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Decay of trefoil and other magnetic knots
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Abstract. Two setups with interlocked magnetic flux tubes are used to study the evolution of
magnetic energy and helicity on magnetohydrodynamical (MHD) systems like plasmas. In one
setup the initial helicity is zero while in the other it is finite. To see if it is the actual linking or
merely the helicity content that influences the dynamics of the system we also consider a setup
with unlinked field lines as well as a field configuration in the shape of a trefoil knot. For helical
systems the decay of magnetic energy is slowed down by the helicity which decays slowly. It
turns out that it is the helicity content, rather than the actual linking, that is significant for the
dynamics.
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Magnetic helicity has been shown to play an important role in the dynamo process
Brandenburg & Subramanian, 2005. For periodic systems where helicity is conserved
simulations have shown that with increasing magnetic Reynolds number ReM the sat-
uration magnetic field strength decreases like Re−1/2

M (Brandenburg & Dobler, 2001).
This is problematic for astrophysical bodies since for the Sun ReM = 109 and galaxies
ReM = 1014. In order to alleviate this quenching the magnetic helicity of the small scale
fields needs to be shed (Brandenburg et al., 2009).

In the active regions of the Sun twisted magnetic field lines have been observed (Pevstov
et al., 1995). Later it was shown (Leka et al., 1996) that the magnetic field in sunspots
gets twisted before it emerges out of the surface. Manoharan et al.(1996) and Canfield
et al., (1999) demonstrated that helical structures are more likely to erupt into coronal
mass ejections. This suggests that the Sun sheds helicity.

The magnetic helicity is related to the mutual linking for two non-intersecting flux
tubes via (Moffatt, 1969)

H =
∫

V

A · B dV = 2nφ1φ2 ,

where H is the magnetic helicity, B = ∇×A is the magnetic field in terms of the vector
potential A, φ1 and φ2 are the magnetic fluxes through the tubes and n is the linking
number. The flux tubes may not have internal twist. In the limit of large ReM H is a
conserved quantity as well as the linking number.

In presence of magnetic helicity the magnetic energy decay is constrained via the
realizability condition (Moffatt, 1969) which gives a lower bound for the spectral magnetic
energy

M(k) � k|H(k)|/2µ0 with
∫

M(k) dk = 〈B2〉/2µ0 ,

∫
H(k) dk = 〈A · B〉,

the magnetic permeability µ0 , where 〈.〉 denotes volume integrals.
In this work we extend earlier work (Del Sordo et al., 2010) where the dynamics of

interlocked flux rings, with and without helicity, was studied as well as a non-interlocked
configuration. Here we also study a self-interlocked flux tube in the form of a trefoil knot.
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Figure 1. The three triple ring configurations
for the initial time. From left to right: inter-
locked rings with no helicity, interlocked rings
with finite helicity and non-interlocked rings
without helicity. The arrows indicate the direc-
tion of the magnetic field. Adapted from Del
Sordo et al., 2010.

Figure 2. The initial magnetic field
configuration for the trefoil knot.

The three-rings setups consist of three magnetic flux tubes. In two configurations they
are interlocked where in one the helicity is zero and in the other one it has a finite value,
as shown in Fig. 1. In the third setup we instead consider unlocked rings. Since the rings
do not have internal twist, the helicity of this last configuration is zero. We also study
the evolution of a self-interlocked flux tube having the form of a trefoil knot, with finite
helicity (Fig. 2). In this case we have H = 3φ2 , so the linking number is n = 3/2. All of
these setups evolve according to the full resistive equations of MHD for an isothermal
compressible medium. The Alfvén time is used as time unit.

As a consequence of the realizability condition the magnetic energy cannot decay faster
than the helicity. The setups with finite H show a slower decay than the setups with no
helicity (Fig. 3). The decay of the trefoil knot follows approximately the same decay law
as the other configuration consisting of three rings with finite H. Within the simulation
time H decays only to about one half of the initial value conserving then the topology.
During later times field lines reconnect and the helicity seems to go into internal twist,
which is topologically equivalent to linking; see Fig. 4.

Figure 3. Evolution of the normalized magnetic energy for the trefoil know (solid/red line) com-
pared with various three-ring configurations with n = 2 (dash-dotted line), n = 0 (dashed/blue
line), and the non-interlocked case (dotted/blue line).
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Figure 4. Magnetic field lines at 5 Alfvén times for the trefoil knot. The colors represent the
magnitude of the magnetic field. Note that internal twist generation is weak.

The slow decay of H conserves the topology of the system. The linking is then even-
tually transformed into internal twisting during magnetic reconnection. Since both non-
helical setups evolve similarly we conclude that it is mainly the magnetic helicity and
not the actual linking which influences the dynamics. The helical trefoil knot evolves in a
similar manner. This confirms the hypothesis that the decay of interlinked flux structures
is governed by magnetic helicity and that higher-order invariants, advocated for example
by Yeates et al., 2010, may not be essential for describing this process.

In conclusion, we can say that magnetic helicity is decisive in controlling the decay of
interlocked magnetic flux structures. If the magnetic helicity is zero, resistive decay will
be fast while with finite magnetic helicity the decay will be slow and the speed of decay
of magnetic energy depends on the speed at which magnetic helicity decays. This is likely
an important aspect also in magnetic reconnection problems that has not yet received
sufficient attention.
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