A NOTE ON 2-LOCAL MAPS

YING-FEN LIN¹ AND TSAI-LIEN WONG²

¹Department of Mathematics Education, National Hualien University of Education, Hua-Lien, Taiwan 970, Republic of China (linyf@mail.nhlue.edu.tw) ²Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung, Taiwan 804, Republic of China (tlwong@math.nsysu.edu.tw)

(Received 13 October 2004)

Abstract The aim of this note is to characterize 2-local automorphisms and derivations on matrix rings over finite-dimensional division rings.

Keywords: local automorphisms; local derivations; matrix rings

2000 Mathematics subject classification: Primary 16W20; 16W25; 15A33

1. Introduction

The study of local maps was initiated by Kadison [18] and Larson and Sourour [20]. In 1997, Šemrl [29] introduced the concepts of 2-local automorphisms and derivations on the algebra B(H). Let A be an algebra. A (non-additive) map $\varphi: A \to A$ is called a 2-local automorphism if, for every $a, b \in A$, there exists an automorphism $\sigma_{a,b}: A \to A$ such that $\varphi(a) = \sigma_{a,b}(a)$ and $\varphi(b) = \sigma_{a,b}(b)$. Similarly, a (non-additive) map $\delta: A \to A$ is called a 2-local derivation if, for every $a, b \in A$, there exists a derivation $d_{a,b}: A \to A$ such that $\delta(a) = d_{a,b}(a)$ and $\delta(b) = d_{a,b}(b)$.

Local and 2-local maps have been studied on different operator algebras by many authors [2-7, 15-17, 19, 21-28].

It is interesting to note that the study of local maps on finite-dimensional algebras is sometimes more difficult than in the infinite-dimensional case. In [29], Šemrl described 2-local automorphisms on the algebra B(H), all bounded linear operators on the infinite-dimensional separable Hilbert space H. However, for the case when H is finite dimensional, Šemrl's original proof was long and involved tedious computations. A similar description for the finite-dimensional case appeared later, in [19,24]. Our first goal is to describe 2-local automorphisms on matrix algebras over finite-dimensional division rings.

Theorem 1.1. Let K be a finite-dimensional division algebra over its centre Z with characteristic not 2, and let $M_n(K)$, $n \ge 1$, be the ring of $n \times n$ matrices over K. Then every 2-local automorphism of $M_n(K)$ is an automorphism or an anti-automorphism

of $M_n(K)$. Moreover, if $n \ge 2$, then every 2-local automorphism of $M_n(K)$ is an automorphism of $M_n(K)$.

This result is a generalization of theorems due to Molnar [24] and Kim and Kim [19] obtained for $M_n(\mathbb{C})$. It also generalizes a theorem by Chebotar *et al.* [5, Theorem 5.3], where 2-local automorphisms of finite-dimensional division rings K with characteristic 0 were described. It is interesting to note that the case of anti-automorphism (if n = 1) is really possible (see [5, Example 5.4]).

Our second theorem gives a description of 2-local derivations on matrix algebras over finite-dimensional division rings.

Theorem 1.2. Let K be a finite-dimensional division algebra over its centre Z with characteristic not 2, and let $M_n(K)$, $n \ge 1$, be the ring of $n \times n$ matrices over K. Then every 2-local derivation of $M_n(K)$ is a derivation.

This result is a generalization of Kim and Kim's theorem [19] obtained for $M_n(\mathbb{C})$. Finally, motivated by [5, Theorem 2.1], we prove the following result.

Theorem 1.3. Let K be a division ring with centre Z and let $M_n(K)$, $n \ge 2$, be the ring of $n \times n$ matrices over K. Suppose that $\alpha : M_n(K) \to M_n(K)$ is a bijective additive map such that

$$\alpha(a^{-1})\alpha(a) = \alpha(b^{-1})\alpha(b) \neq 0$$
 for all invertible $a, b \in M_n(K)$.

Then $\alpha = \lambda \varphi$, where $\varphi : M_n(K) \to M_n(K)$ is an automorphism or an anti-automorphism and $\lambda = \alpha(1) \in \mathbb{Z}$.

This result is connected with the well-known Hua theorem [14] and it generalizes some results of [5, 10].

2. 2-local automorphisms and derivations on matrix algebras over division rings

Let K be a finite-dimensional division algebra over its centre Z, and let $M_n(K)$ be the ring of $n \times n$ matrices over K. We denote by e_{ij} the matrix unit, that is, the matrix which has a one in the (i, j)-position and zeros elsewhere.

Let $\operatorname{tr}: K \to Z$ be a reduced trace of K and $\operatorname{Tr}: M_n(K) \to Z$ be the trace map of $M_n(K)$ defined by $\operatorname{Tr}(A) = \operatorname{tr}(a_{11}) + \operatorname{tr}(a_{22}) + \cdots + \operatorname{tr}(a_{nn})$ if $A = \sum_{i,j} a_{ij} e_{ij} \in M_n(K)$. We first recall the following result about the reduced trace (see, for example, [9, p. 148, Lemma 4]).

Lemma 2.1. There exists an $a \in K$ such that $tr(a) \neq 0$.

Lemma 2.2. If A is non-zero in $M_n(K)$, then there exists a $B \in M_n(K)$ such that $Tr(AB) \neq 0$.

Proof. We denote A by $\sum_{i,j} a_{ij} e_{ij}$. Since $A \neq 0$, say $a_{st} \neq 0$ in K for some $1 \leq s, t \leq n$. By Lemma 2.1, we can pick an $a \in K$ such that $\operatorname{tr}(a) \neq 0$. Let $B = a_{st}^{-1} a e_{ts}$. We have $AB = \sum_i a_{it} a_{st}^{-1} a e_{is}$ and so $\operatorname{Tr}(AB) = \operatorname{tr}(a) \neq 0$ as desired.

Now we can describe 2-local automorphisms of matrix algebras over finite-dimensional division rings using some ideas from [5, 24].

Proof of Theorem 1.1. Let $\varphi: M_n(K) \to M_n(K)$ be a 2-local automorphism. For every $x,y \in M_n(K)$, there exists an automorphism $\sigma_{x,y}$ on $M_n(K)$ such that $\varphi(x) = \sigma_{x,y}(x)$ and $\varphi(y) = \sigma_{x,y}(y)$. By [13, Theorem 4.3.1], there exists an invertible $c \in M_n(K)$ such that $\sigma_{x,y}(x) = cxc^{-1}$ and $\sigma_{x,y}(y) = cyc^{-1}$. Therefore,

$$\varphi(x)\varphi(y) = \sigma_{x,y}(x)\sigma_{x,y}(y) = cxyc^{-1}$$
(2.1)

and so

$$\operatorname{Tr}(\varphi(x)\varphi(y)) = \operatorname{Tr}(xy) \quad \text{for all } x, y \in M_n(K).$$
 (2.2)

Let $\{k_1, k_2, \ldots, k_m\}$ be a basis of K over Z. We claim that $\varphi(k_i e_{jl})$, $1 \leq i \leq m$, $1 \leq j, l \leq n$, are linearly independent over Z. Assume on the contrary that there exist λ_{ijl} in Z not all zero, say $\lambda_{i_0j_0l_0} \neq 0$, such that

$$\sum_{i,j,l} \lambda_{ijl} \varphi(k_i e_{jl}) = 0.$$

By Lemma 2.1, there exists an $a \in K$ such that $tr(a) \neq 0$. Since $\sum_i \lambda_{ij_0l_0} k_i \neq 0$, let

$$b = \left(\sum_{i} \lambda_{ij_0 l_0} k_i\right)^{-1} a.$$

It follows from (2.2) and the linearity of the trace map that

$$0 = \operatorname{Tr}\left(\left[\sum_{i,j,l} \lambda_{ijl} \varphi(k_i e_{jl})\right] \varphi(b e_{l_0 j_0})\right)$$

$$= \sum_{i,j,l} \lambda_{ijl} \operatorname{Tr}(\varphi(k_i e_{jl}) \varphi(b e_{l_0 j_0}))$$

$$= \sum_{i,j,l} \lambda_{ijl} \operatorname{Tr}(k_i b e_{jl} e_{l_0 j_0})$$

$$= \sum_{i} \lambda_{ij_0 l_0} \operatorname{tr}(k_i b)$$

$$= \operatorname{tr}\left(\left(\sum_{i} \lambda_{ij_0 l_0} k_i\right) b\right)$$

$$= \operatorname{tr}(a),$$

which is a contradiction. Therefore, the $\varphi(k_i e_{jl})$, $1 \leq i \leq m$, $1 \leq j, l \leq n$, are linearly independent over Z and hence span $M_n(K)$ over Z.

We can now prove the linearity of φ over Z. For each $u, v \in M_n(K)$ and for every i, j, l, we find from (2.2) that

$$\operatorname{Tr}(\varphi(u+v)\varphi(k_ie_{jl})) = \operatorname{Tr}((u+v)k_ie_{jl})$$

$$= \operatorname{Tr}(uk_ie_{jl}) + \operatorname{Tr}(vk_ie_{jl})$$

$$= \operatorname{Tr}(\varphi(u)\varphi(k_ie_{jl})) + \operatorname{Tr}(\varphi(v)\varphi(k_ie_{jl}))$$

$$= \operatorname{Tr}((\varphi(u) + \varphi(v))\varphi(k_ie_{jl})).$$

Since the $\varphi(k_i e_{jl})$ span $M_n(K)$ over Z, we have

$$\operatorname{Tr}((\varphi(u+v)-\varphi(u)-\varphi(v))x)=0$$
 for all $x,u,v\in M_n(K)$.

By Lemma 2.2, we have $\varphi(u+v) - \varphi(u) - \varphi(v) = 0$. That is, $\varphi(u+v) = \varphi(u) + \varphi(v)$ for all $u, v \in M_n(K)$.

For each $\alpha \in Z$ and $u \in M_n(K)$, there exists an automorphism $\sigma_{u,\alpha u}$ such that $\varphi(u) = \sigma_{u,\alpha u}(u)$ and $\varphi(\alpha u) = \sigma_{u,\alpha u}(\alpha u)$. Then

$$\varphi(\alpha u) = \sigma_{u,\alpha u}(\alpha u) = \alpha \sigma_{u,\alpha u}(u) = \alpha \varphi(u).$$

That is, φ is a linear map on $M_n(K)$ over Z. Being a 2-local automorphism, φ is injective and hence is surjective, since $M_n(K)$ is finite dimensional over Z.

Note that, for each $u \in M_n(K)$, there exists an automorphism σ_{u,u^2} such that $\varphi(u) = \sigma_{u,u^2}(u)$ and $\varphi(u^2) = \sigma_{u,u^2}(u^2)$. Then $\varphi(u^2) = \sigma_{u,u^2}(u^2) = \sigma_{u,u^2}(u)^2 = \varphi(u)^2$ for all $u \in M_n(K)$. Therefore, φ is a Jordan automorphism. Since the characteristic of K is not 2, it follows from the Herstein theorem [11] that φ is an automorphism or an antiautomorphism.

Finally, let n > 1. Suppose that φ is an anti-automorphism. Substituting $x = e_{11}$ and $y = e_{12}$ in (2.1), we obtain $0 = \varphi(yx) = \varphi(x)\varphi(y) = cxyc^{-1}$, which is a contradiction. \square

We shall now describe 2-local derivations of matrix algebras over finite-dimensional division rings.

Proof of Theorem 1.2. Let $\delta: M_n(K) \to M_n(K)$ be a 2-local derivation. For each $x,y \in M_n(K)$, there exists a derivation $d_{x,y}$ on $M_n(K)$ such that $\delta(x) = d_{x,y}(x)$ and $\delta(y) = d_{x,y}(y)$. By the proposition in [13, p. 100], there exists an invertible $c \in M_n(K)$ such that $[c,xy] = d_{x,y}(xy) = d_{x,y}(x)y + xd_{x,y}(y) = \delta(x)y + x\delta(y)$. Thus, we have

$$0 = \text{Tr}([c, xy]) = \text{Tr}(\delta(x)y + x\delta(y))$$
 and so $\text{Tr}(\delta(x)y) = -\text{Tr}(x\delta(y))$.

Therefore,

$$\operatorname{Tr}(\delta(u+v)z) = -\operatorname{Tr}((u+v)\delta(z))$$

$$= -\operatorname{Tr}(u\delta(z)) - \operatorname{Tr}(v\delta(z))$$

$$= \operatorname{Tr}(\delta(u)z) + \operatorname{Tr}(\delta(v)z)$$

$$= \operatorname{Tr}((\delta(u) + \delta(v))z)$$

and so

$$\operatorname{Tr}((\delta(u+v)-\delta(u)-\delta(v))z)=0$$
 for all $u,v,z\in M_n(K)$.

By Lemma 2.2, we have $\delta(u+v) - \delta(u) - \delta(v) = 0$. That is, $\delta(u+v) = \delta(u) + \delta(v)$ for all $u, v \in M_n(K)$.

Finally, for each $u \in M_n(K)$, there exists a derivation d_{u,u^2} such that $\delta(u) = d_{u,u^2}(u)$ and $\delta(u^2) = d_{u,u^2}(u^2)$. Then

$$\delta(u^2) = d_{u,u^2}(u^2) = d_{u,u^2}(u)u + ud_{u,u^2}(u) = \delta(u)u + u\delta(u) \quad \text{for all } u \in M_n(K).$$

Therefore, δ is a Jordan derivation. Since the characteristic of K is not 2, we see that δ is a derivation by the Herstein theorem [12].

3. A generalization of Hua's theorem

In 1949, Hua [14] proved that every bijective additive map α on a division ring K satisfying $\alpha(aba) = \alpha(a)\alpha(b)\alpha(a)$ and $\alpha(1) = 1$ is an automorphism or an anti-automorphism. This result was reformulated by Artin as: any bijective additive map α on a division ring K satisfying $\alpha(a^{-1}) = \alpha(a)^{-1}$ and $\alpha(1) = 1$ is an automorphism or an anti-automorphism [1, Theorem 1.15]. The same result was established for the $n \times n$ matrix rings over a division ring K in case when $K \neq \mathrm{GF}(2)$, the Galois field of two elements [10]. In [5], the authors removed the condition of $\alpha(1) = 1$ in Hua's result and prove the following.

Theorem 3.1 (Chebotar et al. [5, Theorem 2.1]). Let K be a division ring with centre Z and $\alpha: K \to K$ be a bijective additive map such that

$$\alpha(a^{-1})\alpha(a) = \alpha(b^{-1})\alpha(b)$$
 for all non-zero $a, b \in K$.

Then $\alpha = \lambda \varphi$, where $\varphi : K \to K$ is an automorphism or an anti-automorphism and $\lambda = \alpha(1) \in Z$.

We shall generalize this result to matrix algebras over division rings. We begin with some technical results.

Lemma 3.2. Let K be a division ring with centre Z such that $K \neq \mathrm{GF}(2)$ and let $M_n(K)$, $n \geqslant 2$, be the ring of $n \times n$ matrices over K. Suppose that $\alpha : M_n(K) \to M_n(K)$ is a surjective additive map. If $\mu \in M_n(K)$ satisfies $[\mu, \alpha(y)] = 0$ for all invertible $y \in M_n(K)$ with y - 1 invertible, then $\mu \in Z$.

Proof. We claim first that $[\mu, \alpha(ke_{ij})] = 0$ for all $k \in K$ and $1 \le i, j \le n$. If k = 0, then the above equality holds automatically. Let $0 \ne k \in K$ and $1 \le i, j \le n$. In the case when $i \ne j$, we pick $h \in K$ such that $h \ne 0, 1$. Let $y_1 = h + ke_{ij}$ and $y_2 = h$; we find that y_1 and $y_1 - 1$ are invertible and so $[\mu, \alpha(y_1)] = 0$ for l = 1, 2. Therefore, $[\mu, \alpha(ke_{ij})] = [\mu, \alpha(y_1) - \alpha(y_2)] = 0$. In the case when i = j, we consider $y = ke_{ii} + e_{12} + e_{23} + \cdots + e_{n-1n} + e_{n1}$. Since y and y - 1 are invertible, we have $[\mu, \alpha(y)] = 0$. It follows from the above case that

$$0 = [\mu, \alpha(e_{12})] = [\mu, \alpha(e_{23})] = \dots = [\mu, \alpha(e_{n-1n})] = [\mu, \alpha(e_{n1})],$$

and so $[\mu, \alpha(ke_{ii})] = 0$. Since α is a surjective additive map, by the claim, we have $\mu \in Z$ as desired.

Our next goal is the case when K = GF(2).

Lemma 3.3. Suppose K = GF(2) and $n \ge 2$. Let α be a surjective additive map of $M_n(K)$ and $\mu \in M_n(K)$.

- (i) If μ satisfies $[\mu, y] = 0$ for all invertible $y \in M_n(K)$, then $\mu \in K$.
- (ii) If μ satisfies $[\mu, \alpha(y)] = 0$ for all invertible $y \in M_n(K)$, then $\mu \in K$.

Proof. (i) Let $i \neq j$. By assumption, we have $[\mu, 1] = 0$ and $[\mu, 1 + e_{ij}] = 0$, and therefore $[\mu, e_{ij}] = 0$. Further, since

$$\left[\mu, e_{ii} + e_{ij} + e_{ji} + \sum_{k \neq i, j} e_{kk}\right] = 0$$
 and $\left[\mu, e_{ij} + e_{ji} + \sum_{k \neq i, j} e_{kk}\right] = 0$,

it follows that $[\mu, e_{ii}] = 0$. Hence, $\mu \in K$ as desired.

(ii) Since α is additive, we can see from the above proof that $[\mu, \alpha(e_{ij})] = 0$ for all $1 \leq i, j \leq n$. From the fact that α is surjective and additive, it follows that $\mu \in K$. \square

Proof of Theorem 1.3. Let $z = \alpha(1^{-1})\alpha(1) \neq 0$; then $z = \alpha(a^{-1})\alpha(a) = \alpha(a)\alpha(a^{-1})$ and so

$$\alpha(a)z = \alpha(a)(\alpha(a^{-1})\alpha(a)) = (\alpha(a)\alpha(a^{-1}))\alpha(a) = z\alpha(a)$$

for all invertible $a \in M_n(K)$. By Lemmas 3.2 and 3.3(ii), we have $z \in Z$.

Suppose first that $K \neq \mathrm{GF}(2)$. Let $\lambda = \alpha(1)$ and let $\varphi : M_n(K) \to M_n(K)$ be defined by $\varphi(a) = \lambda^{-1}\alpha(a)$ for all $a \in M_n(K)$. Then φ is a bijective additive map on $M_n(K)$ with $\varphi(1) = 1$. If we can claim $\lambda \in Z$, then we will have $\varphi(a^{-1})\varphi(a) = z^{-1}\alpha(a^{-1})\alpha(a) = z^{-1}z = 1$ for all invertible $a \in M_n(K)$. Hence, φ is an automorphism or an anti-automorphism in light of $[\mathbf{10}]$ and so the proof will be complete.

Let $x, y \in M_n(K)$ be invertible elements such that $x - y^{-1}$ is invertible. Thus, we have the following beautiful identity due to Hua:

$$(x^{-1} - (x - y^{-1})^{-1})^{-1} = x - xyx. (3.1)$$

Set x = 1 and let y be an invertible element such that y - 1 is invertible (and hence $1 - y^{-1} = y^{-1}(y - 1)$ is invertible). Applying α to (3.1) and using $\alpha(a^{-1}) = z\alpha(a)^{-1}$, we

obtain

$$\begin{split} \alpha(y) &= \lambda - \alpha((1 - (1 - y^{-1})^{-1})^{-1}) \\ &= \lambda - z\alpha(1 - (1 - y^{-1})^{-1})^{-1} \\ &= \lambda - z(\lambda - \alpha((1 - y^{-1})^{-1}))^{-1} \\ &= \lambda - z(\lambda - z(\lambda - \alpha(y^{-1}))^{-1})^{-1} \\ &= \lambda - (\lambda^{-1} - (\lambda - z\alpha(y)^{-1})^{-1})^{-1} \\ &= \lambda - (\lambda^{-1} - (\lambda - (z^{-1}\alpha(y))^{-1})^{-1})^{-1} \\ &= \lambda - (\lambda - \lambda^{-1}\alpha(y)\lambda) \\ &= \lambda^{-1}\alpha(y)\lambda. \end{split}$$

Hence, $[\lambda, \alpha(y)] = 0$ for all invertible $y \in M_n(K)$ with y - 1 invertible. By Lemma 3.2, we have $\lambda \in Z$ as desired.

Suppose next that K = Z = GF(2). Let a be an invertible element of $M_n(K)$. It follows from $0 \neq z = \alpha(a)\alpha(a^{-1}) \in K$ that $\alpha(a)$ is invertible. Therefore, α is an invertibility-preserving map. Since α is a bijective map on the finite set $M_n(GF(2))$, it maps singular matrices to singular matrices. It follows from Dieudonné's [8] result that α must have the form of $\alpha(X) = UXV$ or $\alpha(X) = UX^tV$, where $U, V \in M_n(K)$ are invertible and t is the transpose map.

Say $\alpha(X) = UXV$. Let a be an invertible element in $M_n(K)$. It follows from

$$\alpha(a^{-1})\alpha(a) = \alpha(1)^2$$

that $Ua^{-1}VUaV = UVUV$, i.e. [VU,a] = 0 for all invertible a. Therefore, $VU \in K$ by Lemma 3.3(i) and so UV = VU. Hence, we have $\alpha(1) = UV = VU \in K$ and $\alpha(X) = UXV = UV(V^{-1}XV) = \alpha(1)(V^{-1}XV)$ as desired. Similar arguments can be applied for the case $\alpha(X) = UX^tV$. The proof is completed.

Acknowledgements. T.-L.W. was supported in part by the National Science Council under grant no. NSC92-2115-M-110-010.

References

- $1. \quad \hbox{E. Artin, } \textit{Geometric algebra} \ (\hbox{Interscience, New York, 1957}).$
- M. BARCZY AND M. TÓTH, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), 289–298.
- M. Brešar and P. Šemrl, Mappings which preserve idempotents, local automorphisms, and local derivations, Can. J. Math. 45 (1993), 483–496.
- M. Brešar and P. Šemrl, On local automorphisms and mappings that preserve idempotents, Studia Math. 113 (1995), 101–108.
- M. A. CHEBOTAR, W.-F. KE, P.-H. LEE AND L.-S. SHIAO, On maps preserving products, *Can. Math. Bull.* 48 (2005), 355–369.
- 6. R. Crist, Local derivations on operator algebras, J. Funct. Analysis 135 (1996), 76–92.
- R. Crist, Local automorphisms, Proc. Am. Math. Soc. 128 (2000), 1409–1414.
- 8. J. DIEUDONNÉ, Sur une generalisation du groupe orthogonal à quatre variables, *Arch. Math.* 1 (1949), 282–287.

- P. K. DRAXL, Skew fields, London Mathematical Society Lecture Note Series, Volume 81 (Cambridge University Press, 1983).
- H. ESSANNOUNI AND A. KAIDI, Le théorème de Hua pour les algèbres artiniennes simples, Linear Alg. Applic. 297 (1999), 9–22.
- 11. I. N. HERSTEIN, Jordan homomorphisms, Trans. Am. Math. Soc. 81 (1956), 331–351.
- I. N. HERSTEIN, Jordan derivations of prime rings, Proc. Am. Math. Soc. 8 (1957), 1104– 1110.
- 13. I. N. HERSTEIN, *Noncommutative rings*, Carus Mathematical Monographs, Volume 15 (Wiley, 1968).
- L.-K. Hua, On the automorphisms of a field, Proc. Natl Acad. Sci. USA 35 (1949), 386–389.
- W. Jing, Local derivations of reflexive algebras, Proc. Am. Math. Soc. 125 (1997), 869– 873.
- W. Jing, Local derivations of reflexive algebras, II, Proc. Am. Math. Soc. 129 (2001), 1733–1737.
- 17. W. Jing, S. Lu and P. Li, Characterization of derivations on some operator algebras, Bull. Austral. Math. Soc. 66 (2002), 227–232.
- 18. R. V. Kadison, Local derivations, J. Alg. 130 (1990), 494–509.
- S. O. KIM AND J. S. KIM, Local automorphisms and derivations on M_n, Proc. Am. Math. Soc. 132 (2004), 1389–1392.
- D. LARSON AND A. SOUROUR, Local derivations and local automorphisms of B(X), in Operator Theory: Operator Algebras and Applications, Part 2, Durham, NH, 1988, Proceedings of Symposia in Pure Mathematics, Volume 51, Part 2, pp. 187–194 (American Mathematical Society, Providence, RI, 1990).
- L. Molnar, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), 91–100.
- 22. L. MOLNAR, Some characterizations of the automorphisms of B(H) and C(X), Proc. Am. Math. Soc. 130 (2002), 111–120.
- L. MOLNAR, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), 349–352.
- L. MOLNAR, Local automorphisms of operator algebras on Banach spaces, Proc. Am. Math. Soc. 131 (2003), 1867–1874.
- L. MOLNAR AND P. ŠEMRL, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), 231–238.
- L. MOLNAR AND B. ZALAR, On local automorphisms of group algebras of compact groups, Proc. Am. Math. Soc. 128 (2000), 93–99.
- 27. T. Petek and P. Šemrl, Adjacency preserving maps on matrices and operators, *Proc. R. Soc. Edinb.* A **132** (2002), 661–684.
- 28. E. SCHOLZ AND W. TIMMERMANN, Local derivations, automorphisms and commutativity preserving maps on $L^+(D)$, Publ. RIMS Kyoto 29 (1993), 977–995.
- P. ŠEMRL, Local automorphisms and derivations on B(H), Proc. Am. Math. Soc. 125 (1997), 2677–2680.