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Abstract

The behaviour of an axisymmetric bubble in a pure liquid forced by an acoustic pressure
field is analysed. The bubble is assumed to have a sharp deformable interface, which
is subject both to surface tension and to Rayleigh viscosity damping. Two modelling
regimes are considered. The first is a linearized solution, based on the assumption
of small axisymmetric deformations to an otherwise spherical bubble. The second
involves a semi-numerical solution of the fully nonlinear problem, using a novel spectral
method of high accuracy. For large-amplitude nonspherical bubble oscillations, the
fully nonlinear solutions show that a complicated resonance structure is possible and
that curvature singularities may occur at the interface, even in the presence of surface
tension. Rayleigh viscosity at the interface prevents singularity formation, but eventually
causes the bubble to become purely spherical unless shape-mode resonances occur.
An extended analysis is also presented for purely spherical bubbles, which allows for a
more detailed study of the effects of resonance and the Rayleigh viscosity at the bubble
surface.

2020 Mathematics subject classification: primary 76B07; secondary 76B10, 76E30.

Keywords and phrases: nonlinear oscillations, resonance, axisymmetric bubbles,
inviscid fluid.

1. Introduction

The stability, morphology and behaviour of spherical and nonspherical bubbles have
been of immense interest for the past century. Bubbles occur in natural environments,
in oceans and in the interstellar medium surrounding supernovae explosions [27], as
well as in a vast range of technical applications such as in refrigeration equipment [1],
ultrasonics and medicine. Early studies of bubbles were conducted by Besant and
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Rayleigh whose research into the collapse of spherical cavities led to the ubiquitous
Rayleigh equation for a bubble of gas in a liquid [37]. Later, Plesset [32], Noltingk and
Neppiras [30], Gilmore [11] and others generalized this model by adding viscosity,
surface tension and an acoustic field. Assuming that the bubble remains spherical,
the inclusion of viscosity only affects the boundary condition, not the governing
equation itself, since purely radial fluid flow remains irrotational even when viscosity
is present [34]. To account for energy loss from the radiation of acoustic energy, Keller
and Kolodner [19] allowed the fluid surrounding the bubble to be weakly compressible
by solving the wave equation rather than Laplace’s equation. This leads to the damped
radial oscillations. Keller and Miksis [20] later added viscosity, surface tension and an
acoustic field to this compressible model, and found periodic solutions even for high
forcing amplitudes.

Complex models of single-bubble sonoluminescence can include heat and mass
exchange through the bubble surface, gas diffusion, changes of state, chemical
reactions and shocks [29]. This topic is thoroughly reviewed by Brenner et al. [4]. The
radial oscillations of a forced spherical bubble are highly nonlinear; superharmonic
resonances are common, and subharmonics and ultraharmonics can occur once
a pressure threshold has been reached [12, 20]. Period doubling and chaos can
occur, and multiple solution states can coexist for a given set of parameters leading
to hysteresis [9]. These behaviours are often studied using resonance curves and
bifurcation diagrams [41].

Surface tension and viscosity often work to make bubbles more spherical. However,
if the bubbles are sufficiently large, or reside in a strong gravitational field, or
are subject to disturbances created by other bubbles, rigid surfaces or fluid flow,
the assumption of sphericity is unlikely to hold true [33, 35, 48]. Jet formation, bubble
break-up or pinch-off and microstreaming can result from nonspherical disturbances
[6, 18, 46]. Nonspherical effects are important in the study of sonoluminescence as the
acceleration of the bubble wall during bubble collapse amplifies nonspherical shape
deformations and can lead to bubble break-up [22, 39]. This is a Rayleigh–Taylor style
instability, and it can also occur during afterbounces following the initial collapse [22].

Nonlinear interactions between shape and volume oscillation modes play an impor-
tant role in these nonspherical bubble behaviours. The transfer of energy from radial
oscillations to shape oscillations can lead to bubble break up [26]. Acoustic waves
can cause nonlinear volume oscillations large enough to spark shape deformations
and erratic bubble motion [39]. A translation of the bubble caused by travelling
acoustic waves can also lead to shape deformation and volume oscillations. Forcing
a bubble near its natural volume resonance can cause large volume oscillations that
induce shape oscillations [26]. These shape oscillations can then affect the natural
volume resonance, meaning that the bubble is no longer being forced at its natural
resonance. This reduces the amplitude of volume oscillations, and the bubble returns
to its initial state and volume resonance [9]. In this way, volume and shape oscillations
can appear to compete. Anisotropic forcing pressures and near, but not exact, 2:1
resonance between volume and shape modes can also cause this continuous energy
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transfer between volume and shape modes [8]. This effect can also occur without
external forcing in the absence of damping. If the 2:1 resonance is exact, an initial
shape disturbance will be transferred completely to volume oscillations [10]. However,
if there is a sufficient degree of detuning away from exact resonance, or a background
extensional flow, energy can flow continuously between the modes [10, 47]. This
resonance means that shape distortions can cause volume oscillations, and thus sound
production at twice the frequency of the shape oscillations [25].

The upwards movement of a bubble due to gravity can also be a source of
asymmetry. Large bubbles of radius R can become oblate and rise in erratic paths [45].
Very large bubbles tend to form spherical caps, sometimes with ragged skirts, and the
speed at which they rise is proportional to

√
gR [2]. To investigate bubble behaviour

without gravity, low or zero gravity environments can be created in free-fall towers
[42] or on parabolic flights [48]. Zero-gravity environments are relevant to many space
systems and applications. For smaller bubbles, gravity has less effect, and surface
tension and viscosity are better able to maintain sphericity of the bubble. Bubbles
with radii less than approximately 0.1 mm generally rise in straight lines and their
speed is proportional to gR2/ν, where ν is the kinematic viscosity in the surrounding
fluid [21]. For very small bubbles, the effects of gravity are minimal, and gravity is
often ignored, as is the case in this paper.

One powerful technique for analysing fluid flow is the use of a potential. This
use is often limited to the analysis of inviscid fluids; however, many of the desirable
viscous effects, such as damping and dissipation, do not prevent the use of a potential
flow as long as the flow remains irrotational. Further discussion of potential flows of
viscous fluids may be found in Joseph [16]. Poritsky’s introduction of viscosity without
rotation to purely spherical bubbles (see [16]), Shaw’s use of a Rayleigh dissipation
function for axisymmetric bubbles [39], and Joseph and Wang’s use of a viscous
pressure correction to account for the shear stress at the interface of a bubble [17]
are all techniques used for this purpose in the study of bubbles.

In this paper, we consider an incompressible and irrotational liquid but model some
viscous effects using an artificial Rayleigh viscosity at the surface of the bubble.
Rayleigh introduced the concept of an artificial viscosity when he considered the
standing waves formed around a disturbance in uniformly flowing water [36]. This
idealized viscosity is incorporated in the dynamic boundary condition, and acts
proportionally to the relative velocity to resist the movement of particles. It mimics the
dissipative effects of real kinetic viscosity without introducing rotation. This technique
is still used to analyse standing waves generated by moving disturbances [31]. It is also
used in other problems such as for resonant sloshing in baffled tanks, where it provides
necessary damping effects which stop divergence at resonant frequencies [5]. It is these
damping and dissipative effects that are useful in our current study.

The remainder of this paper is structured as follows. In Section 2, we describe our
nonspherical bubble model; we start with a simple linear case, and then formulate
a numerical nonlinear model which is solved using spectral methods. The effects of
surface tension and Rayleigh viscosity at the interface are discussed. This work builds
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upon an earlier paper by the authors, which considered both an inviscid model and a
Boussinesq model [7]. The addition of the Rayleigh viscosity aids in the prevention of
curvature singularities which previously occurred in the nonlinear inviscid model. This
nonspherical analysis allows for interactions between shape and volume oscillations,
and for resonances in shape mode oscillations. Section 3 continues with a nonlinear
spherical extension. Results are given in Section 4, where the behaviour of the models
is compared, and the effects of the Rayleigh viscosity, the forcing frequency and
amplitude of the acoustic pressure field are explored. The paper closes with a few
conclusions and final remarks.

2. Nonspherical forced oscillations

We consider an axisymmetric nonspherical bubble of gas in a liquid. The gas is
assumed to be ideal, isentropic and diatomic, the liquid incompressible, and the flow
irrotational. An artificial Rayleigh viscosity provides an approximate viscosity at the
bubble interface, accounting for the dissipative effects of viscosity but not the swirling
rotational effects. This simple Rayleigh viscosity still allows for Laplace’s equation
to be used as the governing equation in place of the full Navier–Stokes equations.
Analysis takes place in a spherical coordinate system where (r, φ, θ) are the distance
from the origin, and the polar and azimuthal angles, respectively. The bubble is
assumed to be axisymmetric about the z-axis, so that ∂/∂θ ≡ 0 and all variables are
independent of the azimuthal angle θ. There are two variables of interest, the radius
of the bubble given by R(φ, t) and the velocity potential Φ(r, φ, t). Natural scaling
variables can be deduced from a simplified spherical model. In the absence of surface
tension and viscosity, the bubble has an equilibrium radius R0 and a natural frequency
ωeq given by

R0 =

[ C
p∞

]1/3γ
and ω2

eq =
3γp∞
ρR2

0

,

where C = K(3M0/4π)γ, in which K is a constant, M0 is the mass of the gas inside the
bubble, γ is its ratio of specific heats, ρ is the density of the liquid and p∞ is the pres-
sure far away from the bubble. The value ωeq is the Minnaert resonant frequency [28].

All lengths and times are made dimensionless by scaling them on the scales R0
and 1/ωeq, respectively, while the velocity potential Φ is rendered dimensionless
by reference to the quantity ωeqR2

0. (For further details of this scaling, see [7].) In
dimensionless variables, the system is described by Laplace’s equation,

∇2Φ =
1
r2

∂

∂r

(
r2 ∂Φ

∂r

)
+

1
r2 sin φ

∂

∂φ

(
sin φ
∂Φ

∂φ

)
= 0, (2.1)

and two boundary conditions on r = R(φ, t). As the bubble boundary is a material
surface, there is a kinematic boundary condition which demands that

∂Φ

∂r
=
∂R
∂t
+

1
R2

∂Φ

∂φ

∂R
∂φ

on r = R(φ, t). (2.2)
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There is also a dynamic boundary condition which requires that the pressure within
the bubble at the surface equals that in the liquid at the surface plus effects from the
surface tension and Rayleigh viscosity. In dimensionless terms, this is given by

p = pB − κκS + 3γμΦ on r = R(φ, t), (2.3)

where κ and μ are the dimensionless surface tension and Rayleigh viscosity coeffi-
cients, and κS is the axisymmetric curvature given by

κS =
[R2 + 2R2

φ − RRφφ

(R2 + R2
φ)

3/2

]
. (2.4)

As the gas in the bubble is isentropic, its pressure pB and density ρB (in dimensional
variables) are related by pB = KBρ

γ
B, where ρB can be found by dividing the mass of

gas by the volume. Hence, the dimensionless pressure in the bubble is given by

pB =
2γ[∫ π

0 R3 sin φ dφ
]γ .

The pressure in the liquid is supplied by a dimensionless unsteady Bernoulli equation

p = p∞(t) − 3γ
[
∂Φ

∂t
+

1
2
||∇Φ||2

]

and so, after rearranging, the dynamic condition becomes

∂Φ

∂t
+

1
2

[(
∂Φ

∂r

)2
+

1
R2

(
∂Φ

∂φ

)2]
+ μΦ =

p∞(t)
3γ
+
κ

3γ

[R2 + 2R2
φ − RRφφ

(R2 + R2
φ)

3/2

]

− 2γ

3γ
[∫ π

0 R3 sin φ dφ
]γ . (2.5)

Our bubble system is thus fully described by the dimensionless Laplace
equation (2.1), which is solved subject to the kinematic requirement (2.2) and the
dynamic constraint (2.5). We consider two solutions to this problem. We begin
with a linear model which will provide a closed-form solution to aid our conceptual
understanding of the physical behaviour of the bubble. A fully nonlinear model solved
with semi-numerical methods will then capture the nonlinear dynamics missing
from the linear version and a comparison of the two models will be useful both for
considering the accuracy of the models and for gauging the impact of nonlinear effects.

Before continuing to the models themselves, it is worth considering the circum-
stances where our theory is likely to hold relevance. For a spherical bubble, to derive
the classic Rayleigh–Plesset equation, the dimensional pressure at the bubble surface
is given by

p(R) = pB −
2σ
R
− 4μLṘ

R
, (2.6)
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TABLE 1. Properties of various liquids [15, 48] and associated κ and μ values.

Density Viscosity Surface t. R0 ωeq

Liquid (kg m−3) (10−5m2 s−1) (kg2 s−2) (μm) (105 s−1) κ μ

Water 998 0.1 0.073 20 10 0.07 0.01
Silicone oil 930 1a 0.02 39 5.5 0.01 0.05
Ethylene glycol 1097 1.8 0.047 93 2.1 0.01 0.04

(a Silicone oil can have a large range of viscosities and thus allows for a range of valid μ values [48].)

where σ is the surface tension and μL is the liquid viscosity [34]. Voinov and Golovin
use Lagrange equations for a system of spherical bubbles in a liquid of small viscosity
and find the same viscosity term [43]. Our Rayleigh viscosity behaves similarly,
since (if the bubble is spherical) the μΦ term in our pressure equation (2.3) behaves
rather like −μRṘ. By comparing (2.3) and (2.6) in dimensional terms, we find that
dimensionless surface tension and Rayleigh viscosity coefficients are given by

κ =
2σ

p∞R0
and μ =

4μL

ρωeqR2
0

.

Simulations were run with κ = 0.01, and μ values generally ranging from 0.01 to
0.1. The κ, μ and R0 values for bubbles of air in several real liquids are given in
Table 1. Bubbles of these 10–100 μm sizes are consistent with cavitation bubbles
in experimental results [38]. Increasing the surface tension coefficient κ corresponds
to reducing the size of the bubble as surface tension has a greater effect on smaller
bubbles. Simulations lasting 200 dimensionless time units would, in real time, last
less than a millisecond. Given the small radii of the bubbles and the short timescales
involved, it is unlikely that the addition of gravity would have any significant effect.

2.1. Linear model We suppose that an axisymmetric perturbation is made to the
spherical equilibrium. We let

R(φ, t) = Req + εR1(φ, t) + O(ε2),

Φ(r, φ, t) = εΦ1(r, φ, t) + O(ε2),

p∞(t) = 1 + εp1(t) + O(ε2),

and consider an acoustic field given by p1(t) = pa sin(τt).
At O(ε), the linearized Laplace’s equation and kinematic boundary condition give

∇2Φ1 = 0,
∂Φ1

∂r
=
∂R1

∂t
on r = Req.

(2.7)
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The dynamic boundary condition gives, at O(1) and at O(ε) respectively,

R3γ
eq + κR

3γ−1
eq = 1, (2.8a)

∂Φ1

∂t
+ μΦ1 =

pa sin(τt)
3γ

+
1

2R3γ+1
eq

∫ π
0

R1 sin φ dφ −
κ(R1 + R1,φφ)

3γR2
eq

on r = Req.

(2.8b)

We can find the equilibrium radius from the O(1) dynamic condition (2.8a). This
equation cannot be solved in closed form, but given that κ � 1, we find an approximate
solution by expanding in powers of κ,

Req ≈ 1 − κ
3γ
+ O(κ2).

Hence, we see that as κ increases, the equilibrium radius of the bubble is reduced. Of
course, a more accurate result could be found by solving for Req numerically.

We are now ready to satisfy Laplace’s equation by taking a series of Legendre
polynomials for Φ1(r, φ, t) and R1(φ, t):

R1(φ, t) =
N∑

n=0

an(t)Pn(cos φ),

Φ1(r, φ, t) =
N∑

n=0

bn(t)
rn+1 Pn(cos φ),

where the Fourier coefficients, an(t) and bn(t), are unknown functions of time which
must be found from the two boundary conditions. We choose to truncate these
would-be infinite sums at some arbitrary number N. To find the Fourier coefficients,
the series forms are substituted into the boundary conditions, which are then multiplied
by Pl(cos φ) sin φ and integrated from 0 to 2π with respect to φ.

Applying standard orthogonality conditions toO(ε) of the kinematic condition (2.7)
gives a relationship between the an(t) and bn(t) coefficients so that

bl(t) = −
Rl+2

eq a′l(t)

l + 1
. (2.9)

The dynamic constraint (2.8b) leads to
N∑

n=0

b′n(t) + μbn(t)
Rn+1

eq

∫ π
0

Pn(cos φ)Pl(cos φ) sin φ dφ

=

[pa sin(τt)
3γ

+
a0(t)

R3γ+1
eq

] ∫ π
0

Pl(cos φ) sin φ dφ

− κ

3γR2
eq

N∑
n=0

[(1 − n(n + 1)]an(t)
∫ π

0
Pn(cos φ)Pl(cos φ) sin φ dφ

− κ

3γR2
eq

N∑
n=0

an(t)
∫ π

0
P′n(cos φ)Pl(cos φ) cos φ sin φ dφ. (2.10)
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The first three integrals are well-known Legendre orthogonality integrals, but the final
integral is given by

∫ π
0

P′n(cos φ)Pl(cos φ) cos φ sin φ dφ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2l
2l + 1

if n = l,

2 if n + l is even and n > l,
0 otherwise,

so that the final sum term in (2.10) yields

N∑
n=0

an(t)
∫ π

0
P′n(cos φ)Pl(cos φ) cos φ sin φ dφ

=

l−1∑
n=0

an(t)[0] + al(t)
[ 2l
2l + 1

]
+

(N−l)/2∑
i=1

al+2i(t)[2] +
(N−l−1)/2∑

i=0

al+2i+1(t)[0]

and, after rearranging, (2.10) becomes

b′l(t) + μbl(t) = Req

[pa sin(τt)
3γ

+
a0(t)

R3γ+1
eq

]
δl0

−
κRl−1

eq

3γ

[
(1 − l2)al(t) + (2l + 1)

(N−l)/2∑
i=1

al+2i(t)
]
,

where δl0 = 1 if l = 0, and is zero otherwise. Then, using relation (2.9),

a′′l (t) + μa′l(t) + καlal(t) +
a0(t)δl0
R3γ+2

eq

= −pa sin(τt)δl0
3γ

+ κβl

(N−l)/2∑
i=1

al+2i(t), (2.11)

where

αl =
(l + 1)(l2 − 1)

(3γR3
eq)

and βl =
(l + 1)(2l + 1)

(3γR3
eq)

. (2.12)

In a fully nonlinear model, all the modes are coupled enabling complex nonlinear
interactions to occur. That is not the case in this linear model, although surface tension
does allow for some limited interaction. Consider the system of equations (2.11).
The final equation in this set (with l = N) is homogeneous, but aN(t) appears in the
right-hand side of the equation with l = N − 2. Moreover, both aN(t) and aN−2(t) appear
in the right-hand side of the equation for l = N − 4. This pattern continues and the
equation with l = 0 includes every even Fourier coefficient in its right-hand side, while
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that with l = 1 includes every odd Fourier coefficient. The system of equations admits
the solution

a0(t) = e−μt/2
[
Â0 cos

(
ω0t
2

)
+ B̂0 sin

(
ω0t
2

)

+

N/2∑
i=1

κβ0T0,i

ᾱ0 − κα2i

{
Â2i cos

(
ω2it

2

)
+ B̂2i sin

(
ω2it

2

)}]

+
pa[μτ cos(τt) − (ᾱ0 − τ2) sin(τt)]

3γ[(ᾱ0 − τ2)2 + (μτ)2]
,

a1(t) = Â1 + B̂1e−μt

− e−μt/2
[ (N−1)/2∑

i=1

β1T1,i

α1+2i

{
Â1+2i cos

(
ω1+2it

2

)
+ B̂1+2i sin

(
ω1+2it

2

)}]
,

and, for l = 2, . . . , N,

al(t) = e−μt/2
[
Âl cos

(
ωlt
2

)
+ B̂l sin

(
ωlt
2

)

+

N/2∑
i=1

βlTl,i

αl − αl+2i

{
Âl+2i cos

(
ωl+2it

2

)
+ B̂l+2i sin

(
ωl+2it

2

)}]
,

where

Tl,i =

i−1∏
j=1

(
1 +

βl+2j

αl+2j − αl+2i

)
, ᾱ0 = κα0 +

1

R3γ+2
eq

ω0 =

√
4ᾱ0 − μ2 and ωl =

√
4καl − μ2.

(2.13)

The remaining bn(t) Fourier coefficients can be found using relation (2.9) and are
listed in Appendix A. If the initial conditions, al(0) and bl(0), are known, then the Â
and B̂ coefficients can be found in the order AN to A0 excluding A1, then BN to B0, and
finally A1. These constants are also noted in Appendix A.

In general, each part of the solution is given by trigonometric functions multiplied
by a negative exponential, so the bubble is stable as perturbations will oscillate with
decaying amplitude. This is owing to the dissipative effect of the artificial Rayleigh
viscosity. The homogeneous part of a1(t), which is neither a volume nor a shape mode,
but instead a translation up or down the z-axis, does not correspond to a decaying
oscillation, but instead decays to a constant (because α1 = 0). The inclusion of surface
tension means that not only will a perturbation to a certain mode cause oscillations
in that mode, but a perturbation to an even mode l will produce oscillations in every
even mode n ≤ l, and likewise oscillations in every odd mode n ≤ l if the perturbation
is odd.
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As t → ∞, the solution tends to

a0(t) =
pa[μτ cos(τt) − (ᾱ0 − τ2) sin(τt)]

3γ[(ᾱ0 − τ2)2 + (μτ)2]
,

a1(t) = Â1, (2.14)
al(t) = 0.

Here, only the spherical forced response and a translation along the z-axis remain,
since all nonspherical behaviour has been dissipated by the Rayleigh viscosity. Hence,
it can be seen that the bubble is highly stable.

Our solution can be contrasted with an excessively simplified model which excludes
surface tension, Rayleigh viscosity and the acoustic field. The solution for this
model is just a0(t) = A0 cos t + B0 sin t and an(t) = An + Bnt. In this case, spherical
perturbations away from the equilibrium radius are neutrally stable as they cause
spherical oscillations of constant amplitude, but nonspherical perturbations to the
velocity potential (which cause Bn to be nonzero) are unstable as they grow linearly
with time, ultimately violating the underlying linear assumption. Rayleigh viscosity
and surface tension clearly provide important stabilizing effects. At the resonant
frequency, τ = ᾱ0, (2.14) shows that a0(t) = pa cos(ᾱ0t)/(3γμᾱ0) in the large time
limit. This is a resonance peak with a maximum value which increases as the
Rayleigh viscosity decreases. If there were no Rayleigh viscosity, μ = 0, there would
be oscillations of infinite amplitude.

Herein lies a major attraction of the linear model: as the solution is written in closed
form, the impact of physical effects, such as surface tension, Rayleigh viscosity and
the acoustic forcing field, can be conceptually understood, and the behaviour at large
time can be discerned at a glance. Surface tension causes nonspherical disturbances to
oscillate rather than grow linearly with time and enables interactions between modes.
The Rayleigh viscosity ensures that nonspherical disturbances dissipate while a forcing
field causes enduring spherical oscillations.

2.2. Nonlinear model Now that we have a linear model which provides a fun-
damental understanding of the physical behaviour of the bubble, we can turn our
attention to a nonlinear model which will capture important effects necessarily absent
from our linear model. We again begin by satisfying Laplace’s equation in the liquid
surrounding the bubble with a Fourier–Legendre series. We then use semi-analytical
methods to impose the full nonlinear boundary conditions. Suppose that the radius of
the bubble and the velocity potential outside the bubble can be expressed as

R(φ, t) =
N∑

n=0

Ān(t)Pn(cos φ),

Φ(r, φ, t) =
N∑

n=0

B̄n(t)Pn(cos φ)
rn+1 for r > R(φ, t).

(2.15)
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These representations become increasingly accurate as N grows. Truncating the series
forms in the linear model generally has no effect, as the sum naturally truncates itself
at the highest initially perturbed mode. Surface tension allows perturbed modes to
activate lower modes, but there is no mechanism for driving higher modes. Within
the nonlinear model, this is no longer the case; higher modes can be excited and
truncating the sum can have a significant effect. Simulations were run with N = 81,
and the validity of this choice is discussed in Section 4.

Equations for the functions Ān(t) and B̄n(t) are derived by substituting the series
solutions into the kinematic boundary condition (2.2) and the dynamic boundary
condition (2.5). Using well-known orthogonality properties of Legendre polynomials,
the boundary conditions imply that

Ā′l(t) = −
N∑

n=0

B̄n(t)[I(1)
ln + I(2)

ln ] (2.16)

and

N∑
n=0

B̄′n(t)I(3)
ln = −μ

N∑
n=0

B̄n(t)I(3)
ln −

1
2

I(4)
l +

2
3γ

[
p∞(t) − 2γ

I(5)γ

]
δl0 +

κ

3γ
I(6)
l (2.17)

for 0 ≤ l ≤ N. The system (2.16)–(2.17) constitutes a set of 2N + 2 differential equa-
tions for the evolution of the time-dependent Fourier-series coefficients, An(t) and
Bn(t). It was solved numerically with MATLAB’s ode45 which uses an explicit
fourth/fifth-order Runge–Kutta method. Within these equations, the quantities I(1)

ln to
I(6)
l are integrals which are listed in Appendix B, while δ00 = 1 with δl0 = 0 for all

other l. The various integrals were evaluated using Gauss–Legendre quadrature with
5N points whose weights and nodes were determined using an algorithm developed by
von Winckel [44].

3. Extended results for spherical bubbles

We can expect the nonlinear nonspherical model to be unstable for high forcing
pressure amplitudes and small Rayleigh viscosities, as well as being slow to run
numerically. The linear model has shown that as time advances, dissipation from
the Rayleigh viscosity causes nonspherical bubbles to become spherical. To extend
our results, and to investigate high forcing pressure amplitudes and low Rayleigh
viscosities in particular, we consider a purely spherical model.

When considering a purely spherical bubble, the system given in Section 2 is sim-
plified considerably. We now require all φ derivatives to be zero, so ∂/∂φ ≡ ∂/∂θ ≡ 0.
The radius, R(t), is now a function of t alone, and the velocity potential Φ(r, t) satisfies

∇2Φ =
1
r2

∂

∂r

(
r2 ∂Φ

∂r

)
= 0.
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The boundary conditions now apply on r = R(t); the kinematic boundary condition is
simply

∂Φ

∂r
=
∂R
∂t

and the dynamic boundary condition is

∂Φ

∂t
+

1
2

(
∂Φ

∂r

)2
+ μΦ =

p∞(t)
3γ
− 1

3γR(t)3γ ,

where again, p∞(t) is the dimensionless far field pressure and μ is an artificial Rayleigh
viscosity. In the nonspherical model, surface tension ensures that initial disturbances
cause oscillations rather than linear growth and causes initial disturbances to excite
other lower modes of oscillation. In the spherical model, surface tension is not able or
required to do these things and so, for simplicity, it has been excluded from this model.
This means that the equilibrium radius is given by Req = 1.

A spherical linear model can be created using the same process as for the
nonspherical linear model in Section 2.1. This spherical linear model is a special case
of the nonspherical version and is given by

R(t) = 1 + εe−μt/2
[
A cos

( t
2

√
4 − μ2

)
+ B sin

( t
2

√
4 − μ2

)]

+
εpa[μτ cos(τt) − (1 − τ2) sin(τt)]

3γ[(1 − τ2)2 + (μτ)2]
+ O(ε2).

As t → ∞, the first oscillatory part of this solution decays to zero, leaving only
the oscillations at the forcing frequency τ. Once again, the Rayleigh viscosity
prevents divergence at the natural frequency which is now at τ = 1. At this natural
frequency, R(t) = 1 + εpa cos(t)/(3γμ) in the large time limit. So for R(t) > 0, we
require εpa < 3γμ. If the forcing pressure amplitude increases beyond this, then this
linear assumption breaks down as it predicts unphysical negative bubble radii.

3.1. Nonlinear spherical model As for the nonspherical case, we can build a
numerical model to implement the full nonlinear boundary conditions. We satisfy
Laplace’s equation by taking

Φ(r, t) =
V̄(t)

r

to be the velocity potential while the radius is simply given by R(t). The kinematic
condition then gives

R′(t) = − V̄(t)
R(t)2 , (3.1)
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and the dynamic condition gives

V̄ ′(t) = − V̄(t)2

2R(t)3 − μV̄(t) +
R(t)
3γ

[1 + εpa sin(τt) − R(t)−3γ]. (3.2)

The system (3.1)–(3.2) was again solved numerically with MATLAB’s ode45 to
find the evolution of the radius R(t) and the velocity potential Φ(r, t) = V̄(t)/r. As well
as only being a system of two ordinary differential equations (ODEs), this requires
no evaluation of integrals and no matrix inversion, and is thus extremely fast. Further,
without nonspherical effects, the system is highly stable and curvature singularities do
not occur. The speed and stability of this model enabled large numbers of simulations
to be run (including in parallel) with varying initial conditions and parameter values
(μ, pa and τ) including values which would cause the simulations to fail in the
nonspherical model.

4. Results

4.1. Nonspherical bubbles We begin this presentation of results by considering
bubbles that are initially spherical, but which are perturbed by a small disturbance to
the velocity using a single Legendre mode. Multi-modal initial velocity disturbances
and initial radial disturbances are also possible in both the linear and nonlinear
models, but for simplicity, we consider only single-mode disturbances here. For all
nonspherical simulations presented, the Fourier sum truncates at N = 81.

Before commenting further on the results, attention should be drawn to the
convergence of the Fourier series in the nonlinear model. Calculating the curvature
along the interface is a very sensitive test of the convergence of the Fourier series and
the accuracy of the results. This is because the curvature in (2.4) involves the second
derivative of the interface profile. Figure 1 presents the curvature κS computed with
total numbers N = 21, 61 and 81 of Fourier modes, for a bubble with a mode-5 initial
disturbance. (The same bubble will be considered again in more detail in Figure 3.)
Although there are modest errors in the curvature profile obtained with N = 21 modes,
the two sets of results for N = 61 and N = 81 are in very close agreement; the inset on
the right side of Figure 1 shows that convergence for the curvature has been achieved
to at least three significant figures. This confirms the high accuracy of our results and,
indeed, the convergence of the series (2.15) for the interface r = R(φ, t) is substantially
better than this as no second derivatives are required.

In general, early in a simulation, a bubble has a strongly nonspherical shape due
to the initial nonspherical velocity disturbance. It exhibits volume oscillations caused
by the initial perturbation (occurring at the natural frequency and at other frequencies
from higher mode interactions caused by surface tension) and has forced oscillations
at the frequency τ. Then, as time advances, the artificial Rayleigh viscosity dissipates
all but the spherical response to the forcing frequency; a larger viscosity, μ, means
that this dissipation occurs faster. However, if the bubble is forced at the natural
frequency, then resonance occurs, and the bubble becomes highly unstable and the
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FIGURE 1. The curvature of the bubble interface from three simulations with N = 21, 61 and 81 Fourier
modes, respectively. In each simulation, the bubble had an initial disturbance of b5(0) = −0.1, a forcing
of εp1(t) = 0.1 sin(1.5t), a Rayleigh viscosity of μ = 0.1 and was allowed to evolve to t = 100.

FIGURE 2. Fourier coefficients from the linear (dashed) and nonlinear (solid) models of a bubble with
initial disturbance b4(0) = −0.1, Rayleigh viscosity μ = 0.05 and a forcing of εp1(t) = 0.1 sin(2t).

nonlinear simulation eventually fails due to the formation of curvature singularities on
the bubble surface. In this case, the linear model gives physically unrealistic results
since it predicts very large oscillations with amplitude proportional to 1/μ.

Figure 2 shows the evolution with time of the Fourier coefficients from both
the linear and nonlinear nonspherical models for a bubble with an initial mode-4
disturbance and a forcing frequency of τ = 2. The figure shows excellent agreement
between the two models. It can be clearly seen that the nonspherical behaviour
dissipates with time and that the natural spherical oscillations rapidly decay, leaving
only the oscillations at the forcing frequency. This bubble was initially perturbed in
the fourth mode, so the two models show that modes zero and two have also been
excited. The nonlinear model also shows a small disturbance to the sixth mode (and
increasingly smaller ones for even higher even modes). This is a result of the nonlinear
coupling which is absent in the linear model. This activation of higher modes is why
the nonlinear model can be prone to curvature singularities (in simulations with low,
or no Rayleigh viscosity) which do not occur in the linear model.
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FIGURE 3. Fourier coefficients from the linear (dashed) and nonlinear (solid) models of a bubble with
initial disturbance b5(0) = −0.1, Rayleigh viscosity μ = 0.1 and forcing of εp1(t) = 0.1 sin(1.5t).

In Figure 3, the bubble is subjected to an initial mode-5 disturbance and is forced
at τ = 1.5. As the initial disturbance was odd, there is an enduring mode-1 vertical
translation. Furthermore, while the linear model predicts that the mode-5 disturbance
causes further disturbances to modes-3 and 1, the nonlinear model predicts that even
modes will be excited along with the odd modes. The fact that even disturbances
excite even modes only, but odd disturbances are capable of generating both even and
odd modes is widely established. It is inherently nonlinear behaviour and has been
found in both experimental and theoretical work (see, for example, Shaw [40] and
Guédra and Inserra [13]). Notably, the sixth mode (which is predicted to be zero by the
linear model) displays resonant behaviour in the nonlinear model. In spherical models,
while the second subharmonic (when the forcing frequency is around twice the natural
frequency) is the most important subharmonic, the largest resonance is caused by the
natural frequency. The natural frequency is thus the critical frequency. However, for
nonspherical models, Hsieh [14] has shown that the critical frequency for a shape mode
occurs at the second subharmonic. The natural frequency of each nonspherical mode is
given by ωl/2 (see (2.12) and (2.13)). For κ = 0.01 and μ = 0.1, the natural frequency
of the sixth mode is ω6/2 = 0.766. So when the bubble is forced at approximately
twice that value, at τ = 1.5, the second subharmonic resonance occurs in the sixth
mode. Other second subharmonics can also be achieved, such as a mode-4 resonance
with τ = 2(ω4/2) = 0.842 or a mode-8 resonance with τ = 2(ω8/2) = 2.332. These
nonspherical resonances ultimately grow so large as to cause the simulations to fail.
Despite the occurrence of the resonance in the nonlinear model, the two models
still show good agreement, especially in the zeroth mode. Note that as the natural
frequency of oscillations of shape modes is independent of the azimuthal mode
number, axisymmetric models are more widely applicable than might be expected [17].

For Figure 4, the nonspherical nonlinear model was run from t = 0 to t = 200, for
increasing forcing pressures or frequencies. Over time, the Rayleigh viscosity causes
bubbles to become increasingly spherical and so, in general, if a simulation reached
t = 200, the bubble would be completely spherical at that time. However, for large
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FIGURE 4. The failure time of the nonlinear nonspherical bubble model for a range of forcing frequencies
τ and forcing pressure amplitudes εpa.

forcing pressures and some frequencies, the simulation failed before t = 200. (The
simulation was deemed to have failed if |bn(t)| > 0.15, as this occurs when the bubble is
experiencing physically unrealistic, rapidly changing, high-mode surface oscillations
which are indicative of curvature singularities.) Figure 4(a) shows the failure time
against forcing pressure εpa for two different forcing frequencies for bubbles with
an initial mode-4 disturbance. For τ = 2, failure before t = 200 began at the forcing
pressure εpa = 0.34. As τ = 0.9 is close to the spherical resonant frequency, bubbles
forced at this frequency are far less stable and fail before t = 200 for forcing amplitudes
greater than εpa = 0.045.

In Figure 4(b), the failure time is given over a range of forcing frequencies for a
bubble with an initial mode-6 disturbance and a forcing amplitude of εpa = 0.2. The
bubble simulation fails before t = 200 for τ values between 0.7 and 1.7. The fourth
mode has a natural frequency ω4/2 = 0.421, and its second subharmonic resonance
causes the simulation to fail for 0.71 < τ < 0.83, and likewise its third subharmonic
causes failure for 1.15 < τ < 1.28. Similarly, the mode-6 second subharmonic reso-
nance causes failure for 1.29 < τ < 1.75. Near the natural frequency of the spherical
mode (τ = 1), growth in the spherical oscillations causes the instability, although the
fourth mode remains significant. At half the natural frequency, τ = 0.5, the simulation
also fails early since nonlinear mode coupling excites the primary resonance at τ = 1.

4.2. Spherical bubbles The spherical simulations are not subject to curvature
singularities and so are far more stable than their nonspherical counterparts. This
enables simulations to be run with higher forcing pressures, lower forcing frequencies
and lower Rayleigh viscosities. Of particular interest are regions where the nonlinear
model predicts the existence of multiple solutions caused by subharmonic and
superharmonic structures. The spherical simulations are extremely fast. Running in
parallel, the 200 nonspherical simulations for Figure 4(b) took approximately 12 hours
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FIGURE 5. The linear (dashed) and nonlinear (solid) predictions of the amplitude of bubble oscillations
against forcing frequency τ for two different forcing amplitudes from simulations with μ = 0.05. The
legend gives the period as a multiple of the forcing period and the number of distinct maxima for the
nonlinear solution.

(50 simulations each for four cores on a standard laptop), whereas one core can run
80,000 spherical simulations in two hours.

Analysis is undertaken by comparing the predicted amplitudes for the two models.
The large time limit of the linear model has the form

R(t) = 1 + ε
pa[μτ cos(τt) − (1 − τ2) sin(τt)]

3γ[(1 − τ2)2 + (μτ)2]
.

From this form, the (peak-to-trough) amplitude can be calculated as

Amp =
2εpa

3γ
√

(μτ)2 + (1 − τ2)2
.

To find the amplitude from the fully nonlinear model, first, the simulation was
allowed to run until it had converged to a stable solution. The bubble was considered
to have converged if the R(t) and V̄(t) values at the end of each period fell within
a margin of 0.3% for 10 consecutive periods. Fundamental frequency solutions and
superharmonics were found using the forcing period. If this was unsuccessful, an
integer multiple of the forcing period was used, which enabled subharmonics and
ultraharmonics to be found. When the solution had converged, the period was noted,
as was the number of maxima per period and their values. The absolute amplitude
was then calculated from the last period by subtracting the minimum R(t) from the
maximum R(t).

For Figures 5–9, a series of simulations was run with varying values of the forcing
frequency (τ), the forcing amplitude (εpa) or the Rayleigh viscosity (μ). The two initial
conditions are given by the radius R(0) and the velocity potentialΦ(r, 0) = V̄(0)/r. The
first simulation started with a low forcing pressure or a forcing frequency away from
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FIGURE 6. The nonlinear predictions of the amplitude of bubble oscillations against forcing frequency
τ for two different forcing pressure amplitudes from simulations with μ = 0.01. The legend gives the
period as a multiple of the forcing period and the number of distinct maxima. The horizontal axis is on a
logarithmic scale.

FIGURE 7. The linear (dashed) and nonlinear (solid) predictions of the amplitude of bubble oscillations
against the Rayleigh viscosity parameter μ for various forcing frequencies for simulations with εpa = 0.3.

any resonances to ensure that the nonlinear model would give a very similar result
to the linear model when started with the same initial conditions. The simulation
was then rerun several times with varying initial conditions to find other possible
solutions. The parameter of interest was then iterated, and the process was restarted
using the final R(t) and V̄(t) values of each converged solution from the previous
iterative step as initial conditions, as well as using the linear guess and other variations.
This process allowed for multiple solutions to be found, including subharmonics and
superharmonics. Note that for these spherical models, surface tension is not included.

Figure 5 shows resonance plots of the amplitude of oscillations against the forcing
frequency for the two forcing pressures εpa = 0.3 and εpa = 0.03. When εpa = 0.03,
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FIGURE 8. The nonlinear predictions for the maxima of the stable bubble oscillations against the forcing
pressure. The legend gives the period as a multiple of the forcing period and the number of distinct
maxima.

the two models give very similar resonance spikes at the natural frequency τ = 1. The
nonlinear model also predicts a second, far smaller, superharmonic resonance spike at
τ = 1/2. When εpa = 0.3, the form of the linear solution is unchanged, with the height
of the resonance spike merely increasing by the expected factor of 10, but the nonlinear
resonance spike has been deflected to the left. The left side of the nonlinear resonance
spike is missing. Presumably, this part of the solution forms the unstable portion of a
hysteresis region, and the nonlinear model cannot converge to it, but instead converges
to the higher-amplitude solution on the right of the resonance spike, or lower-amplitude
solution on the linear curve. For this larger εpa value, the superharmonic resonance at
τ = 1/2 is larger, and superharmonic resonances also occur at τ = 1/3 and 1/4, as well
as a subharmonic resonance at τ = 2.

The high resonance spikes from the linear model can lead to unrealistic negative
R(t) values. The linear model predicts smooth sinusoidal oscillations, so if the
peak-to-trough amplitude increases above 2 (as it does in Figure 5(b) near τ = 1), then
the radius becomes negative. Importantly, the nonlinear model never predicts negative
radii. As the minima approach zero, they become spiked instead of rounded. This is
indicative of the extremely sudden bubble collapse that occurs in cavitation bubbles.

Figure 6 shows two more plots of amplitude against forcing frequency, both with
small Rayleigh viscosity μ = 0.01. In Figure 6(a), the forcing pressure amplitude
εpa = 0.2 causes a large left-leaning resonance spike at τ = 1, superharmonics at
τ = 1/4, 1/3 and 1/2, and subharmonics at τ = 2 and 3. For the larger forcing pressure
amplitude εpa = 0.5 in Figure 6(b), more superharmonic resonances are visible, and
they decrease in maximum amplitude as τ is distanced from the resonance at τ = 1.
As τ increases, the resonant spikes are increasingly bent to the left. For τ � 1/5, this
causes the unstable left sides of the resonance spikes to be absent. For lower τ values,
the resonant spikes are essentially upright and so very little is missing.
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FIGURE 9. The nonlinear predictions for the maxima of the stable bubble oscillations against the forcing
pressure from simulations with τ = 0.25 and μ = 0.05. The lower plot shows the 0.8 < εpa < 1 region
in greater detail. The legend groups the period (as a multiple of the forcing period) by period-doubling
cascades.

For the natural resonant spike at τ = 1 and low-amplitude solutions that lie on
the linear solution curve, the bubble oscillates with the forcing period and has one
maximum per period. For the superharmonic resonances around forcing frequencies
τn = 1/n, the bubble still oscillates with the forcing period, but there are n maxima
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per period. For the subharmonics, the bubble oscillates with an integer multiple of the
forcing period, but with only one maximum. Hence, for the superharmonic resonance
at τ = 1/2, there are two maxima per forcing period, and for the τ = 2 subharmonic, the
bubble has a period of 2(2π/τ) with one maximum. For εpa = 0.5, an ultraharmonic
is present at τ = 2/3, and the bubble oscillates with a period twice the forcing period
and has three maxima per period. Resonance curves qualitatively similar to those in
Figure 6 are widely available in papers such as those of Lauterborn and Kurz [24] and
Gong et al. [12].

It is also possible to plot the curves of the amplitude against the Rayleigh viscosity.
This is done for various forcing frequencies in Figure 7. In general, away from
resonances, such as at τ = 0.6 or 0.7, the linear and nonlinear predictions are very
similar and the amplitude does not change significantly with μ. At τ = 0.5, the
nonlinear model reacts to the second superharmonic and predicts high amplitude
solutions with two maxima per forcing period for low Rayleigh viscosities (plotted
in light blue). As the Rayleigh viscosity increases, it dampens the resonance, and at
τ ≈ 0.3, the nonlinear solution returns to having one maximum per period (plotted in
dark blue) like the linear model which does not detect harmonic resonances. Both
models are sensitive to the natural resonance at τ = 1, however, for low Rayleigh
viscosities, at τ = 0.9, the linear prediction is lower than the nonlinear prediction, and
at τ = 1.1, the reverse is true. This behaviour is caused by the nonlinear resonance
spike curving to the left while the linear spike remains straight. This can be seen
in Figure 5(b). As the Rayleigh viscosity μ increases, the strength of the resonance
fades, and the linear and nonlinear predictions become extremely similar. In all other
simulations, a small Rayleigh viscosity was chosen with μ set to 0.1, 0.05 or 0.01.

In a conventional bifurcation plot, the bubble radius R(t) is noted at the end of
each forcing period. Subharmonics, which oscillate with a multiple of the forcing
period, are easily identified with this method; however, superharmonics, which have
multiple maxima but oscillate with the forcing frequency, and ultraharmonics are not.
By instead plotting the maxima of the stable oscillations, all harmonic resonances can
be identified. Further discussion of this point and a comparison of the methods can be
found from Sojahrood et al. [41]. In Figure 8, two such plots are given for different τ
and μ values. Only one stable solution is present for the simulations with τ = 0.3 and
μ = 0.1. It starts with a period one oscillation, initially with one maximum but then
with two and three maxima from the τ = 1/2 and 1/3 superharmonics. The period
then doubles and doubles again. The first solution for the simulations with τ = 0.5 and
μ = 0.05 behaves similarly, although the period-4 maxima begin to converge after the
initial divergence. This is evidence of so-called “period-bubbling” in which a closed
structure is formed in the bifurcation diagram when solutions undergo period halving
after period doubling [3]. Similar behaviours have been reported by Sojahrood et al.
[41] and Lauterborn and Kurz [24]. A second high-amplitude, period-one solution
appears at εpa = 0.335. The existence of a second high-amplitude solution is common
and occurs earlier for lower Rayleigh viscosities. For τ = 0.6, it appears at εpa ≈ 0.5
and 0.25 for μ = 0.1 and 0.05, respectively. A time-dependent plot of the radius of a
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very similar solution can be seen in Figure 12. There is also a short-lived third
solution which begins with period-2 and three maxima (the τ = 2/3 ultraharmonic),
and doubles twice in quick succession to a period-8 solution with 12 maxima.

Figure 9 shows the period-doubling route to chaos for simulations with τ = 0.25 and
μ = 0.05. Until εpa = 0.8, the results are broadly similar to those in Figure 8(a) which
has a similar forcing frequency and twice the Rayleigh viscosity. Before the period
doubling begins, the lower solution has four maxima from the τ = 1/4 superharmonic,
and the higher solution which begins at εpa ≈ 0.75 has three maxima. When the period
doubles, the number of maxima likewise doubles (although the number of maxima is
only noted in the legend for the P1 solutions). For the lower solution, a period-doubling
cascade begins at εpa = 0.815, and doublings occur with increasingly close intervals
at εpa = 0.857, 0.867 and 0.870. The convergence check only allows for solutions up
to period-20, so the final solution found before chaos is period-16. Beyond that, the
region is generally blank, except for some period-3 solutions which double to P6, then
P12, and period-5 solutions which double to P10. Period-3 solutions are indicative of
chaos. At εpa = 0.957, a period-8 solution reappears and the period successively halves
to period-1 at εpa = 0.987 forming a Feigenbaum remerging tree [3]. This behaviour of
period-doubling routes to chaos, accompanied by superharmonics and ultraharmonics,
then followed by period halving has been found experimentally by Lauterborn and
Cramer [23].

The spherical results thus far have examined the effect of varying the parameters
μ, τ and εpa. Figures 10–12 relate instead to varying the initial values, R(0) and
Φ(r, 0) = V̄(0)/r, of the bubble in the nonlinear model. Simulations were run for a
grid of initial conditions with 0.1 ≤ R(0) ≤ 5 and −5 ≤ V̄(0) ≤ 5 with increments of
0.025. Each simulation was run until the bubble oscillations had converged to a stable
solution, and then the amplitude was calculated. This was done for a range of forcing
frequencies. Almost 80,000 simulations were run per forcing frequency, with each set
taking approximately two hours of computing time to complete. This was performed
on a standard four-core laptop running four frequencies in parallel.

For simulations with Rayleigh viscosity μ = 0.05 and forcing pressure amplitude
εpa = 0.5, the nonlinear model predicts the existence of multiple solutions for the
forcing frequencies τ = 0.34 to 0.796. A contour plot of the amplitudes from the
nonlinear model at four frequencies is given in Figure 10. The yellow (then mustard,
green and aqua) colour represents a region of a high-amplitude solution with a
single bubble collapse per forcing period. As τ increases, this region expands and
spirals in towards the origin until, at τ = 0.79, it covers all but a thin spiralling
line. Beyond τ = 0.8, it is the only remaining solution. Its amplitude reduces from
approximately 4 at τ = 0.42 to approximately 1.5 at τ = 0.8. The blue represents a
region of lower-amplitude solutions that have the same period, but generally have two
maxima per period due to the τ = 1/2 superharmonic.

The case with forcing frequency τ = 0.42 is examined in more detail in Figure 11,
which shows both a plot of R(t) against t and a phase plane diagram of V̄(t) and R(t).
The highest-amplitude solution, plotted in yellow, has cavitation bubble-like collapses
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FIGURE 10. Contour plots of the maximum amplitude of oscillations for varying initial conditions at four
different forcing frequencies for a bubble with μ = 0.05 and εpa = 0.5.

where R(t) is extremely close to zero. In the phase plane, this solution looks like a
single large loop. The mid-amplitude solution (light blue) has two maxima of similar
values and two nearly overlapping loops in the phase plane. This solution has two
collapses per forcing period. The lowest-amplitude smooth solution (dark blue) does
not exhibit bubble collapse, as the minima remain smooth rather than pointed and
do not approach zero. This solution has one large maximum followed by a smaller
one and can be seen in the phase-plane as a small loop inside a larger loop. For
0.34 < τ < 0.42, the smooth solution (dark blue) is the only low-amplitude solution
present. Then, for 0.42 ≤ τ ≤ 0.44, both low-amplitude solutions are present, with the
mid-amplitude solution with collapses (light blue) appearing as a growing swirl inside
the low-amplitude region. For τ > 0.44, the light-blue solution with its double collapse
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FIGURE 11. On the left is a time history of the three solutions that exist for the bubble with forcing
frequency τ = 0.42, εpa = 0.5 and μ = 0.05 from Figure 10. On the right is a phase plane diagram of the
three solutions.

FIGURE 12. On the left is a time history of the two solutions that exist for the bubble with forcing
frequency τ = 0.62, εpa = 0.5 and μ = 0.05 from Figure 10. On the right is a phase plane diagram of
the two solutions.

is the only remaining low-amplitude solution. As τ increases and becomes distanced
from the τ = 1/2 superharmonic, the strength of the second collapse is reduced and the
first minimum becomes less pointed, until, at τ = 0.62, as seen in Figure 12, the second
minimum can be seen only as a small dip between two similarly valued maxima. In
the phase plane, the second minimum remains as a small kink on the right of the limit
cycle. Beyond τ = 0.7, the second minimum has ceased to exist.

5. Conclusion

We have developed linear and nonlinear models with the aim of improving our
understanding of the forced oscillations of spherical and nonspherical bubbles. The
substantial benefit of the simpler linear model was that due to its closed-form solution,
it allowed the physical effects of surface tension, Rayleigh viscosity and the acoustic
forcing field to be clearly understood, and the behaviour at large time to be determined
without costly simulations. In general, the Rayleigh viscosity caused nonspherical
disturbances and oscillations at frequencies other than the forcing frequency to decay,
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and surface tension caused nonspherical disturbances to oscillate. It also provided
limited mode coupling in the linear model to mimic some of the full nonlinear coupling
in the full model. Hence, the models had excellent agreement and both predicted com-
plex nonspherical shapes. The more realistic nonlinear model captured shape-mode
resonances, which were the only enduring nonspherical behaviour. The nonlinear
model sometimes experienced eventual failure when nonspherical disturbances grew
too large. This tended to occur when the bubble was forced at these resonant
forcing frequencies, or with high forcing pressures and low Rayleigh viscosities. Our
numerical results suggest that failure is caused by curvature singularities that develop
within a finite time on the bubble interface. Eliminating such singular behaviour is
possible when fluid viscosity and finite-width interfacial regions are introduced into
the nonlinear model (see [7]).

The inherently more stable spherical model allowed for consideration of these
less stable parameter ranges. The nonlinear model exhibited complicated resonance
behaviour including subharmonics, superharmonics and ultraharmonics, each with
curved resonance spikes. Period-doubling and halving cascades were also evident.
These nonlinear behaviours were stronger for high forcing pressures and low Rayleigh
viscosities. Resonant behaviour in the linear model was limited to a straight resonance
spike at the natural frequency.

A full description of the resonance behaviour within a general nonspherical bubble
and the development of a weakly nonlinear model to bridge the gap between the linear
and nonlinear spherical models remain topics for further study.

Appendix A. Definition of extra Fourier coefficients and constants

The bn(t) Fourier functions for the velocity potential from the nonspherical linear
model are given as follows:

b0(t) = −
R2

eqe−μt/2

2

[
(−μÂ0 + ω0B̂0) cos

(
ω0t
2

)
+ (−μB̂0 − ω0Â0) sin

(
ω0t
2

)

+

N/2∑
i=1

κβ0T0,i

ᾱ0 − κα2i

{
(−μÂ2i + 4κα2i − μ2B̂2i) cos

(
ω2it

2

)

+ (−μB̂2i − 4κα2i − μ2Â2i) sin
(
ω2it

2

)}]

+
R2

eqτpa[μτ sin(τt) + (ᾱ0 − τ2) cos(τt)]

3γ[(ᾱ0 − τ2)2 + (μτ)2]
,

b1(t) = −
R3

eq

2

[
− μB̂1e−μt − e−μt/2

2

(N−1)/2∑
i=1

β1T1,i

α1+2i

{
(−μÂ1+2i + ω1+2iB̂1+2i) cos

(
ω1+2it

2

)

+ (−μB̂1+2i − ω1+2iÂ1+2i) sin
(
ω1+2it

2

)}]
,
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and, for l = 2, . . . , N,

bl(t) = −
Rl+2

eq e−μt/2

2(l + 1)

[
(−μÂl + ωlB̂l) cos

(
ωlt
2

)
+ (−μB̂l − ωlÂl) sin

(
ωlt
2

)

+

(N−l)/2∑
i=1

βlTl,i

αl − αl+2i

{
(−μÂl+2i + ωl+2iB̂l+2i) cos

(
ωl+2it

2

)

+ (−μB̂l+2i − ωl+2iÂl+2i) sin
(
ωl+2it

2

)}]
.

The constants given in both these bn(t) coefficients and the an(t) coefficients for the
radius are as follows:

Â0 = a0(0) −
N/2∑
i=1

κβ0T0,i

ᾱ0 − κα2i
Â2i −

paμτ

3γ[(ᾱ0 − τ2)2 + (μτ)2]
,

Â1 = a1(0) − B̂1 +

(N−1)/2∑
i=1

β1T1,i

α1+2i
Â1+2i,

and, for l = 2, . . . , N,

Âl = al(0) −
(N−l)/2∑

i=1

βlTl,i

αl − αl+2i
Âl+2i,

B̂0 =
1
ω0

[
μÂ0 −

2b0(0)

R2
eq
−

N/2∑
i=1

κβ0T0,i

ᾱ0 − κα2i
(−μÂ2i + 4κα2i − μ2B̂2i)

+
2τpa(ᾱ0 − τ2)

3γReq[(ᾱ0 − τ2)2 + (μτ)2]

]
,

B̂1 =
1
μ

[2bl(0)

R3
eq
−

(N−1)/2∑
i=1

β1T1,i

α1+2i
(−μÂ1+2i + ω1+2iB̂1+2i)

]
,

and, for l = 2, . . . , N,

B̂l =
1
ωl

[
μÂl −

2(l + 1)bl(0)

Rl+2
eq

−
(N−l)/2∑

i=1

βlTl,i

αl − αl+2i
(−μÂl+2i + ωl+2iB̂l+2i)

]
.

Appendix B. Definition of integrals

Here, we list the various integrals that appear in the defining system for the
nonspherical nonlinear model. Within the system (2.16)–(2.17), there are six families
of integrals defined by
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I(1)
ln =

(n + 1)(2l + 1)
n + 2

∫ π
0

Pn(cos φ)Pl(cos φ) sin φ
Rn+2 dφ,

I(2)
ln =

2l + 1
2(n + 2)

∫ π
0

P′n(cos φ)P′l(cos φ) sin3 φ

Rn+2 dφ,

I(3)
ln =

∫ π
0

Pn(cos φ)Pl(cos φ) sin φ
Rn+1 dφ,

I(4)
l =

∫ π
0

[(Φr)
2 + R−2(Φφ)

2]r=RPl(cos φ) sin φ dφ,

I(5) =

∫ π
0

R3 sin φ dφ,

I(6)
l =

∫ π
0

[R2 + 2R2
φ − RRφφ

(R2 + R2
φ)

3/2

]
Pl(cos φ) sin φ dφ.
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[31] E. I. Părău, J.-M. Vanden-Broeck and M. J. Cooker, “Three-dimensional capillary-gravity waves
generated by a moving disturbance”, Phys. Fluids 19 (2007) Article ID: 082102;
doi:10.1063/1.2750293.

[32] M. S. Plesset, “The dynamics of cavitation bubbles”, J. Appl. Mech. 16 (1949) 277–282;
doi:10.1115/1.4009975.

https://doi.org/10.1017/S144618112400021X Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0022112091001854
http://dx.doi.org/10.1007/BF03322786
http://dx.doi.org/10.1017/jfm.2018.768
http://dx.doi.org/10.1051/epjconf/201818002038
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2005.09.004
http://dx.doi.org/10.1017/S0022112004008602
http://dx.doi.org/10.1137/1022088
http://dx.doi.org/10.1063/1.1722221
http://dx.doi.org/10.1121/1.384720
http://dx.doi.org/10.1039/FT9969203879
http://dx.doi.org/10.1016/j.ultsonch.2019.01.031
http://dx.doi.org/10.1103/PhysRevLett.47.1445
http://dx.doi.org/10.1088/0034-4885/73/10/106501
http://dx.doi.org/10.1017/S0022112089001035
http://dx.doi.org/10.1016/S0301-9322(98)00074-3
http://dx.doi.org/10.1088/0004-637X/768/2/113
http://dx.doi.org/10.1080/14786443309462277
http://dx.doi.org/10.1017/S1446181100009871
http://dx.doi.org/10.1088/0370-1301/63/9/305
http://dx.doi.org/10.1063/1.2750293
http://dx.doi.org/10.1115/1.4009975
https://doi.org/10.1017/S144618112400021X


180 M. C. Cockerill, L. K. Forbes and A. P. Bassom [29]

[33] M. S. Plesset, “On the stability of fluid flows with spherical symmetry”, J. Appl. Phys. 25 (1954)
96–98; doi:10.1063/1.1721529.

[34] M. S. Plesset and A. Prosperetti, “Bubble dynamics and cavitation”, Annu. Rev. Fluid Mech. 9
(1977) 145–185; doi:10.1146/annurev.fl.09.010177.001045.

[35] A. Prosperetti, “Viscous effects on perturbed spherical flows”, Quart. Appl. Math. 34 (1977)
339–422; doi:10.1090/qam/99652.

[36] L. Rayleigh, “On the form of standing waves on the surface of running water”, Proc. Lond. Math.
Soc. 15 (1883) 69–78; doi:10.1112/plms/s1-15.1.69.

[37] L. Rayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity”,
Philos. Mag. (6) 34 (1917) 94–98; doi:10.1080/14786440808635681.

[38] P. S. Russell, L. Barbaca, J. A. Venning, B. W. Pearce and P. A. Brandner, “Measurement of nucleai
seeding in hydrodynamic test faciliities”, Exp. Fluids 61 (2020) 79;
doi:10.1007/s00348-020-2911-2.

[39] S. J. Shaw, “The stability of a bubble in a weakly viscous liquid subject to an acoustic traveling
wave”, Phys. Fluids 21 (2009) Article ID: 022104; doi:10.1063/1.3076932.

[40] S. J. Shaw, “Nonspherical sub-millimeter gas bubble oscillations: parametric forcing and nonlinear
shape mode coupling”, Phys. Fluids 29 (2017) Article ID: 122103; doi:10.1063/1.5005599.

[41] A. J. Sojahrood, D. Wegierak, H. Haghi, R. Karshfian and M. C. Kolios, “A simple method
to analyze the super-harmonic and ultra-harmonic behavior of the acoustically excited bubble
oscillator”, Ultrason. Sonochem. 54 (2019) 99–109; doi:10.1016/j.ultsonch.2019.02.010.

[42] R. L. Thompson and K. J. De Witt, “Marangoni bubble motion in zero gravity”, Ann. Meeting of
the AIChE, November 25–29, San Francisco, CA, 1979.

[43] O. V. Voinov and A. M. Golovin, “Lagrange equations for a system of bubbles of varying radii in a
liquid of small viscosity”, Fluid Dynam. 5 (1970) 458–464; doi:10.1007/BF01019283.

[44] G. von Winckel, “Legendre-Gauss quadrature weights and nodes”, MATLAB Central File
Exchange (2021). Retrieved February 15, 2021. https://www.mathworks.com/matlabcentral/file
exchange/4540-legendre-gauss-quadrature-weights-and-nodesWinckel; “LGWT–Legendre–Gauss
quadrature weights and nodes”, MATLAB Central File Exchange.

[45] T. Wairegi and J. R. Grace, “The behaviour of large drops in immiscible liquids”, Int. J. Multiph.
Flow 3 (1976) 67–77; doi:10.1016/0301-9322(76)90036-7.

[46] Q. Wang, W. Liu, C. Corbett and W. R. Smith, “Microbubble dynamics in a viscous compressible
liquid subject to ultrasound”, Phys. Fluids 34 (2022) Article ID: 012105; doi:10.1063/5.0077091.

[47] S. M. Yang, Z. C. Feng and L. G. Leal, “Nonlinear effects in the dynamics of shape and volume
oscillations for a gas bubble in an external flow”, J. Fluid Mech. 247 (1993) 417–454;
doi:10.1017/S0022112093000515.

[48] H. Yoshikawa, F. Zoueshtiagh, H. Caps, P. Kurowski and P. Petitjeans, “Bubble splitting in
oscillatory flows on ground and in reduced gravity”, Eur. Phys. J. E 31 (2010) 191–199;
doi:10.1140/epje/i2010-10561-y.

https://doi.org/10.1017/S144618112400021X Published online by Cambridge University Press

http://dx.doi.org/10.1063/1.1721529
http://dx.doi.org/10.1146/annurev.fl.09.010177.001045
http://dx.doi.org/10.1090/qam/99652
http://dx.doi.org/10.1112/plms/s1-15.1.69
http://dx.doi.org/10.1080/14786440808635681
http://dx.doi.org/10.1007/s00348-020-2911-2
http://dx.doi.org/10.1063/1.3076932
http://dx.doi.org/10.1063/1.5005599
http://dx.doi.org/10.1016/j.ultsonch.2019.02.010
http://dx.doi.org/10.1007/BF01019283
https://www.mathworks.com/matlabcentral/fileexchange/4540-legendre-gauss-quadrature-weights-and-nodesWinckel
http://dx.doi.org/10.1016/0301-9322(76)90036-7
http://dx.doi.org/10.1063/5.0077091
http://dx.doi.org/10.1017/S0022112093000515
http://dx.doi.org/10.1140/epje/i2010-10561-y
https://doi.org/10.1017/S144618112400021X

	1 Introduction
	2 Nonspherical forced oscillations
	2.1 Linear model
	2.2 Nonlinear model

	3 Extended results for spherical bubbles
	3.1 Nonlinear spherical model

	4 Results
	4.1 Nonspherical bubbles
	4.2 Spherical bubbles

	5 Conclusion
	A Definition of extra Fourier coefficients and constants
	B Definition of integrals

