A THEORY OF NORMAL CHAINS

CHRISTINE WILLIAMS AYOUB

Introduction. In this paper we deal with a group-theoretic configuration of
the following type: G is an additive group (not necessarily abelian) for which
an operator system M and a complete lattice ¢ of M admissible subgroups are
defined; we call G and M-¢ group. In §1 we make various definitions and note

that analogues of some of the classical theorems of group theory hold.

Our main interest is in the normal chains for an J[-4 group. (Ve fest discuss

normal chains in general, and obtain results which hold if the factors of the chain
fulfil suitable conditions (§3). In the remainder of the paper these results are
applied to three particular types of normal chain and the relation between these
chains is discussed.

The first type of chain discussed is the so-called Loewy chain. This type is of
especial importance because it is intimately related to the other two types con-
sidered. It is shown how the existence of a Loewy chain connecting the group
to 0 may be used in place of chain conditions. Furthermore, if such a chain
exists for a nilpotent group, then it is actually a central chain.

We have adopted Hirsch's definition of solubility (or rather its analogue for
M-¢ groups) rather than the customary definition. For the chains usually
employed do not meet*the general requirements needed to apply our theory.
On the other hand, the chains introduced by Hirsch do satisfy these require-
ments, provided that the group possesses a Loewy chain connecting it to 0.

1. Definitions and basic theorems. Let G be an additive group which is
not necessarily abelian. If A, for each a in a set ¥, is a subgroup of G, then we
denote the intersection of the A, by [} 4. (e € A). The subgroup of G generated
by the 4, we call the compositum of the 4. and denote this subgroup by
C 4.(a € A). In the case of a finite number of subgroups, 4y,..., 4,, we
denote the intersection and compositum by

AN ... N4, (or N 4)) and {4y,...,4,} (orCA4)
i=1 i=1

respectively.

Let M be a system of operators for G, so that each element of M induces an
endomorphism in G, i.e., we have:

(i) agisin G, whenever a is in M and g is in G.

(i1) a(gy == g2) = agi = agy, for a in M and gy, g» in G.
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We let (aB)g = a(Bg), for e and B in M and g in G.

A subgroup S of G is called M admissible if 3/S € S. \We shall restrict our
attention to a family of A1 admissible subgroups ¢ which form a complete lattice
relative to intersection and compositum, i.e., we assume about the subgroups
of ¢ that:

(1) If 4 isin ¢, A is M admissible.

(i) 0 and G are in ¢.

(iii) If A, is in ¢, for each a in the set ¥, then [} 4.(a € ) is in ¢.

(iv) If A, is in @, for each a in the set ¥, then C A,(a € A) is in ¢.

We note that if the subgroups of ¢ satisfy the descending chain condition, (iii)
may be replaced by (iii’), and if.they satisfy the ascending chain condition,
(iv) may be replaced by (iv’), where:

(iii") If A and B are in ¢, then 4 M B is in ¢.

(iv’) If A and B are in ¢, then {4, B} is in ¢.

\We call G an M-¢ group if a particular system of operators M, and a particular
complete lattice ¢ of M subgroups are to be distinguished; if ¢ consists of all
M admissible subgroups we call G an M group. If a subgroup S belongs to ¢,
we say that S is a ¢ subgroup of G; we note that S is also an M-¢ group. If G
is an M-¢ group, we denote by ¢ the set of all normal ¢ subgroups of G; since
the ¢ subgroups of G form a complete lattice, the normal ¢ subgroups of G also
form a complete lattice. Hence we may also consider G as an M-y group. We
make the following definitions:

Definition. If the ¢ subgroup S of G has no normal ¢ subgroups, S is ¢ simple.

Definition. Let G and G’ be M-¢ groups. ¢ is an M-¢ isomorphism (hono-
morphism) of G onto G’ if

(i) o is an isomorphism (homomorphism) of G onto G’. (Hence G’ = Go).

(i1) (ag)e = a(go), for all a in M and for all g in G.

(iii) If S'is a ¢ subgroup of G, Se is a ¢ subgroup of G’; if S’ is a ¢ subgroup
of G', the inverse image of S’, S'¢~! is a ¢ subgroup of G. We say that G is
M-¢ isomorphic to G’ if there exists an M-¢ isomorphism of G onto G’, and we
write G =~ G’ (M-¢).

Definition. Let G and G’ be 1-¢ groups. o is an M-¢ isomorphism (hono-
morphism) of G into G’ if Go © G’ and o is an A/-¢ isomorphism (homomorphism)
of G onto Go.

In the last two definitions, the systems of distinguished A7 admissible sub-
groups for the groups G and G’ are both denoted by ¢, although in general they
are different systems. At first sight this would seem to lead to confusion, but
it is always clear from the context what is meant and the notation proves to be a
convenient one.

Let G be an M-¢ group, and N a normal ¢ subgroup. Then G/N is an M
group, and a system of 1/ admissible subgroups ¢ in G/N may be defined in this
way: if U/N is an A/ admissible subgroup of G/N and U is in ¢, then LU'/V is
in ¢. It is clear that this system of subgroups of G/N forms a complete lattice
and hence G/N is an AM-¢ group.
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The following analogues to the classical theorems hold:

TreorREM 1.1 (The Homomorphism Theorem). If o is an M-¢ homomorphism
of the M-¢ group G onto the M-¢ group G', then the kernel N is a normal ¢ subgroup
of G and G/N 1s M-¢ isomorphic to G'. Conversely, if N is a normal ¢ subgroup
of the M-¢ group G, then there exists an M-¢ homomorphism 1 of G onto G/N;
T maps g onto the coset N + g, for all g in G, and 1s called the natural mapping of
G onto G/N.

TaeoreM 1.2 (The First Isomorphism Theorem). If S and T are ¢ subgroups
of the M-¢ group G, and if S 1s normal in {S, T}, then S N\ T is a normal ¢ sub-
group of T and

{S, T}/S=T/SN\T (AM-9¢).

THEOREM 1.3 (The Second Isomorphism Theorem). Let G be an M-¢ group
and N, H normal ¢ subgroups of G with N C H, then we have:

G/N _G N
/N —H (AF-#).

Definition. Let A and B be ¢ subgroups of the M-¢ group G with 4 C B. If
there exists a chain

(0) A=4,C...CA,CAC...C A, = B,

where 4; is a normal ¢ subgroup of A1 (1 =1,...,n — 1), (0) is called a
normal ¢ chain from A to B, or a normal ¢ chain connecting A and B. If
A, # A for each 4, (0) has length n; the M-¢ groups A ;41/A; are called the
factors of (0). If all the factors of (0) are ¢ simple, (0) is called a ¢ composition
chain.

Definition. Let G be an M-¢ group. A normal ¢ chain (¢ composition chain)
connecting.0 and G is called a normal ¢ chain for G (¢ composition series).

Definition. Let G be an M-¢ group. The ¢ subgroup S of G is M-¢ character-
istic if every M-¢ automorphism (M-¢ isomorphism of G onto itself) leaves S
invariant, i.e., if So = .S for every M-¢ automorphism ¢ of G. S is M-¢ fully
invariant if every M-¢ endomorphism of G (M-¢ homomorphism of G into itself)
leaves S invariant, i.e., if St € S for every M-¢ endomorphism 7 of G.

It is important to notice that the inner automorphisms of a group are not
necessarily M-¢ automorphisms and hence a ¢ subgroup may be M-¢ character-
istic without being normal. In some of our arguments we consider the map of a
¢ subgroup under an inner automorphism. Thus in some cases we make the
assumption that ¢ contains conjugates, i.e., if Sis in ¢ and g is any clement of G,
then — g+ S+ gisin ¢. If ¢ contains conjugates, we say that ¢ is normal.

2. K-chains. lLet (K) be a property which has meaning for each ¢ subgroup
of an M-¢ group, i.c., if S is a ¢ subgroup of the M-¢ group G, then one of the
following statements must be truc; S satisfies (K) in G; S does not satisfy (K)
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in G. We shall consider properties (K) which satisfy some or all of the following
conditions:

(k1) If G is an M-¢ group, then the ¢ subgroup 0 satisfies (K) in G.

(ko) If for each ain a set U, A, is a normal ¢ subgroup of the M-¢ group G which
satisfies (K) in G, then C Aq.(a € ¥) satisfies (K) in G.

(ks) If A and A., for each a in the set A, are normal ¢ subgroups of the M-¢
group G with A D A, and if A/A, satisfies (K) in G/A,, for each o 1n U, then
A/ N 4ula € N) satisfies (K) in G/ (| Aala € A).

(ky) If A, B, C are normal ¢ subgroups of the M-¢ group G with A D B, and
if A/B satisfies (K) in G/B, then A M C/B M C satisfies (K) in G/B M C.

(ks) If A, B, C are normal ¢ subgroups of the M-¢ group G with A D B, and
if A/B satisfies (K) in G/B, then {A, C}/{B, C} satisfies (K) in G/{B, C}.

Let G be an M-¢ group and y the lattice of normal ¢ subgroups of G. If N
is in ¢, G/N is an M-¢ group and hence (K) is defined not only for the ¢ sub-
groups of G (in G) but for the ¢ subgroups of G/N (in G/N).

We now consider two chains. We construct first the ascending chain:

(1) 0=TCThC..CT,CTmC...,

where, forz = 0,1,2,...,T1is the compositum of all NV in ¢ such that N D T;
and N/T; satisfies (K) in G/T;. Then T /T satisfies (K) in G/T; by (k).
T 41 is well defined, since by (ki), T;/T; satisfies (K) in G/T;. We note that
in order to construct the chain (1), we need only use the properties (k;) and
(ko) of (K). Similarly, we construct the descending chain:

(2) 62502512...28j281+12...,

where, forj = 0,1, 2, ..., S;1is the intersection of all NV in ¢ such that NV C .S,
and S,;/N satisfies (K) in G/N. Then S;/S;1 satisfies (K) in G/S;11 by (ks).
S;1 is well defined, since by (ki), S,/S; satisfies (K) in G/S;. For the con-
struction of the chain (2) only (k;) and (kj) are used.

THEOREM 2.1. Let G be an M-¢ group.

(1) Assume that the property (IX) satisfies (ki) and (ko). If the  subgroups of
G satisfy the ascending chain condition, and if for A in ¢, A # G, there exists a
subgroup B in  such that B D A and B/A satisfies (K) in G/A, the chain (1) is
finite and T, = G for some integer t.

(i1) Assume that the property (K) satisfies (ki) and (ks). If the Y subgroups of
G satisfy the descending chain condition, and if for B in ¢, B # 0, there exists a
subgroup A in ¢ such that A C B and B/A satisfies (K) in G/A, the chain (2) is
finite and S; = 0 for some integer s.

Proof. (i) The groups T'; of (1) are ¢ subgroups of G by definition. Hence
by the ascending chain condition, there exists an integer ¢ such that 7", = T',,,.
If T, is different from G, there exists a Y subgroup NV of G such that N/T, satisfies
(K) in G/T, and N D T,; but this is impossible, since then T ,.; would be
different from T°,. Hence T, = G. (ii) is established in a similar fashion.
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Definition. Let G be an 3M-¢ group. A chain
(3) NOQNI_C_...QNigNiH_C_...,
where, for7 = 0,1,..., NV;isiny, and N,/N; satisfies () in G/N,, is called a
K-chain for G (an ascending K-chain). A chain
“) MeDM,D...2M;DM12...,
where, for j =0, 1,..., M, isin ¢, and M,;/M ;. satisfies (K) in G/ ;1q, will
also be called a K-chain for G (a descending K-chain). The K-chain
(5) NoCNC...CN;,C...CN,
has length #, if for =0,...,n — 1, N; # N1 The chains (1) and (2) are
called the upper and lower K-chains for G.
THEOREM 2.2. Let G be an M-¢ group.
(i) Assume that (K) satisfies (ki), (ko), and (ks). If
0=NC...CN, SN C.
is an ascending K-chain for G, then, for 1 = 0,1, ..., N; C T';, where the T'; are
the terms of the upper K-chain (1).
(i1) Assume that (K) satisfies (ki), (ks), and (ky). If
G=J[02...—_—__)ﬂ[_72ﬂ[j+12
is a descending K-chain for G, then, for 7 = 0,1, ..., M, D S,, where the S; are
the terms of the lower K-chain (2).

Proof. (i). We prove by induction on ¢ that N; € T;forz = 0,1,.... Since
0= Ny= T, it is obvious that Ny & Ty. Assume that N; C T';. N.1/N;
satisfies () in G/Ny; therefore, by (ks),

(Nivt, T /AN, Ty = (Nip, T}/ T
satisfies (K) in G/T;. Hence by the definition of T i1, { N1, T} S T iy, or
NS Ty Thus N, CTiforz=0,1,.

(it). We prove by induction on j that M,; 2 S; for j = 0, 1,
G = My = So; hence My D Sy. Assume that M;2 S,. M,/ M, satisfies (I\)
in G/M j;1; therefore, by (ky), ;M S,/ M ;0 M S;satisfies (K) inG/M ;10N S,
But 37; N\ S; = S, by the induction assumption. Hence by the definition of S,-H’
Si1 S MM S; C My
Thus S; € M forj=0,1,....
CoroLLARY 2.1. Let G be an M-¢ group and assume that (ki)-(ks) hold for the

property (K). Then if there exists a (finite) K-chain which connects 0 and G, the
upper and lower K-chains are K-chains of shortest length connecting 0 and G. If

o=_(,C...CU;,C...ClL,=¢ (of length n)
is any K-chain of shortest length, S, € U, S T, fort =1,..., n.
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THEOREM 2.3. Assume that (ky)-(ks) hold for the property (K). Let G be an
M-¢ group and assume that G has upper and lower K-chains of length n connecting
0 and G. Then the chains

(6) 0=Tof\Sn_ICT;f\S,,_QC...CTif\S_i_IC...CTn_lf\So
=Tn—1CG

and

(7) O C {TOy Sn—l} = Sn—l C RO C {T‘iv Sn—i—l} C R C {T—ly SO} = G
are K-chains for G.

Proof. To show that (6) is a K-chain, we have to verify that Ty M S,_is
/TN S,— iy satisfies (K) inG/T; N S,—;-1fori =0,...,n — 2. By the defi-

nition of T, T;41/T; satisfies (K) in G/T;for 7 =0, ..., n — 1. Therefore,
by (ky),

Tii O\ Smica/Ti N\ Syie
satisfies (K) in G/T; M S,—i—2. By the definition of S}, S,-—2/Sp_i—1 satisfies
(K) in G/S,—i1for7=0,...,n — 2. Therefore, by (ky),

Ti1 N Spm1—2/Ti1 N Spei1
satisfies (K) in G/T ;41 M S,_i-1. Hence, by (ks),

TN Sn—i—Z/Ti M Spmia M Ti+1 NS i1 = TH—l N Sn—z‘—i’/Ti M Sn-i—l

satisfies (K) in G/T; M S,—;_1, and (6) is a K-chain for G.

To show that (7) is a K-chain, we have to verify that {T 1, S,_ -2} /T4, Spia}
satisfies (K) in G/{T, Sp—s—1} for 2 =0,..., n — 2. Since Ti41/T; satisfies
(K) in G/T;, we deduce from (k;) that

{Ti-i-l’ Sn—‘i—-l}/{Tiy Sn—i—l}
satisfies (K) in G/{T';, S,—i—1}. Alsosince S,—;_»/S,-;_;satisfies (K) in G/S,__1,
$T Suci2t /T, Su_i1} satisties (K) in G/{T, S,_;-1}. Hence by (ks),
{ {Ti+1r Sn—i—l} ’ {Tiy Sn—i—ﬁ} } /{ Tir Sn—i—l} = {TH—ly Sn—i—2} {/Th Sn—i—l}

satisfies (K) in G/{T, S.—i_1}, and (7) is a K-chain for G.
The K-chains (1), (2), (6) and (7) are shown in the accompanying Hasse
diagram.

THEOREM 2.4. Let (K) be a property for which (ki) holds. If the M-¢ group G
has a K-chain connecting 0 and G, let

&) 0=0,C...CU;CUinC...CU =G,

and

9) 0=1,C...CV,CViuC...C V=G

be K-chains of shortest length. Then U;inot C Vy, fori=0,...,n — 1.
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Tu= 3G
Thes
T2 S
To-a S
{5, T §,0 Taz
Tl s,

S
Sﬂ—l "\T;.

Swz

T.-5.-0

Proof. Suppose that U1 & V;; then

0=VoﬂU,-Hg...ngf\UH_lg..._QVif\U,“
=U«;+1CU1+2C--.CUn=G

is a K-chain, and its length is less than #. But this is impossible and hence
UH.] not g Vi.

Consequently if G has a K-chain connecting 0 and G we have for the upper
and lower K-chains, provided that (K) satisfies (ki)-(ks):

1) Sp—iinot & T (z=0,...,n—1),
(ii) Tyinot C S, (i=0,...,n—1).

The properties (K) which we shall discuss are also invariant under 17-¢
isomorphisms of the group. That is:
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(ke) Let G be an M-¢ group and o an M-¢ isomorphism of G. Then if the normal
¢ subgroup A satisfies (K) in G, Ao satisfies (K) in Go.

The conditions (k;) and (kg) are equivalent to the following condition:

(k’s) Let G be an M-¢ group and n an M-¢ homomorphism of G. If A and B
are normal ¢ subgroups with A O B, and if A/B satisfies (K) in G/B, then An/By
satisfies (K) in Gn/Bn.

Proof. Clearly (k’;) implies (kg). We show next that (k’s) also implies (ks).
We assume that 4 and B are normal ¢ subgroups of the M-¢ group G with
A D B and that 4/B satisfies (K) in G/B. If C is a normal ¢ subgroup of G,
let n be the natural mapping of G onto G/C. Then Ay = {4, C}/C and
By = {B,C}/C. Thus by (k’s),

%,Lg}} ;g satisfies (K) in 507
But (K) is invariant under M-¢ isomorphism and hence {4, C}/{B, C} satisfies
(K) in G/{B,C}.

Conversely, we show that (ks) and (ks) imply (k’s). Assume that 4 and B
are normal ¢ subgroups of the M-¢ group G with 4 D B and that 4 /B satisfies
(K) in G/B. Letn be an M-¢ homomorphism of G, and let C be the kernel of 5.
Then C is a normal ¢ subgroup of G and the natural homomorphism of G onto
G/C takes 4 onto {4, C}/Cand Bonto {B, C}/C. Hence by the Homomorphism
Theorem there exists an M-¢ isomorphism of Gy onto G/C which takes An onto
{4, C}/C and B onto {B, C}/C.

By the Second Isomorphism Theorem there exists an M-¢ isomorphism of

G/C

1B.CI/C onto G/{B, C}

G/C

which takes
%%% onto {4, C}/|B, C}.
Therefore, there exists an M-¢ isomorphism ¢ of G/{B, C} onto Gy/By with
An/Bn = ({4, C}/{B, C})o.
By (ks), {4, C}/{B, C} satisfies (K) in G/{B, C}, and from (k) it follows that
An/ By satisfies (K) in Gn/Bn.

THEOREM 2.5. Let G be an M-¢ group and (K) a property for which (k;)-(ks)
hold. The terms of the upper and lower K-chains are M-¢ characteristic.

Proof. We prove by induction that the terms of the upper K-chain are M-¢
characteristic. 7T, = 0 and hence is M-¢ characteristic. Assume that T, is
M-¢ characteristic; and let n be an M-¢ automorphism of G. Then % induces
an M-¢ automorphism 7 of G/T,, since Tym = T';. We deduce from (k¢) that

Toum/Ti= (Tur/T7
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satisfies (K) in G/T'; = (G/T;)%. Hence by the definition of Ty, Ty S T ip1.
Similarly, Tym™ & Ti11s0 that Ty = T g1

We prove by induction that the terms of the lower K-chain are M-¢ character-
istic. Sy = G and hence is M-¢ characteristic. Assume thatS,is M-¢ character-
istic and let 7 be an A/-¢ automorphism of G. By (k’s), Sjn/S;+m satisfies(K)
in Gn/S;+m which implies that S;.; € S;;mm. Since a similar argument shows
that S]-+1 - Sj_H'I']‘l, Sj+177 = Sj+1.

In this section we have often made the hypothesis that the property (K)
satisfies certain ones of the conditions (k;)-(ks). It may happen, of course, that
(K) satisfies these (k;) for some M-¢ groups but not for others. In the following
sections we shall often restrict the class of M-¢ groups considered, and discuss
particular properties (IX) for this class. It is clear that the results of this section
may be applied to this class of groups, provided that (K) satisfies suitable con-
ditions (k;) for groups in this class, and provided that the ¢ subgroups and
quotient groups of a group in the class also belong to the class.

3. Loewy chains. The first property (K) which we shall consider gives
rise to the so-called Loewy chains [2, pp. 506-309]. Following Remak, we make
the following definitions:

Definition. Let G be an M-¢ group. If F is a minimal normal ¢ subgroup
( # 0) of G, we call F a foot of G.

Definition. The compositum of all feet of the A/-¢ group G is called the socle
and is denoted by S = S(G). (If G has no feet, the socle is defined to be 0.)

Before defining Loewy chains we state the following results [7]:

Lemva 3.1, If T is a normal ¢ subgroup of the M-¢ group G and if
T = C F(a € N) where F, is a foot of G for each a of the set U, then there exists a
subset B of A suchthat T = > °Fs(8 € B). (The notation 3_° is used for direct sum.)

Remak proves this in the case where ¥ is finite. The same method of proof
is valid in the infinite case, using transfinite induction.

COROLLARY 3.1. Let G be an M-¢ group with socle S # 0. S is the direct sum
of feet of G.

LemMa 3.2, If N is a normal ¢ subgroup of the M-¢ group G contained in the
socle S of G, N 1s the direct sum of feet of G. Furthermore, there exists a normal ¢
subgroup N' of G such that S = N @ N'.

Proof. let K be the compositum of all feet F of G with F € N. By Lemma
3.1, there exist sets I and B such that

K=3 F.(ecll), S=K®2 F; (8 €9)

where F, and Fp are feet of G for a in I and g8 in B respectively. N 2D K and
hence N = K @ (NN Y.° F3(8 < B)).
Assume that NN °F;# 0 (8 © B). Let x be a non-zero element of
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NNY Fs(B€B); thenx =fi+ ...+ f,, where, fori =1, ..., n, f,is in
F3,and B;1s in B. Hence

L=NNY Fs, 0.
i=1

Z° F;. is a ¢ subgroup of G and its ¢ subgroups satisfy the minimum condi-
=1

tion. Hence there exists a minimal ¢ subgroup F 5 0 contained in L. Thus
F is a foot of G and is contained in N. But this is impossible because
then F & Kand K ML = 0. Therefore

NNY Fe=0(8 €B),N=K=2"F,(a €9),

so that iV is the direct sum of feet of G.
Let N/ = 3"° F5(8 € B); then N’ isa normal ¢ subgroupof Gand S = N @ N,

COROLLARY 3.2. If N is normal ¢ subgroup of the M-¢ group G contained in the
socle S of G, then S/ N 1is the direct sum of feet of G/N.

Proof. By Lemma 3.2, S = N @® N’ and N’ = Y ° F3(8 € B), where Fsis a
foot of G, for 8 in B. S/N is therefore M-y isomorphic to N’ and hence is the
direct sum of feet of G/N.

Consider now the following property of ¢ subgroups of an M-¢ group:

(R). Let A be a ¢ subgroup of the M-¢ group G. A satisfies (R) in Gif 4 is
contained in the socle of G.

Definition. A normal ¢ subgroup N of the M-¢ group G is fully reducible
with respect to G if it is the compositum of feet of G. (We assume that 0, which
is the sum of no feet, is fully reducible.)

From Lemma 3.2 we see that a normal ¢ subgroup satisfies (R) in G if and
onlyv if it is fully reducible with respect to G.

We call an R-chain a Loewy chain. The property (R) obviously satisfies
(k1) and (k;) so that the upper Loewy chain may be constructed. We denote
the upper Loewy chain by:

(10) 0=S5<C...c5,CSn<C....
We verify that (R) satisfies (ks):
TuaeoreM 3.1. Let A, B, and C be normal ¢ subgroups of the M-¢ group G with

A D B. If A/B is fully reducible with respect to G/B, then {A, C}/{B, C} is fully
reducible with respect to G/{B,C}.

Proof. Since A/B is fully reducible with respect to G/B, A’B = C (4./B)
(a = ), where 4,./B is a foot of G/B, for each a in the set I.

4, ¢} _ {C4..C) _ Cid,, C

{B,C}  {B,C}  {B,C|

(a = ).

Now

https://doi.org/10.4153/CJM-1952-016-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1952-016-1

172 CHRISTINE WILLIAMS AYOUB

(4, C} _ {4, (B, C}} . A

B, CI = (B0 “ANIBC s
A, is a minimal ¥ subgroup of G which contains B. Hence since 4, M {B, C}
is a ¢ subgroup of Gand B C 4, N {B, C} C A4,, either

BzAum{Br C} or AazAum{By C} SO thatAag {B, Cql

g

In the first case,

4., A, i
5 = W)

and hence {4., C}/{B, C} is a foot of G/{B, C}. In the second case,
{A., C} = {B, C}. Therefore, {4, C}/{B, C} is fully reducible with respect to
G/{B, C}.

Thus the condition (R) satisfies (k,), (kz), and (ks) and hence as a consequence
of Theorem 2.2 we have:

THEOREM 3.2. Let G be an M-¢ group which possesses a Loewy chain
OZNOQ...QJVigN.H,Ig...

(that is, N ;1s normal in G, and N 1/ N ; is fully reducible with respect to G, N ,, for
1=0,1,...), then N; C S, where the S, are the terms of the upper Loewy chain.
Hence if N, = G for some integer n, S, = G so that the upper Loewy chain connects
0 and G and has length < n.

If J is a maximal ¢ subgroup of the M-¢ group G, then G/J is ¢ simple and
hence is fully reducible with respect to G/J. Hence if (ks) were satisfied by (R)
we should have G/N fully reducible (with respect to G/N) for N the intersection
of maximal ¢ subgroups of G. That this is not in general the case is shown by a
simple example:

ExampLE 3.21. Let G be the additive group of integers, A void and let ¢
consist of all subgroups of G. Then if p is any prime, (p), the group generated
by p, is a maximal normal subgroup of G. Furthermore,

_rjl(Pi) =0

if p1, po, ... Is an infinite sequence of different primes. But G contains no
minimal subgroups, and hence is certainly not fully reducible; in fact, the upper
Loewy chain has as its only term 0.

We shall need the following theorem to show that (k;) holds for the property
(R) in an M-¢ group G, provided that the ¢ subgroups of G satisfy the minimum
condition:

THEOREM 3.3. Let A and B be normal ¢ subgroups of the M-¢ group G with
A D B. If A/B ts fully reducible with respect to G/B, then B is the intersection
of maximal ¥ subgroups of A.
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Proof. (i) Assume that B = 0. By Lemma 3.1, there exists a set B such
that 4 = 2° 43(8 < B) where, for 8in B, Az is a foot of G. For 6 in B define

Js =, A5 (B € B).
B

Then 4 = Js @ 45, and J; is a maximal ¢ subgroup of 4.

LetK = ) Js; Kisaysubgroupof 4 and hence if K # 0,K = ZA4,(y € Q),
where € is non-void, and € C 8. Ifyisin€, 4, S N Js = K (§ € B) so that
in particular 4, € J,. But this is impossible. Therefore, K = f} J5 = 0, and
B = 0 is the intersection of maximal ¢ subgroups of 4.

(i1) In the general case if we apply the result of (i) to the quotient group,
G/B, we have: There exists a set 8 such that B/B =} (J,/B) (v € 9B),
where J,/B is a maximal ¢ subgroup of 4/B, for v in 8. But then

B=0N1J,
Y

and J, is a maximal ¥ subgroup of 4, for y in 8.

THEOREM 3.4. Assume that the  subgroups of the M-¢ group G satisfy the
minimum condition. Let A, A, be ¢ subgroups of G for each a in the set N, with
A. CA. Thenif A/A.1s fully reducible with respect to G/A.,, for a in A, 4/ | 4.
1s fully reducible with respect to G/ [) 4.

Proof. By Theorem 3.3, A, is the intersection of maximal ¢ subgroups of 4.
Hence ] 4. is the intersection of maximal ¥ subgroups of 4, and is therefore
the intersection of a finite number of maximal ¥ subgroups of 4, since the ¢
subgroups of G satisty the minimum condition.

Let
C=N4.=N0Ni,
i=1
where J/; ({ = 1, ..., n) is a maximal ¥ subgroup of 4, and assume that » >1
and that
K,=NM,#C G=1,...,n).

(5% j)=1

Then since J/; is a maximal ¢ subgroup of 4 and K, is not contained in 17,,
A = {K,, M,}. 3, has the maximal ¢ subgroups

ANy oo, MM M,; and Ky = N (3, N A1)
=38

so that the same argument applied to 3f; shows that 1f; = {K,, M, N 1M,}.
Continuing in this manner we obtain

Hence
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a/c = C (x,/0),

K, K, i{M,K}
¢ SEKNM,S M,
- A/M,

which is ¢ simple. Thus K,/C is a foot of G/C, so that A/ 4. = 4/C is
fully reducible with respect to G/C.

Hence (R) satisfies (k;) for M-¢ groups whose y subgroups satisfy the mini-
mum condition, and the lower Loewy chain may be constructed for these groups.
We denote the lower Loewy chain by:

(11) G=Ry2..2R;2Rmu2D....

(M)

THEOREM 3.5. Assume that the ¢ subgroups of the M-¢ group G satisfv the
minimum condition. Let A and B be  subgroups of G with B C A. If A/B is
fully reducible with respect to G/B, then A M C/B M C is fully reducible with
respect to G/B M C.

Proof. By Theorem 3.3,

B= n]lfir

i=1

where M; (¢ = 1, ..., n) is a maximal ¢ subgroup of 4. Hence

BNC=N WM ,NC).
i=1
fANC= M,NC,

ANC _  ANC  _{M,ANC)
M,NC M,NANC— M,

which is ¢ simple. Hence M; M C is a maximal ¢ subgroup of 4 M C; and
Theorem 3.4 shows that A M C/B M C is fully reducible with respect to
G/BNC.

CoROLLARY 3.3. If the ¢ subgroups of the M-¢ group G satisfy the minimum
condition, then for G the property (R) satisfies the conditions (ki)-(ks).

(‘/L[“I/ ) H

Hence we have:

THEOREM 3.6. Let G be an M-¢ group whose y subgroups satisfy the minimum
condition, and assume that G possesses a Loewy chain:

G=K022K12Kj+12

(that 1is, K; 1is in ¢, and K ,;/K ;1 ts fully reducible with respect to G/K ;4.1, for
j=0,1,...) Then K;DR;forj=0,1,..., wherethe R;are the terms of the
lower Loewy chain (11). Hence if K, = 0 for some integer n, R, = 0 so that the
lower Loewy chain connects G and 0 and has length < n.
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CoroLLARY 3.4. Under the hypotheses of the preceding theorem (that is, the ¢
subgroups of G satisfy the minimum condition and K,, = 0 for some integer n), the
upper and lower Loewy chains connect O and G and have equal lengths.

THEOREM 3.7. Let G be an M-¢ group and assume that the upper Loewy chain
connects 0 and G so that
0=SC...CS58C...CS =aG
T'hen if we define the chain
G=MD...2M;,DM;.1D..

L]

where M ;11 s the intersection of M, with all maximal ¢ subgroups of M ;, there
exists an integer m < n such that M, = 0.

Proof.. We use induction to prove that M; € S,_;. Since S,_; is the inter-
section of maximal ¢ subgroups of G, 4/, & S,~1. Assume that M; C S,—;; by
Theorem 3.3, S,— ;- is the intersection of maximal ¥ subgroups of S,—_; so that
there exists a set 2 such that N, is a maximal y subgroup of S, for a in U, and

Sp—je1 = NN, (a € 90).
Either {M,;, N.} = Ny or S,—;. In the first case, M; N\ N, = M;; in the
second, M ;M N, is a maximal ¥ subgroup of A/}, since
M, o AMu N Sy
T, AN, ST, T A (4)

which is ¢ simple. Thus

N (M, NN,
is the intersection with A ; of maximal ¥ subgroups of A, so that

My CNQALNAN)CSAN, = S,

Hence M; C S,—; i =0,1,...,n). In particular, M, € Sy, = 0and M, = 0.

As we have seen the converse of Theorem 3.7 is not true, for Example 3.21
shows that even if M, = 0, there may be no Loewy chain connecting 0 and G.
Under the hypothesis of Theorem 3.7, it is not possible to prove that if AL, = 0,
S,. = G, as the following example shows:

ExampLi 3.71. Let W be the direct sum of the cyclic groups generated by b,
bi, ..., by ..., elements of prime order p; thus
W=0®0)®...0 0)®....

I.et M consist of the endomorphisms p;, where p;(6) = b, p,(b;) = b; and
pi(b;) = 0 (j #1). lLet ¢ consist of all 3/ admissible subgroups of W.
Then V=(05)®...® (b)) ®@...isthesocleof Wand 0 C V C 11" is the

upper Loewy chain for TV, 1f

Vi=(b)®...0 bimt) @0 —0) @ (bysr) @ ...,
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V., is a maximal ¢ subgroup of W, and

Qn=(b—bl—...—b,,)@(b,,+1)+...,

i=1
so that

V1=0.

1

8

Hence although the length of the shortest Loewy chain for W is 2, the inter-
section of all maximal (normal) ¢ subgroups is 0.

4. Central chains. The centre of an M-¢ group G is not necessarily a ¢
subgroup of G. However, if for « in the set ¥, S, is a ¢ subgroup contained in
the centre of G, the compositum of the S, is a ¢ subgroup which is contained in
the centre of G.

Definition. Let G be an M-¢ group. The ¢ centre of G is the compositum of
all the ¢ subgroups which are contained in the centre of G, and is denoted
by Z4(G).

The ¢ centre is the uniquely determined greatest ¢ subgroup of G all of whose
elements are centre elements, and is obviously normal in G.

In this section we shall consider Z-chains, or central chains, where the property
(Z) is defined by:

(Z) The ¢ subgroup A of the M-¢ group G satisfies (Z) in G if 4 C Z4(G).
Clearly (k;) and (k) hold for (Z).

TuEOREM 4.1. If A and B are normal ¢ subgroups of the M-¢ group G with
A D B, and if A/B is contained in Z4(G/B), then for any M-¢ homomorphism
of G, An/Bn 1s contained in Z4(Gn/Bn). Hence (k') holds for (Z).

Proof. Let a be an element of 4, g an element of G; then

—an—gn+an+gm=((—a—g+a+ghn

which is in By, since —a — g + a + gis in B. Hence An/Bn & Z4(Gn/Bn).
Definition. Let G be an M-¢ group. We make the inductive definition:

Zo = ZQ(G) = 0, Zv+1/Zv = Zv+1(G)/ZV(G> = Z¢(G/Z’)
for all ordinals » > 0, and
Zy = Zx(G) = C Z,(G),
29N

for limit ordinals A.

The groups Z;, for positive integral ¢, are the terms of the upper central chain
and hence are M-¢ characteristic by Theorem 2.5; it is easily verified (byv
transfinite induction) that Z, is normal and M-¢ characteristic, for each ordinal ».

THEOREM 4.2. Assume that the M-¢ group G possesses a central chain,

0=NyC...CN; SN C...,
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then N, S Z;, fori = 0,1,.... If N, = G for some integer n, the upper central
chain is finite of length ¢ < n, and connects 0 and G.

Proof. It has been shown that (k’;) implies (k;) so that (Z) satisfies (ky),
(ks), and (k). Hence the theorem follows from Theorem 2.2 (i).

Definition. Let A and B be normal ¢ subgroups of the M-¢ group G. Then
(4, B) is the intersection of all normal ¢ subgroups of {4, B} which contain
—a—b+a+b,forallain 4 and all b in B.

Thus (4, B) is the smallest normal ¢ subgroup of {4, B} which contains
all the commutators —a — b + a + b.

LEmMMA 4.1. Let A and B be normal ¢ subgroups of the M-¢ group G with B C A.
A /B is contained in Z4(G/B) if and only if (4, G) is contained in B.

Proof. Assume that A/B C Z,(G/B). If a and g are elements of 4 and G
respectively, — a — g + a + g is an element of B. Thus B is a normal ¢ sub-
group of G = {4, G} which contains —a — g+ a + g, for all ¢ in 4 and all
g in G; hence (4, G) € B. Conversely, if B D (4, G), the element
—a—g+a-+gisin B, forallain 4 and all g in G; hence

a+ g= g+ a(mod B),
or A/B C Z4(G/B).

THEOREM 4.3. Let G be an M-¢ group.

(i) If A and A., for each a in the set A, are normal ¢ subgroups with A D A,,
and if 4 /4, C Z,(G/A,), for a in U, then

A/ N4 S Zy(G/ N 4a);

hence (ks) holds for (Z).

(ii) If A,B and C are normal ¢ subgroups with A O B,and if A/B © Z,(G/B),
then

ANC/BNCC Z,(G/BNC);

hence (ky) holds for (Z).

Proof. (i) By Lemma 4.1, 4. 2 (4, G), for a in A; therefore, | 4. 2 (4, G)
so that
A/ N 4. © Zs(G/ N Ao).

(ii) Since, by Lemma 4.1, (4,G) &€ B, (AN C, G) € (4, G) S B. Since C
is normal in G, the element — ¢ — g+ ¢+ gisin C, forall ¢in C and g in G.
Thus (4 N\ C, G) C C. Therefore, (4 N C,G) € BN C, and by Lemma 4.1,

ANC/BNCC Zy(G/BNC).
Definition. Let G be an M-¢ group. We define by transfinite induction:
C’'G) =G, C*(G) = (C(G),6)

for all ordinals » > 0, and
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cNG) = N C©G)
<A
for limit ordinals A.

The groups C*(G), for positive integral 7, are the terms of the lower central
chain. For by Lemma 4.1, C**(G) is the smallest normal ¢ subgroups of G in
C*(G) such that CYG)/C**(G) is contained in Z4(G/C*(G) ). It is easily
verified (by transfinite induction) that C*(G) is M-¢ fully invariant for each
ordinal v; C'*!(G) is normal in G (by definition) and, for A a limit ordinal,
C*(G) is obviously normal in G.

LeMMa 4.2, If N is a normal ¢ subgroup of the M-¢ group G, then
C'(G/N) = {C'(G),N}/N =0,1,...).
Proof. We use induction on 7. The lemma is true for 7 = 0, since
C°(G/N) = G/N = {G,N}/N = {C'(G), N} /N.
Assume that the lemma is true for ¢ = j, that is, assume that
C'(G/N) = {C'(G), N}/N,
and let C+1(G/N) = K/N. Then
CGMN ( G__/_z_v_____>
CTHG/N) = TNCTHG/N)

or

{C’(G),N}/N G/NY.
K/N = Z“’(K/N)’

hence {C/(G), N}/K C Z;(G/K). Thus
K 2 (IC'(6), N}, 6) 2 (C'G), 6) = C"M(G)

so that
(12) K D {C'(G), N].

On the other hand, since C/(G)/C’*(G) is contained in Z4(G/C**1(G) ), we
deduce from property (ks) that

_{C'G), N} <V )
(c1G), v} = 2\ >N}>'
hence
(C'(G),N}/N Z( - G/N*>
[C771(G), N} /N & “\[C7°(G), NI /N
Thus
(13) C*(G/N) C {C™(G), N}/N,

and combining (12) and (13) we obtain K/N = C#*+(G/N) = {C*Y(G), N|/N.
The induction is thus complete, and C*(G/N) = {CY(G), N}/N (1 =0, 1,...).

THEOREM 4.4. Let G be an M-¢ group which possesses a central chain

G=2Me2D...2M;2DMu...,
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then M; 2 CI(G), forj = 0,1,.... If M, = 0 for some integer n, then the lower
central chain connects G and 0 and has length < n.

Proof. Since (Z) satisfies (ki), (ks), and (k4), this follows from Theorem
2.2 (ii).

COROLLARY 4.1. If the M-¢ group G possesses a central chain of lengih n con-
necting 0 and G, the upper and lower central chains are of equal length ¢ < n and
both connect 0 and G.

Definition. The M-¢ group G is ¢ nilpotent of finite class c, if the upper central
chain connects 0 and G and has length c.

THEOREM 4.5. If the M-¢ group G is ¢ nilpotent of finite class c, then
(1) Any ¢ subgroup S is ¢ nilpotent of finite class < c.
(1) If N is a normal ¢ subgroup of G, G/N 1s ¢ nilpotent of finite class < c.

Proof. (1) We prove by induction that Z;(G) NS C Z,(S) j=0,1,...,0).
Since Z4(G) NS C Z4(S), the assertion is true for j = 0. We assume that
Z(G) NS C Z,(S) and show that

Zina(G) NS S Zia(S).

Let zand s be elements of Z ;11(G) M S and Srespectively; then — s — z + s + 2
is in S, and is in Z;(G), since

(G, Z:1(G)) < Z:(G).

Hence —s — z+ s+ z is an element of Z;(G) \.SC Z;(S) so that s is in
Z11(S) and Z:11(G) NS C Z:44(9).
(i1) Since G is ¢ nilpotent of finite class ¢, C°(G) = 0. By Lemma 4.2,

C*(G/N) = {C*(G), N} /N = N/N.
Hence G/N is ¢ nilpotent of finite class < c.

THEOREM 4.6. Let G be an M-¢ group. G is ¢ nilpotent of finite class if and
only if a central chain connecting 0 and G may be obtained from any normal ¢
chain for G by a suitable refinement.

Proof. Assume that Z,(G) = G and let
(14) 0=NC...CN,CNeuC...CN, =G
be any ¢ chain for G. Consider the chain
(15 0C...CN;={N,ZoNN} C...C{Ny Z,\Nia)
C{N,yZ 1NN} S ... S N
={N;y Z,N Ny} = {(Nyt, ZoN Ny} S ... S 6.
Clearly {N;, Z; M\ N1} is normal in G. Furthermore,
Ny Zpa NN} /Ny, Z; NN} © Zg(G/ (N, Z; N\ Niga}),
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as can be seen by using properties (ks) and (ks;). Hence (15) is a central chain.
This proves that the condition is necessary. The sufficiency is obvious.

COROLLARY 4.2. Assume that the M-¢ group G is ¢ nilpotent of finite class. If
the ¥ subgroups of G satisfy the double chain condition, then a ¥ composition series
s mecessarily a central chain.

5. M-¢ groups with a finite Loewy chain. We now consider an M-¢ group G
which has a finite Loewy chain connecting 0 and G and show that in this case
the upper and lower central chains are finite. Furthermore, if G is ¢ nilpotent
of finite class, the upper Loewy chain, if it exists, is a central chain.

Definition. Let G be an M-¢ group. If 7 is the first ordinal such that
Z.(G) = Z,11(G), then Z,(G) is the hypercentre of G and is denoted by H(G).
If ¢ is the first ordinal such that C?(G) = C°t1(G), then C°(G) is the hyper-
commautator of G and is denoted by H*(G). G is ¢ nilpotent if H(G) = G and
H*(G) = 0.

Let us suppose for the moment that G is an M-¢ group whose ¢ subgroups
satisfy the double chain condition. Then the hypercentre H(G) = Z,(G) for
some integer #, and the hypercommutator H*(G) = C™(G) for some integer 7.
Hence G is ¢ nilpotent if and only if G is ¢ nilpotent of finite class so that either
of the following conditions is necessary and sufficient for G to be ¢ nilpotent:

() H@G) =G or (i) H*(G) = o.

In this section we shall show that these results hold for an M-¢ group which
possesses a Loewy chain connecting 0 and G. Furthermore, if G is ¢ nilpotent
then any Loewy chain connecting 0 and G (if one exists) is a central chain. This
is an analogue to Corollary 4.2, which asserts that a ¥ composition series (if one
exists) is a central chain.

THEOREM 5.1. Let J be a minimal normal ¢ subgroup of the M-¢ group G which
15 not contained in the hypercommutator of G, then J is contained in the ¢ centre of G.

Proof. J is contained in G = C°(G) but is not contained in H*(G) = C°(G).
Hence there exists a first ordinal » such that J is not contained in C*(G). Since
J C C#(G) for all u < v implies

JC NG,

<y

v is not a limit ordinal. Let» = A 4+ 1. Thus J is contained in C*(G) but not
in CM1(G).

Since CM1!(G) is normal in G, J /M C*1(G) is a normal ¢ subgroup of G.
J M CM1(G) is contained in the minimal normal ¢ subgroup J and is not equal
to J, since J is not contained in C*1(G). Hence

JNCMG) = o.
Let g be an element of G, and a an element of J; then

—g—atgta=(-g—at+g+a
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is in J, and is also in C*1(G), since J C CMG). Therefore —g —a+g+a =0,
or ¢ commutes with g. Thus J C Z,(G).
COROLLARY 5.1, If S(G) is the socle of the M-¢ group G,
S(G) & Z4(G) + H*(G).
In particular, if G is ¢ nilpotent, S(G) C Z4(G).
COROLLARY 5.2. If, for every & subgroup N of the M-¢ group G, G/N is ¢

nilpotent, any Loewy chain is a central chain. In particular, if G is ¢ nilpotent
of finite class, every Loewy chain is a central chain.

Proof. Let
(16) 0=NC...CN,CNinC...
be a Loewy chain. Then N, /N, C S(G/N,;) € Z4(G/N,), since G/N; is ¢
nilpotent. Hence (16) is a central chain. '

THEOREM 5.2. If the M-¢ group G has a Loewy chain of length n which connects
0 and G, then H*(G) = C*(G).

Proof. From the theory of Loewy chains we know that the upper Loewy
chain connects 0 and G and has length < #. Let
0=SC...CS5,C...C¢G

be the upper Loewy chain. For each positive integer 7, G/C*(G) is ¢ nilpotent
of finite class since, by Lemma 4.2,

C'(G/CH(G)) = {C'(G), CHG)}/C(G) = CHG)/C(G).
The chain
{So, CHG)}/CHG) S ... S {S5 CHG)}/CHG) S (S, C' G/ CUG) S ...
C {Sn CH(G)}/CY(G) = G/CYG)

is a Loewy chain (of length < #), since

15,00, C'(G)}/C'G) o, (5,21, C'G)} Ore),

{S; CHG)}/CUG) {S5 C'(G)}

which is contained in the socle of G/{S;, C*(G)}. By Corollary 5.2, this is a

central chain for G/C*G). Hence G/C*(G) is ¢ nilpotent of finite class < .
Therefore

CYG/CYG)) = C'G)/C'(G).
But on the other hand, by Lemma 4.2, C*(G/C¥G) ) = {C*(G), C}(G)}/C*G).
Thus C*(G) = CYG), for ¢ > n, and H*(G) = C*(G).

COROLLARY 5.3. If the M-¢ group G has a Loewy chain of length n which
connects 0 and G, and if H*(G) = 0, then G is ¢ nilpotent of finite class < n.

A theorem about maximal normal ¢ subgroups analogous to Theorem 5.1
about minimal normal ¢ subgroups is:
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THEOREM 5.3. If J is @ maximal normal ¢ subgroup of the M-¢ group G which
does not contain the hypercentre of G, then J contains C(G).

Proof. H(G) = Z,(G) is not contained in J. Hence there exists a first ordinal
v such that Z,(G) not C J. Since Z,(G) C J for all u < »,

Cz.cycJ

<y

and therefore » is not a limit ordinal. Let » = x + 1. Z(G) is contained in J
but Z,4+1(G) is not contained in J. Z,1(G) is normal in G, and J is a maximal
normal ¢ subgroup of G; therefore

G=1J+ ZG).

Let z and 2’ be elements of Z,41(G); the element — 2z — 2 + 2+ 2’ is in
Z(G) € J. Hence G/J is abelian, or C1(G) C J.

In Theorem 5.2 we have given a sufficient condition that the hypercommu-
tator, H*(G) equal C"(G) for some integer n. We now find that under a some-
what weaker condition the hypercentre, H(G) equals Z,(G) for some integer m.
We need first a lemma.

LeMMA 5.1.  If the normal ¢ subgroup N of the M-¢ group G is contained in
Z . (G) for some integer r, and if G possesses a chain

G=DyD...OD; DDy D...DOD, =0,
where D 11 15 the intersection of maximal  subgroups of D, then
NND/NNDyy © Zy(G/N N D).
Proof. For fixed 7 (0 < 7 < m) consider the chain
0=2,G)NNND; C...CZ,G)YNNND;C...
CZ,GYNNND;,=NND,

If J is a maximal ¢ subgroup of N /M\ D;, J contains the first subgroup of the
chain but does not contain the last. Hence there exists an integer j such that

Z,GYNNND,; € J; Z;;za(G)YNNND;not C J.
Thus J C (Z;41(G) NN N D;) +J S NN D, and, since J is maximal,
. ]VmDi = (Zj+1(G) mNmDi).

Let g and 2z be elements of G and Z;1(G) M N M D; respectively. The
element — g — 3+ g+ zisin NN D, (since N and D; are normal subgroups
of G), and is also in Z,(G), since by definition

Z11(G)/Z,(G) = Zy(G/Z,(G)).

Thus — g — 2+ g+ szisinZ, "NNND,CJ. HenceJ 2 (G, NN\ D;). But
N N Dy, is the intersection of maximal ¢ subgroups of N /M D, Therefore

NNDy12 (G,NND,)
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and thus by Lemma 4.1, NN D;/N N\ D1 C Zs(G/N N D 1)
THEOREM 5.4. If the M-¢ group G possesses a chain
G=D¢D...0OD;DDi1D...0O D=0,
where D ;1 1s the intersection of maximal ¢ subgroups of D;, then H(G) = Z,(G).
Proof. Letrbeany positive integer and let Z, = Z,(G). Then by Lemma 5.1,

Z,N\D/Z, N\Dy1 S Zy(G/Z; N D).
Hence
0=Ny=2Z,"D,,C..CN;,=Z,"NDy ;,C...CN,=2Z,"\Dy= 2,

is a central chain for G; and by Theorem 4.2, Z, = N, C Z,. But r was

arbitrary so that the relation holds for each ». Hence Z, = Z, for r > m, and
H(G) = Z,(G).

COROLLARY 5.4. If the M-¢ group G possesses a Loewy chain of length n which
connects 0 and G, H(G) = Z,(G). Hence if H(G) = G, G is ¢ nilpotent of finite
class < n, and the Loewy chain is a central chain.

Proof. By Theorem 3.7, if G has a Loewy chain of length # connecting 0 and G,
and if we define the chain

G=M02..._D_Mj211’[j+12...,

where M, is the intersection of M; with all maximal ¥ subgroups of M,
there exists an integer m < n such that M,, = 0. Thus by Theorem 5.4,
H(G) = Z,(G). Butn > m, so that H(G) = Z,(G).

6. ¢-solubility. In this section we study another property of the type dis-
cussed in §3. However, before defining the property, we prove some further
results about ¢ nilpotency which we shall need.

LEMMA 6.1. Let G be an M-¢ group and assume that ¢ 1s normal. If N is a
normal ¢ subgroup of G which is ¢ nilpotent of finite class, N is ¢ nilpotent of
finite class.

Proof. It is sufficient to show that the ¢ subgroups Z;(IV) are normal in G.
To show that Z4;(V) is normal in G, we note that Z4(N) is a subgroup of the
centre Z(N) of N, and that Z(N) as a characteristic subgroup of N is normal
inG. Hence if g is any element of G,

—g+ZMN)+gS —g+ ZWN) +g=Z(WN).
Since ¢ is normal, — g + Z4 (V) 4+ gisa ¢ subgroup of G; hence
—g+Zs(N) + g = Zs(N).
It may be shown by induction that Z;(N) is normal in G.

THEOREM 6.1. Let G be an M-¢ group and assume that ¢ is normal. If M and
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N are normal ¢ subgroups of G which are ¢ nilpotent of finite class, then M + N
15 ¢ nilpotent of finite class.

Proof. (i) Assume that M M N = 0so that M + N = M & N. Since (by
Lemma 6.1) M and N are ¢ nilpotent, there exist chains:

a7 0=NC...CEN,CN;u<...CN, =N,
(18) 0=MZ..CM;,CSMnC...CM, =M,
with N; and M; ¢ subgroups of G (z =1, ..., n), and

Nipt/Ni C Zy(N/Ny); M/ M; C© Zy(M/M,).

Let m 41, 7441, m, and 7 be elements of M 1, N1, M, and N respectively; the
element

—(m+mn)— M1+ ni1) + (4 n) + (M + n41)
= —m—Myp1+m+My1— N — B+ 0+ 1
isin M;+ N, since (M, M;,) € M;and (N, Niy1) € N,. Hence
Mo+ Nopr/ My + N C Zy(M + N/M, + N,

and the chain0 = My+ N & .. C M, + N, M1+ NauC...CSM+N
is a central chain for M + N; thus M + N is ¢ nilpotent of finite class.

(i) We consider the general case (i.e., no longer assume that M M N = 0).
Since M/M M N and N/M M N are ¢ nilpotent of finite class, it follows from
(i) that M 4+ N/M M N is ¢ nilpotent of finite class and hence there exists a

chain

(19) MAN=QC...C0CQuC...CQ=M+N,
where Q;isiny, and Q:11/Q: C Z4y(M + N/Q;). By Theorem 4.6, there existsa
chain

(20) 0=K¢C...CK,CK;uC...CK,=MNN,

where K ;isiny and K ;11/K; C Z,(M/K ,), and there exists a refinement of (20):
(21) 0=Ky=K¢0oC...CK,;,=K;,C ... QKJ-,,,_Q...QKM]
=K, C...C MNN,
where K, isin ¢, and K ,11/K;, © Z4(N/K;,). Clearly,
Kip1/Kjp © Ze(M + N/K;,p).
Combining (19) and (21) we obtain the chain
0=K,C...CK,,C..CEMNN=QC...C0:&...C0,
= M-+ N.
This is a central chain for M + N. Thus M 4+ N is ¢ nilpotent of finite class.

COROLLARY 6.1. Let G be an M-¢ group and assume that ¢ is normal. If the
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¥ subgroups of G satisfy the ascending chain condition, the compositum of normal ¢
nilpotent ¢ subgroups of finite class is ¢ nilpotent of finite class.

This result can also be obtained under the hypothesis that there exists a
Loewy chain connecting 0 and G.

THEOREM 6.2. Assume that the M-¢ group G possesses a Loewy chain connecting
0 and G, and assume that ¢ is normal. If A., for each a in a set A, is a normal ¢
subgroup of G which is ¢ nilpotent of finite class, then C A.(a € A) is ¢ nilpotent
of finite class.

Proof. Let 0 =S, C...CS5;C...C S, =G be a Loewy chain for G. If
4 =C4, (a € )
the chain
22) 0=ANS =TC...CANS;,=T;C...2ANS,=T,=4

is a Loewy chain for the M-y group 4, that is, each T';;1/T; is the sum of minimal
¥ subgroups of 4/T;. For

Tus _ AN Sus _ (4N S, S
T, ANS;, = N 4),

which is the sum of minimal ¢ subgroups since it is contained in S;41/S;. We
now show that the chain (22) is a central chain.

By Lemma 3.1, T;.1/T; can be written as the direct sum of minimal ¢ sub-
groups; let

Ti1/Ti=2, F/T, (v € 6),
where F,/T;, for each v in the set €, is a minimal ¥ subgroup. For fixed v in €
and for fixed a in A, we show that T; D (F,, 4.). Since F,/T;is a minimal ¢
subgroup, either

F’y N (A + Ti) = T{ or }"7 N (A + T{) = F'y.
In the first case, F, N\ A, C T;; and (F,, 4.) € F, M A, so that (F,, 4,) € T,
In the second case,

F'ygAu—I—Tg or Fy/T,QAa+T1/T1.

Since F,/T;is a minimal ¥ subgroup of the ¢ nilpotent group 4, + T4/T,, it is
contained in Zs(d.+ T./T:). Therefore, (4., + T; F,) € 7T; so that
(A., F,) € T, Itfollows that, for each v in € and for each ain ¥, (4., F,) C T
It follows that, for each v in G, (C 4., F,) C T, or equivalently, F,/T,
C Z4,(A/T;). This in turn implies that

Ti1/Ti =2, F,/T:C Zy(4/T5),

which shows that (22) is a central chain. Hence 4 = C 4, is ¢ nilpotent of
finite class.
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THEOREM 6.3. Assume that the hypercommutator H*(G) of the M-¢ group G,
1s equal to C*(G) for some integer n. If N.isa normal ¢ subgroup of G, for each a. in
the set A, and if G/N, is ¢ nilpotent of finite class, then G/} N. (a € A) is ¢
nilpotent of finite class.

Proof. There exists a central chain for G of finite length #, connecting N, to
G, for each’a. Hence

C"(G) C N..
But

H*(G) =C"(G) € C™(G)
for each a. Hence H*(G) C N,, for each a, and
H*(G) S NN, =N.

G/H*(G) is ¢ nilpotent of finite class and hence G/N is ¢ nilpotent of finite
class.

COROLLARY 6.2. Under the hypotheses of the previous theorem, H*(G) is the
intersection of all normal ¢ subgroups N such that G/ N is ¢ nilpotent of finite class.

LEMMA 6.2. Let A and B be normal ¢ subgroups of the M-¢ group G with A O B.
If A/B is ¢ nilpotent of finite class, An/Bn is ¢ nilpotent of finite class for any M-¢
homomorphism n of G.

Proof. There exists a chain B=B;C ... CB; CB;1C...CB, =4,
where B;is a normal ¢ subgroupof 4 and B;1/B; S Z4(4/B;). By Theorem 4.1,

Biwm/Bm © Z¢(A7’/Bi7l)y
and thus An/Bn is ¢ nilpotent of finite class.

It may be shown in a similar fashion that the following is a consequence of
Theorem 4.3 (ii):

LLEMMA 6.3. Let A, B, and C be normal ¢ subgroups of the M-¢ group G with A O B.
If A/B is ¢ nilpotent of finite class, then A M C/B M C is ¢ nilpotent of finite class.

Consider now the property (S) of M-¢ groups:

(S) The ¢ subgroup 4 of the M-¢ group G satisfies (S) (in G), if it is ¢ nilpotent
of finite class.

In order to apply our theory of normal chains we must verify that (S) satisfies
the conditions (ki)-(ke). (ki) obviously holds. The validity of (ks) follows
from Lemma 6.3. Lemma 6.2 shows that (k’s) holds; and (k’;) is equivalent to
(ks) and (ke). In order to ensure that (ky) and (k;) hold we make further hy-
potheses about the groups under consideration.

Assume that ¢ is normal. It follows from Corollary 6.1 that (k.) is satisfied
if the ascending chain condition holds for the ¥ subgroups. On the other hand,
in virtue of Theorem 6.3, (k3) is satisfied if the descending chain condition holds
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for the ¢ subgroups. Hence (k) and (k;) hold if we assume the double chain
condition for ¢ subgroups. However, this condition may be replaced by the
weaker condition that G possesses a Loewy chain connecting 0 and G. This
follows from Theorem 6.2 (for (k;) ); and from Theorems 5.2 and 6.3 (for (kj) ).
So we have:

THEOREM 6.4. Let G be an M-¢ group. Assume that ¢ is normal and that G
possesses a Loewy chain connecting 0 and G. Then (S) satisfies (k1)-(ke).

Therefore, the upper and lower S-chains may be constructed, and the results
of §2 hold for S-chains. The terms of the lower S-chain are:
G2 H*(G) 2 H¥G) = HYH*(G)] 2 ... 2 H%.(G) = H}HXG)] 2 ....

This follows from Corollary 6.2. However, the terms of the upper S-chain are
not necessarily the successive hypercentres, for the hypercentre H(G) is not
necessarily the maximal ¢ nilpotent normal ¢ subgroup of G.

Definition. 1If the M-¢ group G possesses an S-chain that connects 0 and G,
G is ¢ soluble.

THEOREM 6.5. Let G be an M-¢ group. Assume that ¢ is normal and that G
possesses a Loewy chain connecting 0 and G. If G is ¢ soluble, any Loewy chain
connecting 0 and G has abelian factors and consequently is an S-chain.

Proof. Let0=U, C ... CU; S U1 © ... < U, = G be a Loewy chain
for G; then U,/ U; is the direct sum of feet of G/U;. Hence in order to show
that U1/ U, is abelian, it is sufficient to show that any foot of G/ U, is abelian.

Iet F/U;be a foot of G/U;. Since G is ¢ soluble, there exists a chain

U1=Tog...gTngj+1§...§Tm=G,
where 7', is in ¢ and T,41/7; is ¥ nilpotent of finite class. Choose j so that F is
not contained in 7; but is contained in T ;1. Then
Ui.CSFNT;CF
and hence, since F/U; is a minimal ¢ subgroup, U; = FN T, Now F + T,/T;
is a minimal ¥ subgroup of the ¥ nilpotent group T;41/T;; by Corollary 5.1,
F + T,/T;is in the centre of T;;1/T ;. This implies that F/ U, is abelian, since

F/U,2F+T,/T;
The definition of solubility that we have used was discussed by Hirch [6].

It is customary to proceed somewhat differently.
Definition. For the M-¢ group G we define

G(O) =G G(n+1) - (G(n) G(n))
forn > 0.

(23) G=G"2...26P2>2Gc"Y ...

is a descending normal ¢ chain, and the factors G{**? /G‘? are abelian; in fact,
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G0 is the smallest normal ¢ subgroup of G® such that the quotient group is
abelian. However the dual construction does not yield an ascending normal ¢
chain with abelian factors; for the compositum of abelian normal ¢ subgroups
is not necessarily abelian.

The following theorem shows that the definition given for ¢ solubility coincides
with the customary one:

THEOREM 6.6. The M-¢ group G is ¢ soluble, if and only if G'® = 0 for some
integer s.

Proof. The chain G=G9 D ...DG?D...DGY =0 has abelian
factors and hence is an S-chain.

Conversely, assume that G = RyD ... DR, D2 R;;1 D ... 2R, =01is an
S-chain so that R;/R1 is ¢ nilpotent of finite class. Then the chain

Ri/Riy1 = C'(Ri/Ris1) 2 ... 2 C'(Ri/Riy1) 2 ... 2 C"(R;/Ris1)
= Ri+1/Rz+1
joins R;/R ;1 to R;y1/Riy1 and has abelian factors. Hence if

Cj(Ri/Ri+1) = Ri ;/Ris, Ri,ni = Ry,
the chain

G=R02...2R12...QRL]‘Q...QRL,LI.:RHJQ...QR”:O

is a normal ¢ chain for G with abelian factors. It is easy to verify that if there
exist a normal ¢ chain with abelian factors connecting G and 0, then G = 0
for some integer s.
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