P. 149. Find all solutions, other than the trivial solution $(a, b, c)=(1,1, c)$ of the simultaneous congruences:
$\mathrm{ab} \equiv 1 \bmod \mathrm{c}, \mathrm{bc} \equiv 1 \bmod \mathrm{a}, \mathrm{ca} \equiv 1 \bmod \mathrm{~b}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are positive integers with $\mathrm{a} \leq \mathrm{b} \leq \mathrm{c}$.

> G.K. White, University of British Columbia
P. 150. Let S be a set of commuting permutations acting transitively on set Ω. Prove that S is a sharply transitive abelian group.
A. Bruen, University of Toronto
P. 151. Given 8 points in the Euclidean plane forming two squares $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, neither congruent nor homothetic, use a ruler not more than ten times to locate their centre of similarity (that is, O such that $\triangle O A B \sim \triangle O A^{\prime} B^{\prime}$, etc.)
A. L. Steger, University of Toronto
P. 152. The classical Jordan-Dirichlet theorem states that if $f:[-\pi, \pi] \rightarrow R$ is continuous and of bounded variation, then the Fourier series of f converges to f uniformly. Find an example of a continuous f which is not of bounded variation, but whose Fourier series converges pointwise. Can you find one whose Fourier series converges uniformly?
J. Marsden, University of California, Berkeley

SOLUTIONS

P. 141. Let $v_{i}=\left(\alpha_{i 1}, \ldots, \alpha_{i n}\right), i=1, \ldots, m$ be vectors where $\alpha_{i j}$ are integers such that the greatest common divisor of all the $\alpha_{i j}$ is 1 . Prove that there exist integers k_{i} such that the greatest common divisor of the components of $v=k_{1} v_{1}+\ldots+k_{m} v_{m}$ is 1.
A. M. Rhemtulla, University of Alberta

Solution by D. Ž. Djoković, University of Waterloo

If A is the matrix $\left(\alpha_{i j}\right)$ then the assertion of the problem is that there exists a row vector K and a column vector R such that $K A R=1$. This follows from well-known theorems about the canonical form

