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Introduction 

Does rotation influence stellar evolution? Does it cause observ
ational effects other than line broadening? Can rotation be respons
ible for mixing of chemical elements throughout the star? Do evolved 
stars have rapidly rotating cores? This, for instance, is of interest 
if one wants to compute the details of supernova events. We are not 
sure whether rotation has really important effects on the life of a 
star. There might be no rapidly rotating cores. If we think that a 
fossile general magnetic field couples core and envelope of an evolved 
star, the core will always be slowed down by the big inertial momentum 
of the outer regions. 

Indeed, there is observational evidence that rotation in the very 
interior of a star cannot be too important. White dwarfs seem to be 
rather slow rotators which indicates that they were slowly rotating 
when they still were cores of evolved stars. But we do not know too 
much about white dwarf rotation. They certainly do not rotate critic
ally which would demand an equatorial velocity of 5000 km/sec. But 
the white dwarf in nova DQ Her with its rotational period of 142 sec 
indicates a rather rapid rotation with co <*» 0.049 sec~l (compared to 
^crit ** 0.32 if we assume that the mass is 0.5 M 0 ) . This dwarf rotates 
much faster than it would if it were coupled by a magnetic field to a 
red giant envelope. Then its angular velocity would only be ̂ 10"". But 
we do not know whether accretion has sped up the rotation since the 
formation of the white dwarf out of an evolved red giant or a super-
giant. But the high angular velocity can only have been obtained by 
accretion if the white dwarf has increased its mass by about 3%. This, 
on the other hand, seems to be a rather high amount of mass accreted, 
and therefore this system might give a hint that magnetic fields in 
evolved stars cannot couple completely cores and envelopes with 
respect to their rotation. There is also indication that the crab 
pulsar after the supernova event rotated faster than one would expect 
if it was formed out of a core which was in solid body rotation with 
a red supergiant envelope. Hardorp (1974) discussed the empirical 
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facts and came to the conclusion that there is some coupling between 
core and envelope, but that the rotation of the core is not completely 
slaved to that of the envelope. 

But not only the question of rapidly rotating cores is important. 
Paczynski (1973) showed that the depletion of C relative to N in some 
early-type stars can be explained by Eddington-Vogt-circulation which 
mixes material (partially processed by the CNO cycle in the region near 
but outside the convective core) into the outer regions. Is the carbon 
depletion in these stars evidence for the existence of Eddington-Vogt 
circulation? Cottrell and Norris (1978) tried to explain the Bidelman-
MacConnell weak g-band stars by circulation caused by rotation. 
Sweigart and Mengel (1979) used circulation to explain 12c/13c ratios 
and the weak g-band stars among evolved stars. They find a sufficient
ly big effect if they assume that 0) is considerably bigger near the 
bottom of the convective zone than on the top. They give some arguments 
for that case, but since not very much is known about the rotation of 
convective regions, it is not clear that the stars these authors in
vestigate really do have enough angular velocity to provide the mixing. 

At the present moment, we are far from understanding how the 
angular velocity distribution of a star changes during its evolution. 
Even if one starts out with a rather simple angular velocity law at 
zero age main sequence, for instance assuming solid body rotation 
hoping that in the earlier Hayashi phase all differential rotation has 
been washed out, even then the future is rather unknown, even if one 
neglects magnetic effects. There is general acceptance that regions of 
varying molecular weight can create barriers which cannot be penetrated 
by circulation and which therefore insulate different regions in a 
star with respect to their rotation. But in chemically homogeneous 
radiative regions we are rather uncertain about the evolution of 
angular velocity distributions. Early attempts to predict the rotation 
of the interior of an evolved star have been made by Kippenhahn (1962), 
Kippenhahn, Thomas, Weigert (1965), Kippenhahn, Meyer-Hofmeister, 
Thomas (1969). Recently elaborate computations have been made by Endal 
and Sofia (1976), (1978) to follow the angular velocity distribution 
into the very advanced stages of stellar evolution. All these computa
tions show that as long as there is no exchange of angular momentum 
throughout the y-barriers rapidly rotating cores form which may become 
rotationally unstable. Whether these rapidly rotating cores really 
form and whether they are of importance for the fate of the star, is 
uncertain. But many people, ourselves included, would love to see that 
nature allows rapidly rotating cores in stars, because rapid rotation 
is much more interesting than slow rotation. The world would be less 
exciting without rapidly rotating stellar cores! 

In the following we shall give some examples where the physics 
of rotation is not completely clear, or at least not correctly applied 
by some authors. We shall concentrate on three topics: 
a) Can CJ vary on equipotential surfaces? 
b) What is the time scale of Goldreich-Schubert-Fricke instabilities? 
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c) How fast is circulation in surface-near regions? 

We think we know the answer to the first two questions, while 
the third one might still be considered as open. 

Can a) vary on equipotential surfaces? 

Endal and Sofia (1978) assume that oa must be constant on equi
potential surfaces. Law (1980) in her Yale thesis on differential 
rotation of low mass stars also assumed it. Papaloizou and Pringle 
(1979) believe that U) must be constant on equipotential surfaces and 
use it as an argument against the theory of accretion belts proposed 
by Kippenhahn and Thomas (1978). As long as one considers only axi-
symmetric perturbations the situation is clear. Along equipotential 
surfaces a compressible fluid behaves like an incompressible one 
because the equipotential surfaces are surfaces of constant density. 
Any exchange between elements on the same equipotential surface does 
not require compression or expansion. Therefore, along an equi
potential surface the Rayleigh criterion is necessary and sufficient 
for stability: 

where s is the distance from the axis of rotation. This would 
indicate that there can be a variation of co along equipotential sur
faces as long as the condition (1) is fulfilled. It is well known 
that this criterion can easily be derived by computing the work which 
has been put into centrifugal force if one exchanges two tori of 
equal mass. Condition (1) then is equivalent with the condition 
that the net work against centrifugal acceleration is positive; one 
has to put energy in in order to make the exchange. It therefore does 
not occur spontaneously. The situation seems to be more complicated if 
non-axisymmetric perturbations are taken into account. At first sight 
it does not seem that conservation of angular momentum during the ex
change is a good approximation, because then azimuthal pressure 
gradients occur, and by these angular momentum can, in principle, be 
transported. Indeed Cowling (1951) postulates "if more general (non 
axisymmetric) displacements are considered, azimuthal pressure 
gradients insure that the specific angular momentum does not remain 
constant". But in an inviscid fluid it is difficult to transport 
momentum even if there are azimuthal pressure gradients. A typical 
example is a rigid sphere carried horizontally through an inviscid 
fluid. It is well known that there is no drag. All the momentum lost 
on the front side of the sphere to the surrounding liquid is gained 
back on the rear side. The flow is a potential flow and no momentum 
is lost from the sphere. If this heuristic argument were correct, 
then Rayleigh!s criterion (1) would also be valid for non-axisymmetric 
perturbations and oo could vary on equipotential surfaces as long as 
(1) is fulfilled. The general reluctance of many authors to believe 
this, might come from the feeling that differential rotation might 
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As one can see there is a line of marginal stability with b2^2 = a2^i , 
this is the line of constant specific angular momentum. The case of 
solid body rotation is stable. Between the two broken straight lines 
which indicate solid body rotation and constant specific angular 
momentum differential rotation is stable. There is also a wide area 
of differential rotation where the angular velocity increases out
wards and the flow is stable. Only if the angular velocity increases 
outwards too rapidly instability sets in although the Rayleigh 
criterion predicts stability. 

Solid body rotation, as one can see from Fig. 1, is not marginal, 
it is safe in the stable region. Only if condition (1) is fulfilled 
and the angular velocity gradient is very high, does a new in
stability set in. This instability can be compared with shear in
stability in the plane parallel case. Indeed, if the characteristic 
length scale for the variation of GO is small compared to the radius 
of curvature, the fluid behaves just like it does in the plane 
parallel case. But the instability on the left in Fig. 1 is well 
separated from that on the right by a large region of stability. The 
instability on the left can also be compared with the plane parallel 
shear instability, but one has to keep in mind that, for rotation, 
shear does not mean deviation from GO = constant but from constant 
specific angular momentum! 

We therefore conclude that if one wants to compute the evolution 
of the angular velocity distribution in a star, one cannot put 
GO = const, on equipotential surfaces. The co-distribution on equi-
potential surfaces depends on the history of the star. There is no 
effect which smoothes out differences in oo along equipotential 
surfaces. 

Furthermore we want to emphasize that in the case of accretion 
belts (Kippenhahn, Thomas (1978)) there is no reason to assume that 
shear instabilities distribute the rapidly rotating accreted 
material from the equatorial region over the whole surface of the 
accreting star. Shear instability is sometimes claimed to be 
responsible for turbulence, and, therefore, for turbulent friction 
in accretion disks. But Kepler's law co ̂  s~3/2 is stable; there is 
no shear instability in accretion disks! 

What is the time scale of the Goldreich-Schubert-Fricke instability? 

When at least one of the conditions 

3(S 2OJ)/8S^ 0 , 3oj/az = 0 (2) 

is violated (s, 0, z being cylindrical polar coordinates about the 
rotation axis), the angular velocity distribution in a star is 
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secularly unstable (Goldreich & Schubert, 1967, Fricke 1968). 
Goldreich and Schubert originally estimated the time scale in which 
this instability can redistribute the angular velocity distribution 
within the sun to be of the order of ten years. Later Colgate (1968) 
and Kippenhahn (1969) using different physical arguments estimated 
the time scale to be at least of the order of the Kelvin-Helmholtz 
time scale of the star, which, for the sun, is about 107 years. There 
are some hints that the Kelvin-Helmholtz time scale Tj^ is not very 
good as a lower bound. Since the instability must be driven by rotation, 
the time scale should depend on the angular velocity. Quickly rotating 
stars, being more unstable, should redistribute their angular momentum 
in a shorter time scale than slowly rotating stars. The simplest time 
scale which fulfills this condition is Tgy^T^/x, the Eddington-Vogt 
time scale which is the time scale in which meridional circulation 
caused by rotation moves throughout the star (it is about 1013 years 
for the sun). Here x is a mean value over the star for the ratio of 
the absolute values of centrifugal to gravitational acceleration. 
Indeed, James and Kahn (1970, 1971) argued in favour of a time scale 
comparable to the Eddington-Vogt time scale of the star. But their 
theory has never been fully developed and it seems that it is based 
on different physical arguments than the estimate which has been 
given by Kippenhahn, Ruschenplatt, Thomas (1980a) and which we will 
now discuss in more detail. 

In the paper mentioned above we give new arguments which favour 
a time scale comparable to that of the Eddington-Vogt circulation. 
Our estimates derived from following the motions due to the in
stability into the non-linear domain. Our arguments are similar to 
those which we used to estimate the time scale of a secularly unstable 
distribution of molecular weight in a star (Kippenhahn et al. 1980b). 
The simplest form of the argument is the case in which the condition 
d(s a))/ds >_ 0 is violated. 
its big radius s by £ has 
angular velocity 

Then any torus of matter which has expanded 
- compared to its surroundings - an excess 

DO) = - i- £ d9 2 ds S 
0 = 2 

SO) (3) 

t \±S 
Figure 2 A 
torus of "big" 
radius sQ and 
"small" dia
meter d around 
the axis of 
rotation. 
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In order to have hydrostatic equilibrium during the expansion of the 
big radius it had to change its smaller diameter d in such a way 
that the density in the expanded torus is bigger so that the gravita
tional force and the centrifugal force compensate each other. Since 
there must be pressure equilibrium with the surrounding, the matter 
in the torus must have a temperature higher by DT from that of the 
surrounding: 

|I.-2x^<0 (4, 
The torus, therefore, is not thermally adjusted. With the time scale 
x* of thermal adjustment it tries to heat up to the temperature 
of the surroundings. Consequently, it cannot remain steadily in 
hydrostatic equilibrium but must slowly increase its big radius 
again. An estimate of the velocity by which the big radius expands 
can be given (Kippenhahn 1969) 

2 2 
H - 3c Kp ?d 
P o °^ * P /c\ 

v = ^ 2 X — , T* = —*— , (5) 
(Vad-V)T* w 8acTJ 

where Hp is the pressure scale height. The other quantities have the 
usual meaning. Motions of this type by which torus-like mass elements 
expand their big radius and transport angular momentum constitute 
the mechanism by which the angular momentum is redistributed in order 
to get a stable or at least marginally stable angular velocity 
distribution. The question is, how effective this mixing is. Its 
effectivity depends on the velocity of the mass elements and their 
mean free path. The velocity as given by equ. (5) depends on the 
distance I from the region where the mass element originated, as can 
be seen from equ. (3) and it therefore depends also on the mean free 
path. Whereas Kippenhahn, in his earlier estimate, assumed that the 
mean free path is limited by shear instabilities, we have now found 
a mechanism which destroys the mass element sooner and, therefore, 
determines the mean free path. This mechanism can be easily under
stood. While the torus is moving outwards, it is always cooler than 
the surrounding, its excess temperature follows from equs. (3), (4) 

f = 2 x L . | | < 0 > (6) 
I o US 

COS 

and the temperature difference becomes bigger the further the mass 
element has moved from its original position. During its motion it is 
continuously receiving radiation from the neighbouring region. 

It therefore acts as a heat sink for its surrounding and creates 
a small circulation pattern in its neighbourhood. The topology of the 
pattern is such that it tries to mix the matter of the mass elements 
with the surrounding (see Fig. 3). 
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t Vi> 

Dw>0 

Figure 3 The velocity 
field in the neighbour
hood of a torus with an 
excess velocity DOJ > 0. 
The matter in the torus 
(indicated by the dotted 
area) is cooler. In the 
area around the torus a 
circulation system is 
created which mixes the 
matter of the torus with 
its surrounding. 

Kippenhahn et al. (1980a) have estimated that this "self-destruction" 
by mixing is effective within the time during which the torus expands 
its big radius by a length which corresponds to its small diameter. 
In equ. (6) we therefore have to replace £ by d and one finds 

2xy 
GO' ( V

acf V ) T* H0 
H, •0 Ids/dlnOl (7) 

The redistribution is therefore given by mass elements which move 
outwards or inwards and mix with the surrounding after they have 
moved along a distance comparable with their own size*). One can, 
therefore, define a diffusion coefficient: 

D = v I = v d 
0) CO 

2xy2 

( Vad" V )^ H0 
(8) 

It should be mentioned that this diffusion coefficient does not 
depend on the size of the elements since the thermal adjustment 
time scale T* is proportional to d2. The corresponding diffusion 
time scale over a distance W is given by 
*) Here we have assumed that the characteristic mass element has the 

form of a torus with small diameter d. The same would hold if the 
mass element had the topology of a sphere with mean diameter d. 
If these little "drops" move off or towards the axis of rotation, 
the motion is no longer axisymmetric. But, as long as friction 
can be neglected, drops which have an excess velocity can move 
through the matter as easily as tori, since in a frictionless 
fluid by azimuthal pressure gradients there is no exchange of 
angular momentum for reasons which we have already discussed in 
the foregoing section. 
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T . HW & 
diff H 2xC K } 

P 
where we have introduced the thermal adjustment time scale of the mass 
of a shell of thickness W, which corresponds to the thermal adjustment 
time scale of a mass element of thickness d according to the formula 

W W2 . , _ 
T ™ = — T* (10) 
KH d2 

If W becomes the radius of the star we find for the diffusion time 
SCale V7ad-V> TKH 

Tdiff H 2Y£ U U 
P 

which indeed is of the order of the Eddington-Vogt time scale. 

Similar arguments can be used to show that this is also the time 
scale if the condition 3oo/8z = 0 is violated. 

If, therefore, the angular velocity distribution in a star 
violates the Goldreich-Schubert-Fricke condition, then mass elements 
of all sizes will start a random motion and redistribute angular 
momentum. One can describe this random motion as a diffusion 
process and its effect on mixing angular momentum as kind of turbu
lent friction. In appendix A we give an estimate of the turbulent 
viscosity, which is caused by GSF instability. 

How fast is circulation in surface-near regions? 

Chemical anomalism in A-stars and correlation between pulsational 
variability and rotational velocity for A stars have provoked a series 
of papers in which the effect of a fractional sedimentation was used 
to explain these stars. For reference, see, for instance, the papers 
by Baglin (1972) and by Vauclair (1976). Although the outer convective 
regions of these stars are rather shallow and, therefore, convection 
does not contribute considerably to mixing, there is meridional 
circulation caused by the stellar rotation. Baglin (1972) takes this 
into account and uses shear instabilities caused by the circulation 
to explain why, in some stars, sedimentation seems to be effective 
but not in others. 

In order to see the principles we assume an unevolved star of two 
solar masses with R = 1.61 R0, X = 0.732, Y = 0.240, vequ = 50 km/sec. 
For this model we have x = 0.011 for surface-near equatorial regions. 
For our estimates we take the region with log P = 5.03 as a re-
presentive layer, which is just below the stellar hydrogen convective 
zone. There we have 
H = 1.75xl08, 1-3 = 0.014, V ,-V = 0.115, £ = (Kp)"1 = 1.23xl06. p ad opt K 
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The classical Sweet formula (Sweet 1950) for this star would give a 
radial component of the circulation velocity in surface-near regions 

v «6.7xlO~4x = 7.4><10~6 (12) 

this velocity would not prevent sedimentation, which according to 
Baglin's formula (1972) is vsecj = 1.4*10~4. But as Baker and Kippenhahn 
(1959) have shown, for non-uniform rotation, an additional term 
becomes important in surface-near regions. If there is no solid body 
rotation, their estimate gives 

v *6.7xl0~4 £-Y = 1.65X102 (13) 
— . 3 

Here p is the mean density 3M/4TTR of the star. But even if there is 
solid body rotation, another term appears if one takes into account 
second order effects in the small quantity X : 

v « 4.5X10""4 £-x2 = 1-21 (14) 
r P A 

This has been shown by Opik (1951) and Mestel (1966). 

As already mentioned, the Sweet term (12) does no harm to sedi
mentation, the other two would mix faster than separation by sedi
mentation. In the paper by Vaucla^r (1976) an argument by Osaki (1972) 
was used to ignore the dangerous p/p-terms. In the following we show 
where the difficulties lie in getting the meridional circulation 
effects sufficiently small. 

Osaki (1972) notes, correctly, that the estimates (12) - (14) are 
based on the assumption of a steady state. If time derivatives are 
taken into account in the energy equation, the situation is different. 
He considers the case where the terms containing time derivatives in 
the energy equation are large compared to the terms which describe the 
transport of energy by circulation. In this case one obtains an 
equation similar to the heat equation and one can assume that a steady 
state is reached after some time. But Osaki is aware that this steady 
state is GSF unstable and that, therefore, the angular velocity distri
bution will not remain in this state. We have a minor objection to 
the Osaki picture in the following sense: The equations from which 
Osaki derives his equations are identical with those from which the 
meridional motion caused by GSF instability is derived. Therefore, we 
do not think that first a steady state is reached and then instability 
sets in, but that Osakifs steady state is never reached. And, 
probably, this is what Osaki had in mind when he wrote that a "steady 
state may likely be established between the meridional circulation 
and the irregular motion due to this instability". Therefore if one 
wants to apply Osakifs reduction of the meridional circulation to the 
sedimentation problem, one must, at least, estimate how big the 
circulation is in the final state suggested by Osaki. 

Recently we have rediscussed the problem and it seems that we 
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arrive at a solution, which is probably equivalent to what Osaki has 
suggested. If one allows a small deviation 00* from solid body rota
tion Q, one can determine this deviation in such a way that the Baker-
Kippenhahn term and the Opik-Mestel term cancel each other. As is 
shown in detail in appendix B, a)* is given by 

0) 

2 3 
75 ^ T [4 cot26(l-cos39)-l] 

Its 0-dependence is given in Fig. 4. 

(15) 

-1L 

_J I L _ — L _ — L _ _ 
10° 20° 30" 40" 50" 80*3 

Figure 4 To 
demonstrate the 
0-dependence of the 
angular velocity 00 
the function 
4 cot29(l-cos39)-l 
is plotted as a 
function of 9. 
It changes sign at 
9 = 62?2. 

If, in the surface-near regions of a star, the angular velocity 
distribution is given by 00 = Q + u)* then the meridional velocity is 
given solely by the Sweet estimate (12) up to second order terms in x 
and cannot overcome sedimentation. 

Unfortunately, the angular velocity distribution as given by 
equ. (15) is GSF unstable since OJ varies on cylinders coaxial with 
the axis of rotation. As a consequence of this, we expect that 
turbulent friction will occur as given by equ. (A5). This friction 
would immediately cause deviations from the angular velocity distri
bution given by eq. (15), and, therefore, the compensation given 
by eq. (B23) would be distorted. If one demands a steady state the 
circulation must compensate the flux of angular momentum caused by 
friction: 

sp(v \7)(a)s ) = \7 (nts3V(jo). (16) 

The u) on the left-hand side of eq. (16) is roughly equal to Q, = const, 
while Vo3 on the right can be replaced by Vco*. Then an estimate for 
the right-hand side is given by 
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|V (nts3Va))|^X^ s2nt/Hp (17) 

where we have made use of the following estimates: 

|Vntl*nt/H , s » r ~ R , |Vo)| « x/R (18) 

and where we have assumed H << r. This gives with eq. (A5) 

v „ ^ ~ i A 0-g>X3c (I9) 
Vs ~ 2pHp ~ 5 (Vad-V)?RKP U y ; 

Since v «* v~ and v «s H v»/R we find s 0 r p 0 

i6 (1-6) V _ 3 (20) 

For the stellar model used here we find with £ = 1/6 (spherical 
turbulent elements) 

v * 1.4xlO~3. (21) 
r 

The mixing due to circulation is about ten times more effective than 
separation by sedimentation. However our estimates are only approxi
mate, and we think, therefore, that sedimentation as a mechanism for 
the separation of chemical elements in surface-near regions of stars 
with ineffective outer convective zones cannot be excluded completely. 
In our picture there are two effects which reduce the circulation 
velocity: the special angular velocity distribution which kills the 
p/p-effects and the ineffectivness of the unstables modes in GSF 
unstable region due to self-destruction. 

In the foregoing considerations we have shown only that there 
exists an angular velocity distribution which strongly reduces the 
circulation speed in surface near regions but we have not been able 
to show how out of a given initial angular velocity distribution 
such a special state of rotation could evolve. 
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APPENDIX A; The turbulent viscosity induced by GSF instabilities 

We define two characters with length scales: 

Hj = |9z/31ttA)| 
C -3s/91n9 , if 3s/£ln6 < 0 (Al) 

Hfi = { ? 
I if 8s/81nG _> 0 , 9 = s a). 

They are measures for the degree of violation of the GSF instabilities, 
In case of stability they are infinite. The smaller they are the more 
unstable is the angular velocity distribution. In principle we should 
derive the turbulent viscosity separately for the two cases in which 
each of the two GSF instability conditions is violated. Instead of 
this we use the minimum of the two quantities 

H = MinCH^, H 0 ) . (A2) 

Indeed as one can see from the detailed derivation in the paper by 
Kippenhahn et al. (1980a) the velocity of a turbulent element of size 
d which has moved along a distance of its size in both cases can be 
described by 

v = Jg- 2X ±- (A3) 
Vt H V -V T* K J 

ad 

If we then define an eddy viscosity by 

nt = Pvtd (A4) 

we find 
nt 3 V -V H e c Kp ^ ° ; 

ad P 
where again £ is a dimensionless quantity of the order 1 which depends 
on the geometry of the elements. With this eddy viscosity one can de
fine a timescale over which this viscosity can change a GSF unstable 
angular velocity distribution over a certain distance. This timescale 
then is of the order of the diffusion timescale already derived in 
eq. (9). 

It is of interest to compare the eddy viscosity given in eq. (A5) 
with the radiative viscosity given by 

'R 15 cKp 
The ratio of the two viscosities then is given by simple dimensionless 
factors 
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n̂  __r. = 40 „ X 
^R V a d - V 

H 
P 

H 
1 
C 

2 
c 

2 
V c 

where v is the velocity of sound. 
c J 

APPENDIX B: The angular velocity distribution with highly reduced 
circulation 

We start from Eq. (7) of Baker & Kippenhahn (1959) 
„3 (2) + ,,. _. (2) d ( 4acT dT \ , ,2,,i 

( d l v ^ " d * - 3 i J p - " d * / ( 8 r a d * ) 

' / 2 2 ><2> 
+ 4 a c T 

3«p 
This formula holds for angular velocity distributions which have con
servative centrifugal acceleration. \p is the sum of gravitational and 
centrifugal potential. Any axisymmetric function A can be considered 
as the sum of a function A^°) which is constant on ̂ -surfaces and a 
function A(2) which has vanishing mean values on all ^-surfaces. Eq. 
(Bl) is a relation between these latter types of functions. We apply 
eq. (Bl) not only to the angular velocity distribution oo = Q = const. 
(which has a conservative centrifugal field) but also to distributions 
in the neighbourhood of that: oo = £2+co*(s,z). As long as |OJ*/^|<X tne 
formula is still valid in second order in )(• 

We want to show that the second order term of the first summand 
produced by solid body rotation (Opik, 1951; Mestel, 1966), which does 
not depend on the density, can be compensated by a small correction to 
to solid body rotation with Q = const, via the second summand. For 
this we have to evaluate the first summand to second order in the ro
tation parameter x = fi r^/GM. 

The luminosity is defined as 

L = / F d a = - T ^ I T f|V*|da. (B2) 
where da is the surface element of an equipotential surface. With M^ 
defined as the total mass interior to the surface \\j = const, one has 

|| = !^i - n2r s i n 2 Q (B3) 
r 

1 M = - o2 r 80 
and therefore 

_ n r s i n e cos0 (B4) 
r dW 

da = 2<TTr2 s i n e dG l/l + (^~r-) . (B5) 
1 rde 
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Since d r / r d 0 i s of t h e o r d e r x i t can be n e g l e c t e d . And combining E q s . 
(B3) and (B4) we o b t a i n 

GM 
|Vip| = - j * ( l - ysinQ) + 0 ( X

Z ) . (B6) 
r 

The i n t e g r a t i o n t h e n g i v e s 

2 
Vip|da = 4TTGM (1 " j x^) (B7) 

* 
with Y^ = fi?re3/GM ,, r e being the equatorial radius of the surface 
ip = const. Therefore, we can write 

4acT3 dT _ L 2 . ( . 
"T^dhp" 4̂ GM" ( 1 + 3 V (B8) 

and, to evaluate its derivative with respect to p̂, we need to compute 
dM /dip and dx/dip. One has 

% = ^ = ^ 1 1 (B9) 
and 7T * 

7 da = 4TT TO ■ GM j 
ip y o 

4 2 
d0 sine r (1 + xsin o). (BIO) 

Since this term depends on p we take only the lowest order, i.e. 
r^ = re^ = const, and obtain 

From 

w i t h 

f d 4 ^ r e 4 

the d e f i n i t i o n of 

dv v dr 
e _ o e e 

dip r e dip 

2 d r r e e 
dip ** GM, -

v one 

D i f f e r e n t i a t i n g Eq. (B8) l e a d s 

d ( 4 a c T 3 d T \ 
dip \ 3Kp dip/ 

L 
= 47TGM, 

gets 

t o 

{-lr 
V ip 

dM 

dip 
2 
3 dip 

(Bll) 

(B12) 

(B13) 

(B14) 

and inserting Eqs. (B9), (Bll), (B12), and (B13) one has 
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d ( 4acT3 dT^ 
dip I 3tcp dip / 

L 1 
4 7 T G ^ \ 

(B15) 

4 3 — If we define a mean density by M, = -r TT r p, we obtain finally 

-\ 4 

d / 4acT dT\ Lp re /\ 2 p \ ,„,,. 

2 (2) 2 
To obtain (grad ij;) we have to split (Vip) into one part which is 
constant on ̂ -surfaces and another for which the mean value over a 
i(;-surface is zero. We do this at our level of approximation by sub-
stracting from grad ip a term proportional to the Legendre polynomial 
?2 such that a term is left which depends on ty only. For this we need 
the function r = r(6) for ijj = const. From Eqs. (B3) and (B4) one gets 

2 3 
§e = lr- sine cose + 0(*2) (B17) 

and after integration 
3 

-|~ = 1 + 4 X cos29. (B18) J I ^e r 
For the gradient of \p we have 

G2M 2 
(Vi(;)2 = —£- (1 - 2 xe sin20) + 0(Xe

2) (B19) 
r 

and by inserting Eq. (B18) we obtain 
2 2 

o G M ? 
W ) = J- (1 + 2 X e - 4Xe sin 0) (B20) 

r 
e 

which we split into two terms according to the rule given above: 
2 2 2 2 

? G Mi ? « G Mi i ? 
W - — £ - (1 - | x e ) + f X e — \ - (1 -fsin ZG). (B21) 

r r 
e e 

So we now have 

(grad2ip)(2) = | x — | - (1 - | sin26) (B22) 
2 2 G M, 

3 Ae 4 r e 
and therefore can equate the two terms of Eq. (Bl) which do not depend 
on the density: 

https://doi.org/10.1017/S007418090007399X Published online by Cambridge University Press

https://doi.org/10.1017/S007418090007399X


ROTATION AND STELLAR EVOLUTION 253 

4acT3 dT (l 9(0)2s2)V2 ) 16 IP 2 , 3 . 2 * . , _ , . . 
- ^ p - d j r i l ^ T i J = - 9 T M r X e ( ' - j s i n G ) . (B23) 

With the help of Eq. (B8) th is transforms to 

1 (\ 9((02s2)>f2) 16 tt2r3 , , 3 . 2fl, ,__., 
^ l l l - S T — / = 3 - - ^ ° " 2 S l n 9 ) - ( B 2 4 ) 

Here we have replaced re by r because the 6-dependance of r is of higher 
order. We now write U) - ^-KJI)*(S,Z) and obtain with the approximation co*«ft 

i i ^ L ) = 2 l l 2 + 2 f i i H ^ (B25) 
s 9s s ds 

which, together with Eq. (B24) leads to 

8(0)*s2) _ 8 ft3(s2+z2)3/2s f 3 s 2 \ 
~Ts 3 — G ^ ; [' " 2 ~r^2 • ( B 2 6 ) 

Integration over s results in 
* 4 ft3 1 fl „ 2 2 W 2 2N3/2 ., 71 /BO_. 

I GM "T I I (4z ~S } (S } + f (z)J , (B27) 
where we have replaced M^ by the _total mass M, which corresponds to 
neglecting a term of the order p/p. To determine the function f(z) we 
require 03* to remain finite for s -> 0, so 

f(z) = " f z5 (B28) 

and we finally have 

* = i_ ̂ i i_ W 15 GM 2 s 1-(4z2-s2)(s2+z2)3/2 - 4z5 I , (B29) 

or, in spherical polar coordinates 

a>* = js ^gg- I 4 cot29(l - cos30) - lj . (B30) 

The angular velocity distribution ft+oo* has to be distinguished from the 
so-called circulation-free angular velocity distributions as they are 
discussed by Schwarzschild (1942), Kippenhahn (1963), Roxburgh (1964). 
The latter describe states of rotation which up to first order in x do 
not cause circulation. The velocity distribution determined in this 
appendix demands a circulation which up to second order in x n a s n o 

p/p-term. Nevertheless it gives the normal Sweet type of circulation 
velocity in the first order. But this circulation is unimportant for 
the problem of sedimentation. 
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DISCUSSION 

Osaki: I would like to comment on the three points which Prof. Kippenhahn 
has raised. Firstly, I am happy to hear your argument that differential 
rotation on the equipotential surface is not sufficient to induce in
stability. I think that we must be more careful in discussing the vis
cosity and the stability of the accretion disk. Secondly, do you agree 
with me that the second term, 9s/8t, in the energy equation which gov
erns the meridional circulation velocity becomes important near the 
surface zone? How did you estimate the order of magnitude of the cir
culation velocity when v ~ 10""̂  cm/sec? 
Kippenhahn: Concerning your second point, the term 3s/3t can become 
important, but I have difficulty understanding your conclusion that this 
term will lead to a circulation-free co-distribution for the reasons I 
have given in our paper. We have estimated the circulation velocity by 
introducing an eddy viscosity caused by the Goldreich-Schubert-Fricke 
instability (using our value for the mean free path determined by self 
destruction) . This viscosity gives a deviation oo from oo = 9, + 03* which 
in a steady state demands an additional circulation velocity of the 
order I had mentioned. 
Osaki: Thirdly, how sensitive is your result to your assumed form of 
perturbations? I ask this question because the perturbation you assumed 
does not conform to an eigenfunction of the linear mode. Did you consider 
the salt-finger type perturbation as well as the blob-type perturbation? 
Kippenhahn: Concerning your third point, we have started our work with 
the problem of thermohaline mixing (the paper will appear in Astronomy 
and Astrophysics). There, as well as here, we have not investigated 
perturbations which correspond to the eigenfunctions of the linear the
ory. What we did is to investigate the fully developed nonlinear motion. 
We have made our estimate with a torus-like perturbation, but the mecha
nism of self destruction does not depend on the detailed geometry. All 
kinds of volumes that are in hydrostatic equilibrium with the surroundings, 
but have different angular velocities, will be destroyed by the circula
tion which they create. 
Roxburgh: I understand that the most unstable modes in the Goldreich 
Schubert-Fricke unstable star are long thin modes, so I doubt the vali
dity of an axially symmetric perturbation analysis. Since the stability 
analysis gives the growth rates, an estimate (or lower limit) on the 
diffusion rate can be obtained by determining the amplitude of the linear 
growing mode at which the nonlinear terms become important. Does this 
not give a reasonable estimate and has it been done? 
Kippenhahn: The axisymmetry is not essential to our analysis. Self 
destruction appears in all kinds of perturbations you can make up. In 
the kind of analysis you suggest, you can learn how long it takes for 
the nonlinear terms to become important but you do not learn what will 
happen afterwards. You would not even find that a mechanism like self 
destruction exists. 
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Schatzman: Is the core of the sun rotating fast? Can you give an upper 
limit to the angular velocity of the solar core? 
Kippenhahn; I do not know the upper limit by heart. However, it arises 
from the lack of an observed solar oblateness. An estimate has been 
given by D. Bortenverfer in a paper published in A & A about 6 years 
ago. You can probably find the latest value in one of the solar neu
trino review papers. 
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