 = 0, y3 = 0, that
is, r1 = r2 = r and r3 = 0 (see Fig. 1 with m1 = m2 = m and m3 = M).

In order to simplify the computations we introduce the following time transforma-
tion and position coordinates; these kinds of transformations appeared also in [5, 12]:

(2.1) t = r
3
2 τ, x i = rX i , y i = rYi , Q i = (X i ,Yi).

With these changes, the angular velocity becomes

Ω2
=

m1 + 4sm3(1 − r2)
4(1 − r2) 3

2
,
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Figure 1. An Eulerian relative equilibrium on S2.

where s = 1 if z1 = z2 > 0, or s = −1 if z1 = z2 < 0; Ω stands for ωt
τ in the new

coordinates.
Now we are able to express the system in a rotating frame, deûning new variables

(ξ i , η i), i = 1, 2, 3, as

(
X i
Yi

) = R(Ωτ)(ξ iη i
) ,

where

R(Ωτ) = (
cosΩτ − sinΩτ
sinΩτ cosΩτ ) .

A�er tedious but straightforward computations by hand, it is possible to show that
the new equations of motion are

(
ξ′′i
η′′i

) = 2Ω (
η′i
−ξ′i

) +Ω2
(
ξ i
η i

) − r2h i (
ξ i
η i

)

+
3

∑
j=1, j/=i

m j [ξ2i + η
2
i + ξ2j + η

2
j − s i , j2(ξ i ξ j + η iη j)Ti , j

− r2((ξ i ξ j + η iη j)
2
+ (ξ2i + η

2
i )(ξ

2
j + η

2
j))]

−3/2

⋅ [(
ξ j
η j

) − (r2(ξ i ξ j + η iη j) + s i , jTi , j)(
ξ i
η i

)] ,

(2.2)

where

h i = Ω2
(ξ2i +η

2
i )+2Ω(ξ iη′i −η i ξ′i)+((ξ′2i )+(η′2i ))+

r2

1 − r2(ξ2i + η
2
i )

(ξ i ξ′i +η iη′i)
2 ,

Ti , j =
√

(1 − r2(ξ2i + η
2
i ))(1 − r2(ξ2j + η

2
j)), s i , j = sign(z iz j),

for i = 1, 2, 3. _e symbol (′) stands for the derivative with respect τ.
_e following lemma is helpful in our analysis; you can ûnd a proof of it in [10].
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Lemma 2.2 Let p(x) = b0
b3
+ b1
b3
x + b2

b3
x2 + x3, and let ρ1, ρ2, and ρ3 be its roots. _e

discriminant of the cubic polynomial p is given by

d = (
3 b1
b3
− ( b2b3

)2

9
)

3

+ (
9 b2b3

b1
b3
− 27 b0b3 − 2( b2b3 )

3

54
)

2

.

Suppose d ≤ 0 and b0 /= 0. _en ρ1 , ρ2 , ρ3 < 0 if and only if b0b3 ,
b1
b3
, b2b3 > 0.

To analyze our problem let us normalize the total mass; i.e., we deûne mT ∶= m1 +

m2 +m3 = 1. We consider m1 = m2 = m, and by the normalization of the total mass
we have m3 = 1 − 2m. _e stability will depend on the masses and on the positions.
As the factor r appears in even powers we denote R ∶= r2.

We deûne the parameter spaceA where we will be working by

A = {(m, R) ∈ [0,
1
2
] × (0, 1)} .

Notice that R = 0 and R = 1 correspond to a triple collision and to an antipodal
singularity of the equations of motion, respectively.

Now we write the linearization of (2.2) for arbitrary masses m1 = m2 = m where
these particles are at height z1 = z2 = z /= 0, and m3 = 1 − 2m is ûxed at the point
(0, 0, 1). We can easily verify that, for any z /= 0, the following values represent a ûxed
point in the rotating frame

ξ1 = 1, η1 = 0,ξ2 = −1, η2 = 0,ξ3 = 0, η3 = 0,

ξ′1 = 0, η′1 , = 0,ξ′2 = 0, η′2 = 0,ξ′3 = 0, η′3 = 0.

Let f be the vector ûeld associated with system (2.2), seen as a ûrst order system of
diòerential equations at the ûxed point. _e linear part at the ûxed point is given by

(2.3) D f = (
0 I
A ΩB) ,

where I is the identity matrix 6 × 6, and A and B are given by

B = diag{ (
0 2 − 2R
−2 0 ) , ( 0 2 − 2R

−2 0 ) , ( 0 2
−2 0)} ,

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a 0 b 0 c 0
0 d 0 e 0 f
b 0 a 0 c 0
0 e 0 d 0 f

−2m 0 −2m 0 g 0
0 m 0 m 0 h

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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where a, b, c, d , e , f , g, and h are expressed as follows:

a = Ω2
− 3RΩ2

+ s
m + (8m − 4)(R − 2)

4
√

1 − R
,

b = −
1
4
m(1 − 2R)
(1 − R)3/2 , c = −2(1 − 2m)(1 − R),

d =
1
8

m (2R − 1)
(1 − R)3/2 +Ω2

− RΩ2
+ s(2m − 1)

√
1 − R,

e =
1
8

m
(1 − R)3/2 , f = 1 − 2m,

g = Ω2
+ 4s m

√
1 − R, h = Ω2

− 2s m
√

1 − R.

Here s = 1 if z > 0, or s = −1 if z < 0.
_e eigenvalues of D f are the zeroes of the polynomial det(D f − λI) = 0. Let us

introduce µ such that λ = Ωµ. With this new variable the eigenvalue condition can
be written as

(
0 I
A ΩB)(

u
v) = Ωµ (

u
v) .

If we denote the characteristic polynomial as p(µ), the eigenvalue condition must
satisfy

(2.4) p(µ) = det(A+Ω2µB −Ω2µ2I) = 0.

2.1 The Three Equal Masses Case

In order to state and prove the main results of this paper, we start with the following
result for the particular case where the three masses are equal. It will be very useful
for the proof of the main theorem.

Lemma 2.3 Consider Eulerian-relative equilibria of threemassesmoving on S2, where
m1 and m2 are at opposite ends of a diameter on the circle z = constant /= 0, and m3
is ûxed at (0, 0, 1). If m1 = m2 = m3 = 1/3, then the generated orbits are stable if
z ∈ (Z1 , Z2), and unstable if z ∈ (− 1

2 , 0) ∪ (0, Z1) ∪ (Z2 , 1), where

Z1 =
1
2

4
√

2,

Z2 =
1
6

√
3
√

(27 + 3
√

3
√

26)2/3 + 3
6
√

27 + 3
√

3
√

26
.

Eulerian-relative equilibria do not exist if z ∈ (−1,− 1
2 ). At the points z = − 1

2 , z =

Z1 , z = Z2, it is not possible to conclude stability or instability. Notice that z = 0 corre-
sponds to an antipodal singularity (see [7] for more details).

Proof We divide the proof into two cases, when m1 and m2 are in the northern
hemisphere, andwhen they are in the southern hemisphere; we introduce the notation
ν = µ2 .
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When m1 and m2 are in the northern hemisphere, i.e., when

z1 = z2 = z = (1 − R)1/2
> 0,

the polynomial characteristic (2.4) in the variable ν, a�er multiplying by

−(4096)(729)(1 − R)9
/(4R − 5)3 ,

turns out to be

(2.5) p(ν) = ν(ν + 1)Q1(ν)Q2(ν),

where

Q1(ν) = 2R + 4νR − 5ν − 5,

Q2(ν) = (16R2
− 40R + 25)ν3

+ (32R3
− 64R2

+ 18R + 15)ν2

+ (−256R4
+ 1040R3

− 1528R2
+ 956R − 213)ν

+ 256R5 − 1280R4
+ 2512R3

− 2408R2
+ 1122R − 203.

_e factor ν = µ2 in equation (2.5) comes out from the ûrst integral associated with
the energy. We recall from Deûnition 1.2 that a necessary and suõcient condition for
spectral stability is that the eigenvalues of D f be either zero or purely imaginary, and
hence, the solutions for ν in equation (2.5) must be real and non-positive.

_e explicit solution of Q1(ν) is ν = 5−2R
4R−5 < 0. Now, we analyze the factor Q2(ν),

which can be written as

Q2(ν) = g1(R)ν3
+ g2(R)ν2

+ g3(R)ν + g4(R).

It is easy to check that g1(R) > 0 for R ∈ (0, 1). We can also see that g2(R) > 0 for
R ∈ (0, 1), since both g2(0) and g2(1) are positive and the polynomial has a unique
critical point at R = 2

3 −
1
12

√
37 < 1, which is a maximum on (0, 1).

For our purpose it is enough to verify that g3 is positive in a certain interval. In
this case it corresponds to the interval (0.6, 0.8). _is function has four real roots;
one of them is at some R < 0.6, and the other three, which are diòerent, are at some
R > 0.8. Furthermore, in the interval (0.6, 0.8) the function g3 is positive. In order
to verify these aõrmations it is enough to see the following: g3(0) < 0, g3(0.6) > 0,
g3(0.8) > 0, g3(1) < 0, g3(1.3) > 0, g3(2) < 0.

_e function g4(R) has roots

R1 = −
1
12

(27 + 3
√

78)
1
3 −

1
4(27 + 3

√
78) 1

3
+ 1 ≈ 0.61,

R2 = 1 −
√

2
4

≈ 0.64, R3 = 1 +
√

2
4
,

R4,5 =
1
24

(27 + 3
√

78)
1
3 +

1
8(27 + 3

√
78) 1

3
+ 1

± i
√

3
4

(−
1
6
(27 + 3

√
78)

1
3 +

1
2(27 + 3

√
78) 1

3
) .

We have that g4(R) > 0 for R ∈ (R1 , R2). Here we can see that at R = R1 and R = R2,
the polynomial Q2(ν) has the value ν = 0 as a root. At those points it is not possible
to conclude the stability or instability of the orbits.
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We have already veriûed that in the interval (0, 1) ∖ (R1 , R2) the functions g1 and
g2 are positive and g4 is negative. With this we conclude that Q2 has just one change
of sign in its coeõcients and therefore a positive root in this interval (Descartes’ rule
of signs). In this interval we have unstable orbits.

In the interval (R1 , R2) the functions g1 , g2 , g3, and g4 are positive; this implies that
(using again Descartes’ rule of signs) in this interval Q2(ν) has at least one negative
root (because Q2 is a polynomial of degree three). We are interested in showing that
the other two are also negative.
According to Lemma 2.2, we need to see that the corresponding discriminant is

non-positive.
_e discriminant is (multiplied by 81 to avoid denominators)

d = −12288R10
+ 244736R9

− 1632064R8 + 5690848R7
− 12117940R6

+ 16855740R5 − 15700889R4
+ 9737954R3

− 3864429R2
+ 888300R − 89964.

Its roots are (approximately)

r1 = 0.673119028735962, r2 = 1.22978762865043,
r3 = 1.37154085389725, r4 = 11.0351769580992,
r5,6 = .6056086910 ± i0.4335218317, r7,8 = 0.9505857618 ± i0.3371311689,
r9,10 = 1.247326646 ± i0.4925143834.

_e polynomial d is negative for R ∈ (−∞, r1), and we have (R1 , R2) ⊂ (−∞, r1).
So we can conclude that d < 0 for R ∈ (R1 , R2), and, by Lemma 2.2, this implies that
the three roots are real and negative.

_us, for z > 0 we have stability if

z ∈ (Z1 , Z2) ∶= (
√

1 − R2 ,
√

1 − R1) =
⎛

⎝

1
2

4
√

2,
1
6

√
3
√

(27 + 3
√

3
√

26)2/3 + 3
6
√

27 + 3
√

3
√

26

⎞

⎠

≈ (0.59, 0.61).

Now, we analyze the case where m1 and m2 are in the southern hemisphere of S2,
z < 0. In this case, in order to have Eulerian-relative equilibria, the angular velocity
with equal masses must satisfy

Ω2
=

1 − 4(1 − R)
12(1 − R)3/2 .

_is equation makes sense if 1 > R ≥ 3
4 . _erefore there are no Eulerian-relative

equilibria if − 1
2 ≤ z < 0 and the masses are equal (remember that r2 = R and z < 0).

For the corresponding values of z1 , z2 = z < 0, and z3 = 1, where Eulerian-relative
equilibria exist, the factors Q1(ν) and Q2(ν) of the characteristic polynomial (2.5)
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take the form

Q1(ν) = 6R + 4νR − 3ν − 3,

Q2(ν) = (16R2
− 24R + 9)ν3

+ (32R3
− 64R2

+ 42R − 9)ν2

+ (−256R4
+ 1008R3

− 1512R2
+ 1020R − 261)ν

+ 256R5 − 1280R4
+ 2544R3

− 2520R2
+ 1242R − 243.

_e polynomial Q1(ν) has root ν = 3−6R
4R−3 < 0 for R ∈ ( 3

4 , 1). Let us analyze Q2(ν);
we can write it as

Q2(ν) = g1(R)ν3
+ g2(R)ν2

+ g3(R)ν + g4(R).

_e factor g4 has roots R1,2 = 1± i
√

2
4 , R3,4 =

3
4 , R5 =

3
2 , and we have g4(R) < 0 for

R ∈ ( 3
4 , 1). Here we can see that at R = 3

4 (z = − 1
2 ), Q2 has the value ν = 0 as a root,

and at this point it is not possible to conclude stability or instability. _e function g3
has a global maximum at

R∗ = −
(417 + 96

√
46)2/3 − 63 3

√
417 + 96

√
46 − 63

64 3
√

417 + 96
√

46
≈ 0.92,

and we have g3(R∗) < 0. We have g1(R) > 0 for R ∈ ( 3
4 , 1). Hence, independently

of g2 we can see that Q2 has a change of sign for R ∈ ( 3
4 , 1), showing that Q2 has a

positive real root. _is implies that, for z1 , z2 < 0 in the corresponding interval, the
orbits are unstable. With all above, Lemma 2.3 has been proved.

2.2 The Limit Cases

In this section we are interested in showing the following result related to special val-
ues of the masses.

Proposition 2.4 Consider Eulerian-relative equilibria of three masses moving on S2,
where m3 is ûxed at (0, 0, 1), m1 and m2 are at opposite ends of a diameter on the circle
z = constant.
(i) If m3 is negligible, and m1 = m2, the generated orbits are unstable for every z ∈

(−1, 0) ∪ (0, 1).
(ii) If m1 and m2 are negligible, then the generated orbits are stable if z ∈ (0, 1), and

Eulerian-relative equilibria do not exist if z ∈ (−1, 0).

Proof To show (i) we follow the same idea as in Lemma 2.3. Consider the equations
(2.2) and its linearization (2.3) with m1 = m2 in the northern hemisphere and m3 at
the north pole. Taking into consideration its characteristic polynomial (2.4) written in
the variable ν = µ2, if we takem → 1

2 a�er multiply by 131072(1−R)9, this expression
can be seen as

p(ν) = ν(ν + 1)(ν + 2R + 1)Q1(ν)Q2(ν),
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where

Q1(ν) = ν − 2R + 1,

Q2(ν) = ν2
+ ν(−8R2

+ 16R − 6) − 128R4
+ 512R3

− 760R2
+ 496R − 119

= ν2
+ νh1(R) + h2(R).

_e factor Q1 has root ν = −1+ 2R, which is negative for R ∈ (0, 1
2 ), so let us focus

on roots of Q2 in this interval. _e factor h2(R) has roots R1 = 1 −
√

2/4 > 1/2, R2 =

1+
√

2/4, R3,4 = 1± i/4, and we have h2(R) < 0 for R ∈ (0, 1−
√

2/4). Independently
of the sign of h1 we have a change of sign in the terms of Q2. By Descartes’ rule of
signs, there is a positive root of p(ν). For R ∈ (1 −

√
2/4, 1) the root of Q1 is positive

If we consider the particles m1 andm2 in the southern hemisphere, then the corre-
sponding characteristic polynomial takes the form (a�er multiplying by a factor that
does not depend on ν)

p(ν) = ν (ν + 1)(ν + 2R + 1)Q1(ν)Q2(ν),

where

Q1(ν) = ν − 2R + 1,

Q2(ν) = ν2
+ (8R2

− 16R + 10)ν − 128R4
+ 512R3

− 776R2
+ 528R − 135

= ν2
+ νh1(R) + h2(R),

As we did above, we analyze the roots of Q2(ν) in the interval R ∈ (0, 1/2). _e
factor h2(R) has roots R1 = 3/4, R2 = 5/4, R3,4 = 1 ± i

√
2/4, and this function is

negative in the interval (−∞, 3/4). Hence, again, by Descartes’ rule there is a positive
root of Q2, and consequently a positive root of p(ν) as well. We are done with part
(i) of the theorem.

To prove (ii) notice that if m1 and m2 are negligible, then there are no attraction
forces between them, and each will move by the attraction generated by m3. We have
two decoupled systems that are symmetric. We will analyze the system consisting of
particles m1 and m3.

Ifm1 andm2 are in the northern hemisphere, the angular velocity Ω satisûes (a�er
considering m → 0)

Ω2
=

4(1 − R)
4(1 − R) 3

2
.

_e Jacobian matrix for this case is the 8 × 8 matrix given by

D f = (
0 I
A ΩB)

with

A =

⎛
⎜
⎜
⎜
⎝

a 0 b 0
0 c 0 d

−2m 0 2m(1 − R)1/2 +Ω2 0
0 m 0 Ω2 −m(1 − R)1/2

⎞
⎟
⎟
⎟
⎠

,
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where

a =
R

√
1 − R

+Ω2
− 3Ω2R + 2

√
1 − R, b = 2R − 2,

c = Ω2
−Ω2R −

√
1 − R, d = 1.

_e matrix B is given by

B = diag
⎧⎪⎪
⎨
⎪⎪⎩

(
0 2 − 2R
−2 0 ) , ( 0 2

−2 0)
⎫⎪⎪
⎬
⎪⎪⎭

.

_e corresponding characteristic polynomial when we take m → 0 is given by

p(ν) =
ν(ν + 1)3

(R − 1)2 .

If we consider the particles m1 = m2 in the southern hemisphere andm3 at (0, 0, 1)
then the expression of the angular velocity, in order to have Eulerian-relative equilib-
ria, becomes (a�er taking m → 0)

Ω2
=
−4(1 − R)
4(1 − R) 3

2
,

which makes no sense, hence there are no Eulerian-relative equilibria when m1 and
m2 are below the equator and negligible. _is is enough to show the result (ii).

2.3 The General Case

A�er the analysis for equal masses and the limit cases, now we are in a position to
state the main results of this paper; the ûrst one is the following theorem.

_eorem 2.5 _ere exists an open subset B in the parameter space A with positive
measure where the Eulerian-relative equilibria with parameters (m, R) ∈ B are spec-
trally stable.

Proof Lemma 2.3 shows values of the masses and positions, m1 = m2 = m3 =∶ m∗

(in the parameter space we have m∗ = 1/3), R ∈ (R1 , R2) ⊂ (0, 1), where the Euleria-
relative equilibria are stable. In other words, values ofm and R in the parameter space
where the factor Q2(ν) of the characteristic polynomial of D f ,

Q2 = (b3ν3
+ b2ν2

+ b1ν + b0),

satisûes b0 , b1 , b2 , b3 > 0, and its discriminant d < 0. Hence, by continuity of param-
eters, given any R0 ∈ (R1 , R2) there exists an open setB of (m∗ , R0) ∈ A such that Q2
also satisûes b0 , b1 , b2 , b3 > 0, and d < 0 (Q2 has three negative roots). _e existence
of this open set B is enough to conclude the proof of _eorem 2.5.

Now we are going to analyze the stability in the complete parameter spaceA.
We consider the equations of motion in the rotating frame (2.2), and its lineariza-

tion, given by (2.3).
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Consider ûrst the case where the particles m1 and m2 are in the northern hemi-
sphere. A�er multiplying by −4096(1−R)9/(8Rm−4R−7m+4)3, the characteristic
polynomial takes the form

p(ν) = ν(ν + 1)Q1(ν)Q2(ν),

where

Q1 = 8νRm − 4νR − 7νm + 4ν + 10Rm − 4R − 7m + 4,

Q2 = (64R2m2
− 64R2m − 112Rm2

+ 16R2
+ 120Rm + 49m2

− 32R − 56m + 16)ν3

+ (−64R3m2
+ 32R3m + 296R2m2

− 216R2m − 378Rm2
+ 32R2

+ 324Rm

+ 147m2
− 64R − 140m + 32)ν2

+ (128R4m2
− 128R4m − 496R3m2

+ 512R3m + 752R2m2
− 808R2m

− 532Rm2
+ 16R2

+ 592Rm + 147m2
− 32R − 168m + 16)ν

+ 256R5m2
− 896R4m2

− 128R4m + 1072R3m2
+ 480R3m − 440R2m2

− 656R2m − 42Rm2
+ 388Rm + 49m2

− 84m.

In order to analyze the roots of the characteristic polynomial, p(M), we will do this
for Q1 and Q2.

Lemma 2.6 If Q1(ν0) = 0, then ν0 < 0.

Proof We can see that Q1(ν0) = 0 if and only if

ν0 = −
10Rm − 4R − 7m + 4
8Rm − 4R − 7m + 4

=∶ f (m, R).

_en
∂ f
∂m

= 8
R(R − 1)

(8Rm − 4R − 7m + 4)2 < 0

for (m, R) ∈ A. Hence f does not have a critical point. _e maximum and minimum
values should be on the border of the region. We can see that f (m, 0) = f (0, R) = −1,
f (m, 1) = −3, and f ( 1

2 , R) = −2R − 1 < 0. Hence, we conclude that f (m, R) = ν0 <
0.

We now study the behavior of the roots of Q2(ν); they will give us the stability
region for the relative equilibria.

Now let us focus on Q2(ν), this expression is a cubic polynomial on ν with coeõ-
cients depending on m and R, Q2(ν) = b0 + b1ν + b2ν2 + b3ν3. _e discriminant d of
Q2(ν) has the form

(2.6) d =
64
27

m2(R − 1)2D1

(8Rm − 4R − 7m + 4)6 ,

where D1 can be seen in the appendix.
It is possible to see that b3 is positive for (m, R) ∈ A, so we can focus on the sign

of b0 , b1, and b2 to analyze the stability (instead of b0b3 ,
b1
b3
, and b2

b3
).

Lemma 2.7 For (m, R) ∈ A, b3 > 0.
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(a) Stability region B in the rectangle
(m, R) ∈ [0, 1/2] × (0, 1).

m

R

.1 .2 .3 .4 .50

.6

.7

.8

.9

.5

1

A

B
C

D

E

F

Unst able

Unst able

Unst able

St able

Unst able

St able

(b) Border ∂B, including curves where
there are zero-eigenvalues (b0 = 0, dashed
curves).

Figure 2. Bifurcation diagram.

Proof Let us prove that b3 is positive by checking that there are no minima nor
maxima insideA. Once we have done this we notice that on ∂A, we have b3 > 0. We
compute ∂b3/∂R = (128R− 112)m2+(−128R+ 120)m+32R−32. Hence, ∂b3/∂m = 0
if and only if m = 4 (R − 1)/(8R − 7) ∶= f (R).

Now we have to see if there are values of m ∈ [0, 1
2 ] that satisfy f (R) = m for

R ∈ (0, 1). We have f ′(R) = 4/(8R − 7)2 > 0. By noticing that f (0) > 1
2 and f (1) = 0,

we can conclude that there are no values of m ∈ [0, 1
2 ] that satisûes f (R) = m for R ∈

(0, 1). _en there are no any critical points in A. Furthermore, we can check that on
∂A, b3 > 0, since we have b3(0, R) = 16(R − 1)2, b3(

1
2 , R) =

1
4 , b3(m, 0) = (7m − 4)2,

and b3(m, 1) = m2. Hence, b3 > 0.

_e algorithm to analyze the stability is as follows: for points onAwe compute the
discriminant d, if it is positive, then the corresponding orbit is unstable, otherwise
we compute b0. If b0 = 0, then we cannot conclude stability of the orbits with the
corresponding parameters. If b0 < 0, b1 < 0, and b2 < 0, then the orbits are stable,
otherwise they are unstable. Figure 2 shows the parameter-regionB where the orbits
are stable.
At this point we have analyzed the case where the three particles are above the

equator; now let us study the casewhere twoof themare below this great circle. Hence,
consider the masses m1 and m2 in the southern hemisphere.

Recall that the angular velocity in this case should satisfy

Ω2
=

m − 4(1 − 2m)(1 − R)
4(1 − R) 3

2
.

_e above equation makes sense if the numerator is non-negative, which is analo-
gous to the condition 4−9m

4−8m ≤ R (see Figure 3).
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_e corresponding characteristic polynomial, a�er multiplying by

−4096(1 − R)9
/(8Rm − 4R − 9m + 4)3 ,

has the form
p(µ) = p(ν) = ν(ν + 1)Q1(ν)Q2(ν),

where

Q1(ν) = 8νRm − 4νR − 9νm + 4ν + 6Rm − 4R − 9m + 4,

Q2(ν) = (64R2m2
− 64R2m − 144Rm2

+ 16R2
+ 136Rm + 81m2

− 32R − 72m + 16)ν3

+ (−64R3m2
+ 32R3m + 344R2m2

− 232R2m − 522Rm2
+ 32R2

+ 380Rm + 243m2
− 64R − 180m + 32)ν2

+ ( 128R4m2
− 128R4m − 528R3m2

+ 512R3m + 912R2m2

− 856R2m − 756Rm2
+ 16R2

+ 688Rm + 243m2
− 32R − 216m + 16)ν

+ 256R5m2
− 896R4m2

− 128R4m + 1104R3m2
+ 480R3m − 456R2m2

− 688R2m − 90Rm2
+ 444Rm + 81m2

− 108m.

Figure 3. Region in the parameter space where Eulerian-relative
equilibria exist if z1 = z2 < 0.

_e discriminant d of Q2(ν) has the form

(2.7) d =
64
27

m2(R − 1)2D2

(8Rm − 4R − 9m + 4)6 ,

where D2 can be seen in the appendix.
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We use the same algorithm to check the points in the parameter space to decide the
stability or instability. A�er taking the algorithm we can see that for any points in the
parameter space where Eulerian-relative equilibria exist, these solutions are unstable.

With all the above facts we have proved the secondmain result of this work, which
we state as follows.

_eorem 2.8 Consider masses m1 = m2 =∶ m and m3 =∶ M, where m1 and m2 are
at opposite ends of a diameter on z /= 0, and m3 is ûxed at (0, 0, 1). Consider also,
if it exists, the Eulerian-relative equilibrium generated by these masses and positions.
For any parameters (m,M , z) it is possible to decide the stability or instability of the
corresponding Eulerian-relative equilibrium, except for a zero-measure set.

2.3.1 Bifurcations

_e bifurcations take place in ∂B and on a not-connected set on the line m = 0. In
this section we analyze the behavior of the polynomial Q2(ν) with parameters in this
set.

_e set ∂B is composed of subsets in the parameter space where d = 0, b0 = 0
and b1 = 0 (see Figure 2b). We have b2 > 0 on B ∪ ∂B . _is fact means that the
polynomial does not have zero as a triple root for any pair (m, R).

_ere are six interesting points in ∂B, which are points are the vertices ofB:

A = (0, 0.6777905), B =(0, 1 −
1
4

√
2) ,

C = (0.45308704, 1 −
1
4

√
2) , D =(0.378794, 0.5906987),

E = (0.225915, 0.675279), F =(
2
7
, 1 −

1
4

√
2) ,

(with error 10−10), see ûgure 2b. At point A we have d = 0 and b0 = 0; at point B,
b0 = 0; points C and D represent the parameters where d = 0, b0 = 0, and b1 = 0. At
point E, we have d = 0 and b0 = 0. At point F we have b0 = 0. _e coeõcient b1 > 0
on B ∪ ∂B except at points C and D; at those points b1(C), b1(D) = 0.

_e behavior of the polynomial Q2(ν)with parameters represented by the vertices
is as follows (see Figure 4).
● Parameters on C and D: the polynomial has a negative root and zero is a double

root.
● Parameters on E: the polynomial has zero as a simple root and a negative number
as a double root.

● Parameters on F: the polynomial has two diòerent negative roots (one of them be-
ing −1), and zero is also a root.

● Parameters along the linem = 0 (including points A and B), the polynomial has −1
as a double root, and zero is also a root.
We know the behavior of Q2(ν) on the vertices of B; then by continuity of the

parameters we can explain the behavior of the polynomial along ∂B.
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(a) On the curve A − E the polynomial has zero as a simple root and a negative
number as a double root.

(b) On the curve E − D the polynomial has zero as a simple root and a negative
double root on E and as the parameters goes to the point D, Q2 has zero and two
diòerent negative roots, until the parameters reach the point D, where Q2 has zero as
a double root and one negative simple root.

(c) On the curve C − D, the polynomial goes from parameters on the point C,
where it has zero as a double root and a negative root, to the point D, where Q2 has

(a) Q2 with parameters in A (b) Q2 with parameters in B

(c) Q2 with parameters in C (d) Q2 with parameters in D

(e) Q2 with parameters in E (f) Q2 with parameters in F

Figure 4. Polynomial Q2(ν) with parameters on the vertices of the
bifurcation diagram
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also zero as a double root and a negative root, going through points on the curve
where the polynomial has a negative double root and a diòerent negative simple root.

(d) On the segment of line B − C the polynomial has zero as a simple root, and
it has two diòerent negative roots on all the points along the segment, except on the
starting and ending points.

Remark 2.9 _e set where Q2 has zero roots is a zero-measure set, C, i.e.,

C ∶= {(m, R) ∈ A∣b0 = 0}

= {(m, R) ∈ A∣R = 1 −
1
4

√
2, } ∪ {(m, R) ∈ A∣m = 0}

∪ {(m, R) ∈ A∣m = 4
4R2 − 7R + 3

32R3 − 48R2 + 10R + 7
} .

Notice that the line m = 0 corresponds to Proposition 2.4(ii), and when the parame-
ters lies on that segment we have stability of the orbits. _en the case where it is not
possible to say something about stability is in the set

{(m, R) ∈ A ∣ R = 1 −
1
4

√
2, } ∪ {(m, R) ∈ A∣m = 4

4R2 − 7R + 3
32R3 − 48R2 + 10R + 7

} ,

which is represented by the dashed lines on Figure 2b.

3 The Negative Curvature Case

In this section we prove some results about stability of Eulerian-relative equilibria
in H2. Using the principal axis theorem it is possible to show in explicit form the
coordinates of relative equilibria solutions. We will see that we can deûne three kinds
of relative equilibria: elliptic, hyperbolic, and parabolic, but Diacu, Pérez-Chavela,
and Santoprete proved the non-existence of the parabolic-relative equilibria in [7].

Proposition 3.1 A solution q i , i = 1, 2, 3, of the equations of motion on H2 is a relative
equilibrium, if and only if q i = (x i , y i , x i), where the coordinates are given in one of the
following forms
● x i = r i cos(ωt + α i), y i = r i sin(ωt + α i), z i = constant, where ω, α i and r i =

(z2
i − 1)1/2 ∈ (0,∞), i = 1, 2, 3, are constants.

● x i = constant, y i = ρ i sinh(ωt + α i), z i = ρ i cosh(ωt + α i), where ω, α i and ρ i =

(1 + x2
i )

1/2 > 1, i = 1, 2, 3, are constants.

To check this result we can see, as in S2, that relative equilibria are solutions of
(1.1) generated by orthogonal transformations of determinant ±1 that leaveH2 invari-
ant; this is a closed group called the Lorentz group, Lor(R2,1 ,⊙). First we deûne a
Lorentzian trajectory about an axis as the 1-parameter subgroup of Lor(R2,1 ,⊙) leav-
ing the axis point-wise ûxed. _e principal axis theorem in this case states that every
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G ∈ Lor(R2,1 ,⊙) has one of the following canonical forms:

A = P
⎛
⎜
⎝

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞
⎟
⎠
P−1 , B = P

⎛
⎜
⎝

1 0 0
0 cosh s sinh s
0 sinh s cosh s

⎞
⎟
⎠
P−1 ,

C = P
⎛
⎜
⎜
⎝

1 −t t
t 1 − t2

2
t2
2

t − t2
2 1 + t2

2

⎞
⎟
⎟
⎠

P−1 ,

where θ ∈ [0, 2π), s, t ∈ R, and P ∈ Lor(R2,1 ,⊙).
_e above transformations are called elliptic, hyperbolic, and parabolic, respec-

tively. Tomatch this standard terminology, from this pointwe call the trajectories gen-
erated by these transformations: elliptic-relative equilibria, hyperbolic-relative equi-
libria, and parabolic-relative equilibria, but as we have mentioned before, parabolic
equilibria do not exist.

In H2, as in S2, it is possible to ûnd values of angular velocity Ω in terms of the
masses that produce elliptic and hyperbolic-relative equilibria [7]. Given these values
of Ω we are able to study the stability of the generated orbits.

To achieve our goal we will follow the same idea as in S2.

3.1 Elliptic Eulerian-Relative Equilibria

We consider three point particles with positive masses m1 ,m2 ,m3 with m3 = M ûxed
at the point (0, 0, 1) and m1 = m2 = m are at the opposite sides of a diameter of the
circle of radius r =

√
1 − z2 for a ûx z ∈ (1,∞). As for the analysis of the relative

equilibria on S2 studied in Section 2, here x1 = r cos(ωt + α), y1 = r sin(ωt + α), x2 =

r cos(ωt + α + π), y2 = r sin(ωt + α + π), x3 = 0, y3 = 0, that is, r1 = r2 = r and r3 = 0
(see Fig. 5).

M

m

m

Figure 5. An elliptic Eulerian relative equilibrium on H2.

Consider also the same transformations as in S2, (2.1). Now we express the system
in a rotating frame with variables (ξ i , η i), i = 1, 2, 3 as

(
X i
Yi

) = R(Ωτ)(ξ iη i
) ,
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where R(Ωτ) is the matrix which represents the elliptic transformations

R(Ωτ) = (
cosΩτ − sinΩτ
sinΩτ cosΩτ ) .

A�er a straightforward computation the new equations of motion are expressed as

(
ξ′′i
η′′i

) = 2Ω (
η′i
−ξ′i

) +Ω2
(
ξ i
η i

) + r2h i (
ξ i
η i

)

+
3

∑
j=1, j/=i

m j[ ξ2i + η
2
i + ξ2j + η

2
j − 2(ξ i ξ j + η iη j)Ti , j

+ r2((ξ i ξ j + η iη j)
2
+ (ξ2i + η

2
i )(ξ

2
j + η

2
j))]

−3/2

⋅ [(
ξ j
η j

) + (r2(ξ i ξ j + η iη j) − Ti , j)(
ξ i
η i

)] ,

(3.1)

where

h i = Ω2
(ξ2i +η

2
i )+2Ω(ξ iη′i −η i ξ′i)+((ξ′2i )+(η′2i ))−

r2

1 + r2(ξ2i + η
2
i )

(ξ i ξ′i +η iη′i)
2 ,

Ti , j =
√

(1 + r2(ξ2i + η
2
i ))(1 + r2(ξ2j + η

2
j)),

for i = 1, 2, 3.
In this section our goal is to show the following result.

_eorem 3.2 Consider Eulerian-relative equilibria of three masses moving on H2,
where m1 = m2 are at opposite ends of a diameter on the circle z = constant, and m3 is
ûxed at (0, 0, 1). _ese solutions are unstable for any z > 1 and any value of masses.

As in S2 let us normalize the total mass, m1 +m2 +m3 = 1. Set m1 = m2 = m; then
we have m3 = 1 − 2m.

It is easy to check that

ξ1 = 1, η1 = 0,ξ2 = −1, η2 = 0,ξ3 = 0, η3 = 0,

ξ′1 = 0, η′1 , = 0,ξ′2 = 0, η′2 = 0,ξ′3 = 0, η′3 = 0,

is a ûxed point in the rotating frame. Following the same idea as in S2, the diòerential
of the vector ûeld f corresponding to (3.1), and setting ν = µ2, it is possible to show
that the characteristic polynomial, a�er multiplying by

4096
(7m − 4R + 8mR − 4)3(8 ν2Rm − 4 ν2R + 7 ν2m − 4 ν2 + 10Rm − 4R + 7m − 4)

,

is given by

p(ν) = ν(ν + 1)Q1(ν)Q2(ν),
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where, as in the analysis for the relative equilibria on S2 studied in Section 2, we have
done R = r2 and

Q1(ν) =(8Rm − 4R + 7m − 4)ν + 10Rm − 4R + 7m − 4,

Q2(ν) =(64R2m2
− 64R2m + 112Rm2

+ 16R2
− 120Rm

+ 49m2
+ 32R − 56m + 16)ν3

+ (64R3m2
− 32R3m + 296R2m2

− 216R2m + 378Rm2
+ 32R2

− 324Rm + 147m2
+ 64R − 140m + 32)ν2

+ ( 128R4m2
− 128R4m + 496R3m2

− 512R3m + 752R2m2

− 808R2m + 532Rm2
+ 16R2

− 592Rm + 147m2
+ 32R − 168m + 16)ν

− 256R5m2
− 896R4m2

− 128R4m − 1072R3m2
− 480R3m

− 440R2m2
− 656R2m + 42Rm2

− 388Rm + 49m2
− 84m.

_e polynomialQ2(ν) can be seen asQ2(ν) = b3ν3+b2ν2+b1ν+b0. _e parameter
space is C = {(m, R) ∈ [0, 1

2 ] × (0,∞)}.
In order to conclude the proof of the above theorem, we will use the signs of the

coeõcients b3 and b0, given in the following two lemmas.

Lemma 3.3 For (m, R) ∈ (0, 1
2 ] × (0,∞), b3 > 0.

Proof In order to verify that b3 > 0, we will see that there is no critical point inside
the region (0, 1

2 ] × (0,∞). We compute

∂b3

∂R
= 8(−1 + 2m)(8Rm − 4R + 7m − 4).

We will now see that the factor (8Rm − 4R + 7m − 4) ∶= g(m, R) is negative. For
this we compute ∂g/∂R = 8m−4 < 0 form ∈ (0, 1

2 ], andwe have g(m, 0) = 7m−4 < 0.
With these simple calculations we conclude that g(m, R) < 0 for (m, R) ∈ (0, 1

2 ] ×

(0,∞).
Hence ∂b3/∂R > 0. Knowing this and with the fact that b3(0,m) = (7m− 4)2 > 0,

we conclude that b3 > 0. For m = 1
2 , b3 =

1
4 > 0. _is completes the proof.

We now focus on b0.

Lemma 3.4 For (m, R) ∈ (0, 1
2 ] × (0,∞), b0 < 0.

Proof It is easy to see that we can write 42Rm2 − 388Rm = 2Rm(21m − 194), and
this term is negative for m ∈ (0, 1/2]. Substituting this in b0 we can easily check that
b0 < 0.

With the above two lemmas we conclude the proof of _eorem 3.2.
If m = 0, then b0 = 0, so with the above method it is not possible to conclude

anything about stability, because a new zero eigenvalue appears. _is problem can
be seen as two symmetric decoupled problems. We show this case in the following
proposition.
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Proposition 3.5 Consider Eulerian-relative equilibria of three masses moving on H2,
where m1 and m2 are at opposite ends of a diameter on the circle z = constant, and m3
is ûxed at (0, 0, 1). If m1 and m2 are negligible, then the generated orbits are stable if
z ∈ (1,∞).

Proof In this case the particles m1 and m2 will be moving independently by the
force generated by m3. As we mentioned before, we have two symmetric decoupled
problems. We will analyze the system consisting of particles m1 and m3. Consider
masses m1 = m and m3 = 1.

_e corresponding matrix D f has characteristic polynomial

(3.2) p(µ) = −
F

256(R + 1)6 ,

where F can be seen in the appendix. When m is negligible, taking m → 0 we get

p(µ) =
µ2(µ2 + 1)3

(R + 1)2 ,

showing that there are only purely imaginary eigenvalues.

3.2 Hyperbolic Relative Equilibria

In this section we consider three point particles m1 ,m2, and m3 moving along
geodesics. _e particle m3 moving on the geodesic with coordinate x3 = 0, and
m1 = m2 moving symetrically on hyperbolas satisfying x1 = −x2 = x =

√
ρ2 − 1 =

constant > 0.
Consider the transformations (2.1), with ρ instead of r. We express the system in a

rotating frame with variables (ξ i , η i), i = 1, 2, 3 as

(
X i
Yi

) = R(Ωτ)(ξ iη i
) ,

where R(Ωτ) is the matrix that represents the hyperbolic transformations

R(Ωτ) = (
coshΩτ sinhΩτ
sinhΩτ coshΩτ) .

A�er a straightforward computation we obtain the equations of motion in the new
rotating frame.

(
ξ′′i
η′′i

) = −2Ω (
η′i
ξ′i
) −Ω2

(
ξ i
η i

) + ρ2h i (
ξ i
η i

)

+
3

∑
j=1, j/=i

m j[ ξ2i − η
2
i + ξ2j − η

2
j − 2(ξ i ξ j − η iη j)Ti , j

+ ρ2
((ξ i ξ j − η iη j)

2
+ (η2

i − ξ2i )(η
2
j − ξ2j ))]

−3/2

⋅ [ (
ξ j
η j

) + ( ρ2
(ξ i ξ j − η iη j) − Ti , j) (

ξ i
η i

)] ,

(3.3)
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where

h i = Ω2
(η2

i − ξ
2
i )+2Ω(η i ξ′i − ξ iη

′

i)+((ξ′2i )−(η′2i ))+
ρ2

ρ2(η2
i − ξ2i ) − 1

(η iη′i − ξ i ξ
′

i)
2 ,

Ti , j =
√

(ρ2(η2
i − ξ2i ) − 1)(ρ2(η2

j − ξ2j ) − 1),

for i = 1, 2, 3.
It is possible to see that ξ1 = 0, η1 = 1, ξ2 = 0, η2 = −1, ξ3 = 0, η3 = 0, ξ′1 = 0, η′1 , =

0, ξ′2 = 0, η′2 = 0, ξ′3 = 0, η′3 = 0 is a ûxed point of the system.
We will prove the following result about hyperbolic Eulerian-relative equilibria.

_eorem 3.6 Consider Eulerian-relative equilibria of three masses moving on H2,
where the body m i has coordinates q i = (x i , y i , z i). If m3 is negligible and is on the
geodesic contained in the yz-plane, and m1 and m2 are on hyperbolas of the form x1 =

constant, x2 = −x1, y1 = y2 = ρ sinh(t), z1 = z2 = ρ cosh(t), t ∈ R, then the generated
orbits are unstable for any ρ > 1.

Proof Consider masses m1 = m2 = 1 and m3 = m. _e corresponding matrix of
the diòerential of the vector ûeld related to the system (3.3) at the ûxed point has
characteristic polynomial p(µ) that depends on the variables µ, R andm (in a similar
way to S2, R stands for ρ2). If we take m → 0 in the characteristic polynomial, we
have

p(µ) =
1

1024(R − 1)9 µ2
⋅ (µ + 1) ⋅ (µ − 1)

⋅ [(2
√

2 +
5
2
) µ2

− 2
√

2 − R (4
√

2 + 5) −
5
2
]

⋅ [ µ4
+ (3

√
2 − 2) µ2

+ (−4
√

2 − 5)R2
+ (8 − 3

√
2)R + 3

√
2 + 1]

⋅ ((
2
√

2
7

−
5
14

) µ2
−

2
√

2
7

+ R (
4
√

2
7

−
5
7
) +

5
14

) .

_e factor (µ−1) shows a real positive root of the characteristic polynomial; hence
we conclude our result.

4 Appendix

In this appendix we give some expressions used throughout the work. All computa-
tions have been done using the algebraic manipulators of Matlab and checked again
using Maple.

_e following expression is for the factors of the discriminant of equation (2.6):
D1 =

602112R10m4 − 745472R10m3 − 4498432R9m4 + 278528R10m2 + 5599232R9m3 +

14548160R8m4 −32768R10m−2076672R9m2 − 18182912R8m3 −26604896R7m4 +

245760R9m + 6653184R8m2 + 33337920R7m3 + 30093788R6m4 − 793600R8m −

11929472R7m2 − 37735728R6m3 − 21560112R5m4 − 1024R8 + 1449984R7m +

13031296R6m2 + 26991516R5m3 + 9552844R4m4 + 6144R7 − 1667840R6m −

8798280R5m2 − 11907028R4m3 − 2392768R3m4 − 15488R6 + 1292192R5m +
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3507263R4m2 + 2959404R3m3 + 259308R2m4 + 21440R5 − 727060R4m −

699902R3m2 − 316932R2m3 − 18116R4 + 323380R3m + 25823R2m2 + 10128R3 −

113764R2m + 8232Rm2 − 4120R2 + 26460Rm + 1232R − 2744m − 196.

_e following expression is for the factors of the discriminant of equation (2.7):

D2 =

602112R10m4 − 745472R10m3 − 4856832R9m4 + 278528R10m2 + 5902336R9m3 +

17208512R8m4 − 32768R10m− 2134016R9m2 − 20511488R8m3 − 34976928R7m4 +

245760R9m + 7137536R8m2 + 40847552R7m3 + 44595420R6m4 − 807936R8m −

13572992R7m2 − 50958800R6m3 − 36510768R5m4 − 1024R8 + 1531904R7m +

15975232R6m2 + 40752444R5m3 + 18735300R4m4 + 6144R7 − 1868032R6m −

11810232R5m2 − 20383092R4m3 − 5505408R3m4 − 15744R6 + 1571232R5m +

5244095R4m2 + 5822604R3m3 + 708588R2m4 + 22592R5 − 981036R4m −

1191294R3m2 − 726084R2m3 − 20292R4 + 488332R3m + 55647R2m2 +

12432R3 − 191196R2m + 17496Rm2 − 5656R2 + 49572Rm + 1872R − 5832m − 324.

_e following expression is for the factors of equation (3.2):

F =
(96m4 R6 + 512m4 R5 + 32m4 R4 µ4 + 76m4 R4 µ2 + 1108m4 R4 + 128m4 R3 µ4 +

296m4 R3 µ2+1240m4 R3+4m4 R2 µ6+193m4 R2 µ4+418m4 R2 µ2+749m4 R2+

8m4 R µ6 + 132m4 R µ4 + 256m4 R µ2 + 228m4 R −m4 µ8 + 30m4 µ4 + 56m4 µ2 +

27m4 + 256M3 R7 + 256M3 R6 µ2 + 2048m3 R6 + 256m3 R5 µ4 + 1840m3 R5 µ2 +

6608m3 R5 + 1344m3 R4 µ4 + 5456m3 R4 µ2 + 11376m3 R4 + 48m3 R3 µ6 +

2824m3 R3 µ4 + 8400m3 R3 µ2 + 11352m3 R3 + 144m3 R2 µ6 + 2988m3 R2 µ4 +

7064m3 R2 µ2+6556m3 R2−16m3 R µ8+84m3 R µ6+1528m3 R µ4+3060m3 R µ2+

2016m3 R− 16m3 µ8 − 12m3 µ6 +276m3 µ4 +524m3 µ2 +252m3 + 1024m2 R7 µ2 +

1024m2 R7 + 512m2 R6 µ4 + 7168m2 R6 µ2 + 6656m2 R6 + 3584m2 R5 µ4 +

22528m2 R5 µ2 + 18944m2 R5 + 192m2 R4 µ6 + 10256m2 R4 µ4 + 40416m2 R4 µ2 +

30352m2 R4 + 29312m2 R3 + 768m2 R3 µ6 + 15488m2 R3 µ4 + 44032m2 R3 µ2 −

96m2 R2 µ8 + 816m2 R2 µ6 + 12704m2 R2 µ4 + 28720m2 R2 µ2 + 16928m2 R2 −

192m2 R µ8 + 96m2 R µ6 + 5120m2 R µ4 + 10208m2 R µ2 + 5376m2 R − 96m2 µ8 −
144m2 µ6 + 720m2 µ4 + 1488m2 µ2 + 720m2 + 1024mR6 µ4 + 2048mR6 µ2 +

1024mR6+256mR5 µ6+6144mR5 µ4+11520mR5 µ2+5632mR5+1280mR4 µ6+

15424mR4 µ4 + 27008mR4 µ2 + 12864mR4 − 256mR3 µ8 + 1728mR3 µ6 +

19840mR3 µ4 + 33472mR3 µ2 + 15616mR3 − 768mR2 µ8 + 64mR2 µ6 +

13056mR2 µ4 + 22848mR2 µ2 + 10624mR2 − 768mR µ8 − 1216mR µ6 +

3712mR µ4+8000mR µ2+3840mR−256m µ8−576m µ6+192m µ4+1088m µ2+

576m − 256R4 µ8 − 768R4 µ6 − 768R4 µ4 − 256R4 µ2 − 1024R3 µ8 − 3072R3 µ6 −

3072R3 µ4 − 1024R3 µ2 − 1536R2 µ8 − 4608R2 µ6 − 4608R2 µ4 − 1536R2 µ2 −

1024R µ8 − 3072R µ6 − 3072R µ4 − 1024R µ2 − 256 µ8 − 768 µ6 − 768 µ4 − 256 µ2).
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