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1. Introduction

The study of local maps was initiated by Kadison [18] and Larson and Sourour [20].
In 1997, Semrl [29] introduced the concepts of 2-local automorphisms and derivations
on the algebra B(H). Let A be an algebra. A (non-additive) map ¢ : A — A is called a
2-local automorphism if, for every a,b € A, there exists an automorphism o445 : A — A
such that ¢(a) = g4p(a) and p(b) = 04,(b). Similarly, a (non-additive) map 6 : A — A
is called a 2-local derivation if, for every a,b € A, there exists a derivation dqp, : A = A
such that 6(a) = dgp(a) and 6(b) = dg (D).

Local and 2-local maps have been studied on different operator algebras by many
authors [2-7,15-17,19,21-28|.

It is interesting to note that the study of local maps on finite-dimensional algebras is
sometimes more difficult than in the infinite-dimensional case. In [29], Semrl described
2-local automorphisms on the algebra B(H ), all bounded linear operators on the infinite-
dimensional separable Hilbert space H. However, for the case when H is finite dimen-
sional, Semrl’s original proof was long and involved tedious computations. A similar
description for the finite-dimensional case appeared later, in [19,24]. Our first goal is to
describe 2-local automorphisms on matrix algebras over finite-dimensional division rings.

Theorem 1.1. Let K be a finite-dimensional division algebra over its centre Z with
characteristic not 2, and let M, (K), n > 1, be the ring of n x n matrices over K. Then
every 2-local automorphism of M, (K) is an automorphism or an anti-automorphism
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of M,,(K). Moreover, if n > 2, then every 2-local automorphism of M, (K) is an auto-
morphism of M,,(K).

This result is a generalization of theorems due to Molnar [24] and Kim and Kim [19]
obtained for M, (C). It also generalizes a theorem by Chebotar et al. [5, Theorem 5.3],
where 2-local automorphisms of finite-dimensional division rings K with characteristic 0
were described. It is interesting to note that the case of anti-automorphism (if n = 1) is
really possible (see [5, Example 5.4]).

Our second theorem gives a description of 2-local derivations on matrix algebras over
finite-dimensional division rings.

Theorem 1.2. Let K be a finite-dimensional division algebra over its centre Z with
characteristic not 2, and let M, (K), n > 1, be the ring of n x n matrices over K. Then
every 2-local derivation of M,,(K) is a derivation.

This result is a generalization of Kim and Kim’s theorem [19] obtained for M,,(C).
Finally, motivated by [5, Theorem 2.1], we prove the following result.

Theorem 1.3. Let K be a division ring with centre Z and let M, (K), n > 2, be the
ring of n x n matrices over K. Suppose that a : M,,(K) — M, (K) is a bijective additive
map such that

ala™Ha(a) = a(b™)a(b) #0 for all invertible a,b € M,,(K).

Then o = Ay, where ¢ : M, (K) — M, (K) is an automorphism or an anti-automorphism
and A=a(l) € Z.

This result is connected with the well-known Hua theorem [14] and it generalizes some
results of [5,10].

2. 2-local automorphisms and derivations on matrix algebras over
division rings

Let K be a finite-dimensional division algebra over its centre Z, and let M, (K) be the
ring of n X n matrices over K. We denote by e;; the matrix unit, that is, the matrix
which has a one in the (4, j)-position and zeros elsewhere.
Let tr : K — Z be a reduced trace of K and Tr : M, (K) — Z be the trace map
of Mn(K) defined by TT(A) = tr(a11)+tr(a22)+- . -—l—tr(ann) if A= Zi’jaijeij S Mn(K)
We first recall the following result about the reduced trace (see, for example, [9, p. 148,
Lemma 4]).

Lemma 2.1. There exists an a € K such that tr(a) # 0.

Lemma 2.2. If A is non-zero in M, (K), then there exists a B € M, (K) such that
Tr(AB) # 0.

Proof. We denote A by Z” ajjeq5. Since A # 0, say ag # 0 in K for some 1 < s,t <
n. By Lemma 2.1, we can pick an a € K such that tr(a) # 0. Let B = a,' ae;s. We have
AB=73%", aita;aeis and so Tr(AB) = tr(a) # 0 as desired. O
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Now we can describe 2-local automorphisms of matrix algebras over finite-dimensional
division rings using some ideas from [5,24].

Proof of Theorem 1.1. Let ¢ : M, (K) — M,(K) be a 2-local automorphism.
For every z,y € M,(K), there exists an automorphism o, , on M,(K) such that
o(x) = 04 y(x) and p(y) = 044 (y). By [13, Theorem 4.3.1], there exists an invertible
¢ € M, (K) such that o, (z) = czc™! and 0, 4(y) = cyc™!. Therefore,

P(x)o(y) = Oay(T)00y(y) = cxyc™ (2.1)

and so

Tr(e(x)e(y)) = Tr(zy) for all z,y € M, (K). (2.2)

Let {ki1,ks,....km} be a basis of K over Z. We claim that ¢(kiej;), 1 < ¢ < m,
1 < 4,1 < n, are linearly independent over Z. Assume on the contrary that there exist
Aij1 in Z not all zero, say A # 0, such that

i0jolo
Z )\ijlgo(kiejl) =0.
i,7,l

By Lemma 2.1, there exists an a € K such that tr(a) # 0. Since ), Aijoio ks # 0, let

-1
b= (Z )\ijoloki> a.

It follows from (2.2) and the linearity of the trace map that

0= 1e( [ Nsuethien) | lbens)

i,5,0

B Z )\ijl Tr(@(kiejl)@(belojo))

,3,!

e Z )\ijl ’I‘I'(kibejlelojo)

,3,!

= Z )‘ijolo tr(k‘lb)

()

= tr(a),

which is a contradiction. Therefore, the ¢(k;ej;), 1 < i < m, 1 < j,1 < n, are linearly
independent over Z and hence span M, (K) over Z.
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We can now prove the linearity of ¢ over Z. For each u,v € M, (K) and for every i, j,
I, we find from (2.2) that

Tr(p(u+v)p(kiej)) = Tr((u+v)kieji)

= Tr(uk;ej;) + Tr(vk;ej)
e(u)p(kiej)) + Tr(e(v)p(kiej))
= Tr((p(u) + ¢(v))p(kieji)).

Since the ¢(k;e;;) span M, (K) over Z, we have
Tr((p(u+v) —o(u) —@())x) =0 for all z,u,v € M, (K).

By Lemma 2.2, we have ¢(u +v) — ¢(u) — ¢(v) = 0. That is, ¢(u+v) = ¢(u) + ¢(v) for
all u,v € M, (K).

For each @ € Z and u € M,(K), there exists an automorphism ¢, q, such that
o(u) = 0y au(u) and p(au) = oy qu(cu). Then

plau) = oy au(au) = aoy ou(u) = ap(u).

That is, ¢ is a linear map on M, (K) over Z. Being a 2-local automorphism, ¢ is injective
and hence is surjective, since M,,(K) is finite dimensional over Z.

Note that, for each u € M, (K), there exists an automorphism o, ,2 such that p(u) =
ouu2(u) and p(u?) = 0, 42(u?). Then p(u?) = 0,42 (u?) = 0442 (u)? = p(u)? for all
u € M, (K). Therefore, ¢ is a Jordan automorphism. Since the characteristic of K is
not 2, it follows from the Herstein theorem [11] that ¢ is an automorphism or an anti-
automorphism.

Finally, let n > 1. Suppose that ¢ is an anti-automorphism. Substituting x = e1; and
y = e12 in (2.1), we obtain 0 = p(yr) = p(z)¢(y) = cryc—t, which is a contradiction. [

We shall now describe 2-local derivations of matrix algebras over finite-dimensional
division rings.

Proof of Theorem 1.2. Let § : M,,(K) — M, (K) be a 2-local derivation. For each
x,y € M,(K), there exists a derivation d,, on M,(K) such that §(z) = d,,(x) and
d(y) = dz,y(y). By the proposition in [13, p. 100], there exists an invertible ¢ € M, (K)
such that [c, zy] = dyy(2y) = dpy(2)y + 2ds  (y) = 6(2)y + x6(y). Thus, we have

0 = Tr([c,zy]) = Tr(d(z)y + 2d(y)) and so Tr(d(z)y) = — Tr(xd(y)).

Therefore,
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and so
Tr((0(u+v) —d(u) —d(v))z) =0 for all u,v,z € M,(K).

By Lemma 2.2, we have §(u + v) — 6(u) — §(v) = 0. That is, §(u + v) = §(u) + 6(v) for
all u,v € M, (K).

Finally, for each u € M, (K), there exists a derivation d,, ,2 such that 6(u) = d .2 (u)
and §(u?) = d, 2 (u?). Then

§(u?) = dy 2 (U?) = dy 2 (W)t + udy 2 (u) = 5(w)u +ud(u) for all u € M, (K).

Therefore, 0 is a Jordan derivation. Since the characteristic of K is not 2, we see that
0 is a derivation by the Herstein theorem [12]. O

3. A generalization of Hua’s theorem

In 1949, Hua [14] proved that every bijective additive map « on a division ring K satisfy-
ing a(aba) = a(a)a(b)a(a) and a(1) =1 is an automorphism or an anti-automorphism.
This result was reformulated by Artin as: any bijective additive map « on a divi-
sion ring K satisfying a(a™!) = a(a)~! and a(1) = 1 is an automorphism or an anti-
automorphism [1, Theorem 1.15]. The same result was established for the n x n matrix
rings over a division ring K in case when K # GF(2), the Galois field of two ele-
ments [10]. In [5], the authors removed the condition of a(1) = 1 in Hua’s result and
prove the following.

Theorem 3.1 (Chebotar et al. [5, Theorem 2.1]). Let K be a division ring with
centre Z and o : K — K be a bijective additive map such that

a(a™Hala) = a(d™ )a(b) for all non-zero a,b € K.

Then o« = Ay, where ¢ : K — K is an automorphism or an anti-automorphism and
A=a(l) e Z.

We shall generalize this result to matrix algebras over division rings. We begin with
some technical results.

Lemma 3.2. Let K be a division ring with centre Z such that K # GF(2) and
let M, (K), n > 2, be the ring of n X n matrices over K. Suppose that a : M, (K) —
M, (K) is a surjective additive map. If p € M, (K) satisfies [, a(y)] = 0 for all invert-
ible y € M,,(K) with y — 1 invertible, then y € Z.

Proof. We claim first that [u, a(ke;;)] =0 for all k € K and 1 < 4,5 < n. If k =
0, then the above equality holds automatically. Let 0 # k € K and 1 < 4,5 < n.
In the case when i # j, we pick h € K such that h # 0,1. Let y;=h + ke;; and
y2 = h; we find that y; and y; — 1 are invertible and so [u,a(y;)] = 0 for | = 1,2.
Therefore, [u, a(ke;;)] = [, a(y1) — a(y2)] = 0. In the case when ¢ = j, we consider y =
ke + e12 + eag + -+ - €n_1n + €n1. Since y and y — 1 are invertible, we have [, a(y)] = 0.
It follows from the above case that

0= [u, ale12)] = [p, alezs)] = - = [, alen—1n)] = [, alen1)],
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and so [, a(ke;;)] = 0. Since « is a surjective additive map, by the claim, we have y € Z
as desired. g

Our next goal is the case when K = GF(2).

Lemma 3.3. Suppose K = GF(2) and n > 2. Let « be a surjective additive map
of M,(K) and p € M, (K).

(i) If p satisfies [u,y] = 0 for all invertible y € M, (K), then p € K.

(i) If p satisfies [, a(y)] = 0 for all invertible y € M, (K), then p € K.

Proof. (i) Let ¢ # j. By assumption, we have [p,1] = 0 and [g,1+e;;] =0, and
therefore [u, e;;] = 0. Further, since

Wy €i + €55 + €ji + Z ekk] =0 and [u,eij +ej; + Z ekk] =0,
k#i,j k#i,j

it follows that [u,e;;] = 0. Hence, u € K as desired.

(ii) Since « is additive, we can see from the above proof that [, a(e;;)] =0 for all
1 < 4,7 < n. From the fact that « is surjective and additive, it follows that p € K. O

Proof of Theorem 1.3. Let z = a(17)a(1) # 0; then 2z = a(a™)a(a) = a(a)a(a™t)
and so

a(a)z = a(a)(ala"a(a)) = (a(@)ala"))a(a) = za(a)

for all invertible a € M,,(K). By Lemmas 3.2 and 3.3(ii), we have z € Z.

Suppose first that K # GF(2). Let A = «(1) and let ¢ : M,(K) — M,(K) be
defined by ¢(a) = A"la(a) for all @ € M, (K). Then ¢ is a bijective additive map
on M, (K) with ¢(1) = 1. If we can claim A\ € Z, then we will have p(a=1)p(a) =
z7la(a™Ya(a) = 2712 = 1 for all invertible a € M, (K). Hence, ¢ is an automorphism
or an anti-automorphism in light of [10] and so the proof will be complete.

Let 2,y € M, (K) be invertible elements such that z — y~?! is invertible. Thus, we have
the following beautiful identity due to Hua:

(7= (z—y H)y™H =2 — aya. (3.1)

Set x = 1 and let y be an invertible element such that y — 1 is invertible (and hence

1 -y~ ! =y (y — 1) is invertible). Applying a to (3.1) and using a(a™?!) = za(a)™!, we

https://doi.org/10.1017/50013091504001142 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091504001142

A note on 2-local maps 707

obtain

Hence, [A, a(y)] = 0 for all invertible y € M, (K) with y — 1 invertible. By Lemma 3.2,
we have A € Z as desired.

Suppose next that K = Z = GF(2). Let a be an invertible element of M,,(K). It follows
from 0 # 2z = a(a)a(a™t) € K that a(a) is invertible. Therefore, o is an invertibility-
preserving map. Since « is a bijective map on the finite set M, (GF(2)), it maps singular
matrices to singular matrices. It follows from Dieudonné’s [8] result that o must have
the form of a(X) = UXV or a(X) = UX*V, where U,V € M, (K) are invertible and ¢
is the transpose map.

Say a(X) =UXV. Let a be an invertible element in M, (K). It follows from

ala™Ha(a) = a(1)?

that Ua='VUaV = UVUV, ie. [VU,a] = 0 for all invertible a. Therefore, VU € K
by Lemma 3.3(i) and so UV = VU. Hence, we have (1) = UV = VU € K and
a(X) =UXV =UV(VIXV) = a(1)(V1XV) as desired. Similar arguments can be
applied for the case a(X) = UX*V. The proof is completed. |
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