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The near-field shape and stability of a
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When a fluid is injected into a porous medium saturated with an ambient fluid of a greater
density, the injected fluid forms a plume that rises upwards due to buoyancy. In the near
field of the injection point, the plume adjusts its speed to match the buoyancy velocity of
the porous medium, either thinning or thickening to conserve mass. These adjustments are
the dominant controls on the near-field plume shape, rather than mixing with the ambient
fluid, which occurs over larger vertical distances. In this study, we focus on the plume
behaviour in the near field, demonstrating that for moderate injection rates, the plume
will reach a steady state, whereby it matches the buoyancy velocity over a few plume
width scales from the injection point. However, for very small injection rates, an instability
occurs in which the steady plume breaks apart due to the insurmountable density contrast
with the surrounding fluid. The steady shape of the plume in the near field depends only
on a single dimensionless parameter, which is the ratio between the inlet velocity and
the buoyancy velocity. A linear stability analysis is performed, indicating that for small
velocity ratios, an infinitesimal perturbation can be constructed that becomes unstable,
whilst for moderate velocity ratios, the shape is shown to be stable. Finally, we comment
on the application of such flows to the context of CO2 sequestration in porous geological
reservoirs.

Key words: buoyancy-driven instability, plumes/thermals, porous media

1. Introduction

Buoyant plumes in porous media may result from thermally driven convection or during
injection scenarios involving fluids of different densities. Such flows are relevant within
the context of numerous environmental and geophysical applications, such as groundwater
contaminant transport due to waste leakage (MacFarlane et al. 1983), geothermal power
production (Woods 1999) and the geological storage of CO2 emissions in subsurface
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reservoirs (Huppert & Neufeld 2014). Whilst such plumes have been studied in some
detail far away from their origin, few studies have investigated the near-source behaviour.
In particular, it is not known how the shape of a porous plume evolves close to the point
of its formation, or whether this shape remains in a stable state or breaks apart due to
instabilities. However, it is important to understand the characteristics of the near-field
plume due to the effects that it can have on the pressure near the injection point and
consequent flow rates (Gilmore et al. 2022).

A wide body of literature has been developed surveying different buoyant flows in
porous media. These include studies of convective instabilities in a Rayleigh–Bénard
cell (Graham & Steen 1994), convective shutdown behaviour (Hewitt, Neufeld & Lister
2013a), the onset and evolution of convective fingers (Wooding, Tyler & White 1997a;
Wooding et al. 1997b), and mixing effects during injection into a porous medium (Lyu &
Woods 2016). It has been demonstrated that a quasi-steady regime exists in both two-
and three-dimensional Rayleigh–Bénard cells in which convection occurs in columnar
structures (Hewitt, Neufeld & Lister 2013b; Hewitt & Lister 2017). For buoyant flows that
are not thermally driven, but are instead driven by injection, similar columnar structures
have been observed. For example, Gilmore et al. (2022) described the behaviour of a
two-dimensional buoyant column of fluid with weakly varying thickness, resulting from
leakage through an impermeable baffle. In that study, it was shown that the shape of
the column affects the near-baffle pressure and consequent leakage rates, indicating the
need to model such scenarios accurately. However, there is no study that describes the
generic shape of a porous plume near its source, or the criteria for which this remains
stable.

This study describes such a porous plume supplied by a constant injection (i.e. not
thermally driven), focusing on its shape and stability in the near field (within a few
plume-width scales) of its origin. We ignore the effects of mixing with the ambient fluid,
since these occur over much greater length scales and are described by other studies
(Sahu & Flynn 2015; Lyu & Woods 2016). We establish the criteria for the existence of
a steady-state regime, and we demarcate the parameter values for which this becomes
unstable. In particular, if the injected fluid is supplied with a velocity much smaller than
the buoyancy velocity (i.e. the equilibrium rise speed within the porous medium), then
the interface separating the plume from the ambient fluid becomes unstable at a critical
distance downstream. On the other hand, if the inlet velocity is sufficiently close to the
buoyancy velocity, then this instability is suppressed and the plume maintains a steady
shape.

We study both two-dimensional plumes resulting from a line source, and axisymmetric
plumes resulting from a circular source, using input velocities that are significantly
different from the buoyancy velocity (i.e. resulting in large variations in the plume width).
This is in contrast to the study of Gilmore et al. (2022), which considered only weakly
varying plume shapes in the two-dimensional case. In addition, we extend the analysis
to unsteady flows and assess the stability of the plume shape in several different cases,
whereas Gilmore et al. studied only the steady case.

The structure of the paper is as follows. In § 2, the flow scenario is described for
both two-dimensional and axisymmetric plumes, deriving both analytical and numerical
solutions in the steady state. Comparisons are also made with the porous media tank
experiments of Gilmore et al. (2022). Section 3 treats the stability of these steady plume
shapes using a linear perturbation analysis. Finally, § 4 closes with a discussion on the
possible application of our results to injection scenarios during CO2 sequestration, as well
as other further extensions of this work.

955 A13-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
68

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1068


The near-field shape and stability of a porous plume

wb = k∆ρg/μ

w0

A∞

A0
Q = A0w0

ρ = ρ1ρ = ρ2 >ρ1
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z

A(z, t)

r

Figure 1. Schematic diagram of the flow scenario in the case of a circular source. The injected fluid z ≥ 0 is
fed by a flow w0 through a disk region of area A0, and speeds up to match the natural buoyancy velocity wb
downstream. Hence the plume cross-section A(z, t) thins out from A0 to A∞ to conserve mass.

2. Porous plumes in the near field of injection

We consider the constant injection Q of a fluid of density ρ1 into an infinite porous medium
saturated with a heavier fluid of density ρ2 > ρ1, as illustrated in figure 1. (Note that
this study also applies to the configuration of a heavier fluid injected into a lighter fluid,
ρ2 < ρ1, due to the Boussinesq approximation (Soltanian et al. 2016; Amooie, Soltanian
& Moortgat 2018), in which case figure 1 is inverted.) For simplicity, we assume that the
fluids have the same viscosity μ1 = μ2 = μ, although this assumption is discussed in
more detail later. Since the injected fluid is lighter than the ambient fluid, it rises upwards,
forming an ascending plume of cross-sectional area A(z, t).

There are two spatial regimes characterised by A0 = A(0, t), the area at the point of
injection. In the near-field regime z = O(A1/2

0 ), which is the focus of the current study,
the plume adjusts its shape to conserve mass whilst matching the equilibrium buoyancy
velocity of the porous medium (i.e. buoyancy balancing viscous resistance), and the effects
of mixing with the ambient fluid are negligible. Over much greater length scales z � A1/2

0 ,
the injected fluid mixes with the ambient fluid, causing the buoyancy to decrease and the
width of the plume to increase as the flow moves upwards. For example, the experiments
of Sahu & Flynn (2015) revealed that plume-width changes due to dispersive mixing occur
over vertical length scales z = O(10A1/2

0 ).
Therefore, in the current study, we neglect the effects of mixing and focus only on the

changes in the plume shape due to mass conservation as it adjusts its velocity. Hence we
treat the injected and ambient fluids as immiscible, such that the interface between them
remains sharp (e.g. see sharp interface models of other gravity-driven flows; Huppert &
Woods 1995). We consider both the case of injection from a line source, in which the
resultant flow varies only in the horizontal (x) and vertical (z) directions, and injection from
a circular source, in which the resultant flow is axisymmetric and varies with cylindrical
coordinates (r and z), as shown in figure 1.

If the injection flow rate Q is sufficiently small, then we expect an instability to
occur in which the shape of the plume A(z, t) becomes unsteady due to the density
contrast of a heavier fluid sitting above a lighter fluid (Rayleigh 1900; Taylor 1950).
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Likewise, we expect another regime corresponding to larger flow rates in which the shape
remains steady, A = A(z). The aim of this study is first to describe the steady-state regime
for the near-field plume, and then to address the criteria for the stability of this steady state.

2.1. Steady plumes
To address the steady-state regime, we describe the shape of the plume A(z) above the
injection height (z ≥ 0) in general terms that apply to both linear and circular sources. At
the injection point, the vertical inflow velocity is

w0 = Q
A0

. (2.1)

Likewise, the buoyancy velocity of the injected fluid, which is the equilibrium rise speed
in the porous medium (i.e. buoyancy balancing viscous resistance), is given by

wb = k Δρ g
μ

, (2.2)

where k is the permeability of the medium, and Δρ = ρ2 − ρ1. Due to mass conservation,
the far field cross-section is given by A∞ = Q/wb. (Note that we use the term ‘far field’
here and throughout the paper to refer to the length scale over which the plume velocity
approximately matches the buoyancy velocity. This is not to be confused with the even
greater length scales over which the effects of mixing are important, since these are not
studied here.) Hence the key dimensionless parameter in this study is the ratio between the
inlet and buoyancy velocities,

W = w0

wb
. (2.3)

As the flow moves downstream (i.e. upwards), the plume must become thinner (A∞ < A0)
for sub-buoyancy velocities W < 1 and thicker (A∞ > A0) for super-buoyancy velocities
W > 1.

The flow within the injected fluid is governed by the Darcy equations

∇ · u = 0, (2.4)

u = − k
μ

(
∇p + ρ1gk̂

)
, (2.5)

where u is the Darcy velocity vector, and p is the pressure. The flow in the ambient fluid
is coupled to the injected fluid only via the boundary conditions, which we discuss in the
next subsection. Hence, for the purposes of this study, we omit further details of how to
model the ambient flow outside the injected region, since the behaviour of the injected
flow is of primary interest.

The Darcy equations (2.4)–(2.5) are accompanied by boundary conditions that take a
different form depending on whether the flow is injected from a line source or a circular
source. Hence we address the former and latter cases separately in §§ 2.2 and 2.4.
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The near-field shape and stability of a porous plume

2.2. Plume shape: the case of a line source
In the case of the line source (with A(z) = a(z) d, where d is the depth in the third
dimension), we impose boundary conditions within the injected fluid region of the form

u = 0, x = 0, (2.6)

w = w0, z = 0, (2.7)

w → wb, z → ∞, (2.8)

u = w a′(z), x = a(z), (2.9)

p = pa − ρ2gz, x = a(z), (2.10)

where pa is the ambient hydrostatic pressure at z = 0, and a′(z) = da/dz. The above
boundary conditions correspond with imposing symmetry on the z axis (2.6), constant
inflow at the source (2.7), matching with the far-field buoyancy velocity (2.8), and applying
the kinematic (2.9) and dynamic conditions (2.10) at the sharp interface. For further details
on the governing equations and boundary conditions for flow in porous media, see Bear
(2013).

The above system (2.4)–(2.10) is a free boundary problem for both the flow and the
shape of the interface a(z). To proceed, we seek a solution of the form

p = pa − ρ2gz + p̂, (2.11)

u = û, (2.12)

w = wb + ŵ, (2.13)

where the hatted Darcy velocities satisfy

û = −(k/μ)p̂x, (2.14)

ŵ = −(k/μ)p̂z, (2.15)

in which subscripts denote partial derivatives. Hence the hatted pressure satisfies the new
system of equations

∇2p̂ = 0, (2.16)

p̂x = 0, x = 0, (2.17)

p̂z = Δρ g(1 − W), z = 0, (2.18)

p̂z → 0, z → ∞, (2.19)

p̂x = (p̂z − Δρ g) a′(z), x = a(z), (2.20)

p̂ = 0, x = a(z). (2.21)

The governing equation (2.16) is obtained by inserting (2.12)–(2.15) into the continuity
equation (2.4), whereas (2.17)–(2.21) are obtained from each of the boundary conditions
(2.6)–(2.10), respectively.

In the case where the inlet velocity is close to the buoyancy velocity (W ≈ 1), the
solution to (2.16)–(2.21) was calculated by Gilmore et al. (2022) using the method of
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separation of variables, in which case

p̂ ≈ −(1 − W)
8 Δρ ga0

π2

∞∑
n=0

(−1)n

(2n + 1)2 cos
[
(2n + 1)πx/2a0

]
exp

(−(2n + 1)πz/2a0
)
,

(2.22)
where a0 = a(0). Likewise, the approximate plume shape is given by the solution to

a′(z) ≈ −(1 − W)
4
π

tanh−1 [
exp(−πz/2a0)

]
. (2.23)

This is obtained from the linearised version of (2.20) (i.e. p̂x = −Δρ g a′(z) at x = a0)
after inserting the formula for the pressure (2.22). Then the infinite sum converges to the
inverse hyperbolic tangent function in (2.23).

In the case where the inlet velocity and the buoyancy velocity are not similar (W 	≈ 1), a
numerical method must be used to calculate the solution. By converting to a set of scaled
dimensionless variables

X = x/a(z), Z = z/a0, P(X, Z) = p̂(x, z)/Δρ ga0, α(Z) = a(z)/a0, (2.24a–d)

Laplace’s equation (2.16) becomes[
α−2 ∂XX +

(
∂Z − Xα′α−1 ∂X

)2
]

P = 0, (2.25)

whilst the remaining boundary conditions become

PX = 0, X = 0, (2.26)

PZ − Xα′α−1PX = 1 − W, Z = 0, (2.27)

PZ − Xα′α−1PX → 0, Z → ∞, (2.28)

PX = −αα′ − α′2PX, X = 1, (2.29)

P = 0 : X = 1. (2.30)

The nonlinear system (2.25)–(2.30) is solved using Newton’s method in combination with
a finite difference scheme. The domain is discretised using a rectangular grid, with X ∈
[0, 1] and Z ∈ [0, H], where the boundary condition (2.28) is approximated at a large
but finite value H = 10. We calculate the solution for a variety of values of W (the only
dimensionless parameter of the problem), using an 8th-order finite difference scheme with
a grid of 20 × 200 points in the X, Z directions (Note that in some cases – such as for
W > 1 – the discretisation was increased to 40 × 400 points to resolve accurately sharp
gradients in the plume shape near the origin.) By employing the method of continuation
using incremental changes in W, Newton’s method converges in approximately three steps
(for each increment).

We plot examples of the shape α(Z) in figure 2(a) for W = 0.3, 0.6, 0.9, 1.1. Thinning
plumes are observed for W < 1, whereas thickening plumes are observed for W > 1,
as expected. One salient feature of the analysis is the distance over which the plume
approaches its far-field width a∞ (or α → W in dimensionless terms). We define the 99 %
boundary layer distance δ (dimensionless) as∣∣∣∣α(δ) − W

1 − W

∣∣∣∣ = 0.01, (2.31)

and this is plotted in figure 2(b) for different values of W. We find that δ(W) is monotone
increasing for W ∈ [0.12, 1.14]. Outside this range, our numerical method fails to converge
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The near-field shape and stability of a porous plume
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δ

Figure 2. Numerical and analytical results for a thinning/thickening plume resulting from a line source. (a)
Plume shape for different velocity ratios W = w0/wb, and (b) 99 % boundary layer distance δ as defined
in (2.31). Critical values W0, W∗ and Wn are related to the sign of the discriminant Δ (see (2.32)) and the
stability/existence of a steady solution. Dotted lines indicate the approximate solution when W ≈ 1, for which
the plume shape is given by the solution to (2.23).

to a real-valued solution (which we discuss shortly), so no data are plotted. We also
compare these values of δ with the analytical value in the case where W is close to 1
(e.g. via the solution to (2.23)). In this case, the boundary layer distance is independent
of W at leading order, and is given by the approximate value δ ≈ 2.83 (see dotted lines in
figure 2b). We note that despite the fact that the boundary condition (2.28) is imposed at
Z → ∞, no more than a few plume-width scales are required for the plume to adjust to its
far-field shape (99 % of the way, more specifically), as seen by the δ values in figure 2(b).

Due to the kinematic boundary condition (2.29), for the solution to remain real-valued
we require a non-negative discriminant

�(Z) := α2 − 4 PX|2X=1 ≥ 0, (2.32)

for all values of Z. By writing the pressure gradient as a dimensionless velocity PX =
−U, we see that (2.32) can be interpreted as a balance criterion between the width of
the plume α and the horizontal velocity U required to sustain that width. For example, a
thinning plume (U < 0) with a shape that tapers to smaller than thickness α < −2U is not
permitted by (2.32). In general, whenever (2.32) cannot be satisfied, this indicates that a
smooth and continuous steady plume shape is not possible.

The behaviour of the discriminant function (2.32) depends on the value of the velocity
ratio W. There are four solution regimes defined by three values of the velocity ratio,
W∗ ≈ 0.5, Wn ≈ 1.14 and W0 ≈ 0.12. For velocity ratios W∗ < W < Wn, the discriminant
is strictly positive, Δ > 0, for all values of Z. For velocity ratios in the range W0 < W <

W∗, the discriminant is non-negative, Δ ≥ 0, but equals zero at some critical distance
Z = Z∗ downstream of the inflow. For 0 < W < W0 or W > Wn, Newton’s method fails to
converge to a real-valued solution, indicating that a steady solution in the form of a smooth
continuous shape α(Z) may not exist. The four different solution regimes are illustrated
with shading in figure 2(b). It should be noted that the sign of the discriminant is closely
linked with the stability criteria for the plume, and we discuss this later, in § 3.
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Before discussing the comparison with experiments, it is interesting to note the possible
effects of the ambient fluid that we have so far neglected in this study. Within the
ambient region, the flow satisfies a set of Darcy equations similar to (2.4)–(2.5) except
with ρ = ρ2. Appropriate boundary conditions consist of the impermeability condition at
the bottom boundary (w = 0 on z = 0), far-field hydrostatic conditions (p → pa − ρ2gz,
as x, z, → ∞), and the kinematic and dynamic boundary conditions, (2.9) and (2.10),
at the interface x = a(z). One can see immediately that a hydrostatic pressure profile
p = pa − ρ2gz satisfies all of these conditions. Hence the flow in the ambient region is
simply zero everywhere in the steady state, and therefore affects the injected fluid region
only via the density difference.

It is also interesting to note that if we change the viscosity of the ambient fluid (i.e. such
that μ2 /=μ1), then this has no effect on the preceding argument. Therefore, it follows
that the steady plume shape is independent of the viscosity ratio between the injected and
ambient fluids, M = μ1/μ2. However, as we discuss later, in § 3, this is no longer true in
the unsteady case.

2.3. Comparison with experiments
In this subsection, we compare our results for the steady plume shape (in the case of a
line source) to the porous bead experiments of Gilmore et al. (2022). These experiments
were conducted in a thin rectangular tank of dimensions 40 × 70 cm2 in the x, z directions
and 1 cm thick in the transverse (y) direction. The tank was filled with 3 mm Ballotini
beads and initially saturated with fresh water. Salty water dyed with red food colouring
was injected into the top of the tank, using different salt concentrations to modify the
density contrast. Since salty water is heavier than fresh water, the experiments resulted in
a falling plume rather than the rising plume studied at present. Therefore, we have inverted
their experimental photos for comparison with our model. The inverted system behaves in
approximately the same way as the current system due to the Boussinesq approximation
(Soltanian et al. 2016; Amooie et al. 2018).

The focus of the Gilmore et al. (2022) study was on the leakage of salty water through
a gap in an impermeable division midway down the tank. However, for comparison with
the present study, we focus on the flow below this division only, and we ignore all the
flow details above this. Therefore, we restrict our attention to the lower 40 × 40 × 1 cm3

of their tank. In this way, the leakage rates of salty water into this lower section of the
tank (which were calculated in their study) correspond to the injection flow rate Q in our
theoretical model. As described by Gilmore et al. (2022), both the leakage flux and the
near-field plume shape within this lower section of the tank were approximately steady
(after an initial transient). Hence, for comparison with our model, a constant inflow Q and
a steady shape α(Z) can be assumed to good approximation.

Examples of steady plumes from the study of Gilmore et al. (2022) are shown in
experimental photographs in figures 3(a,b). The plume width at the inlet for each case
is a0 = 3, 2.5 cm, respectively. To calculate the velocity ratios W for each case, we
estimate the far-field plume width a∞ downstream, noting that W = a∞/a0. This results
in W = 0.58 and W = 0.74 for figures 3(a) and 3(b), respectively. We have also tried
estimating W using values of w0 and wb = k Δρ g/μ given by Gilmore et al. (i.e. using
quoted values for the permeability, density, viscosity and leakage flux), which produces
similar calculations.

The steady plume shape predicted by our numerical model is compared to each of these
photos with solid lines. The analytical approximation, given by integrating (2.23), is also
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The near-field shape and stability of a porous plume
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Figure 3. Experimental photos (taken from the study of Gilmore et al. 2022) of thinning plumes with (a)
W = 0.58 and (b) W = 0.74, compared with numerical (solid lines) and analytical (dotted lines) solutions for
the steady plume shape in the case of a line source. The photos are partially obscured by a clamp (part of the
apparatus), which is labelled for clarity.

shown with dotted lines. Overall, good agreement is observed between the numerical
model, the analytical approximation and the experiments. Dispersion causes the plume
shape to slightly diffuse downstream of the inlet, which is not captured by the sharp
interface in our model.

One advantage of our simple model is that it depends on only a single dimensionless
parameter W, which is easily calculated by estimating the plume width at two locations (i.e.
a0 and a∞). A more complicated model that accounts for dispersion, for example, would
require further parameter values of the fluid-medium properties, such as the diffusion and
dispersion coefficients of the salt/dye.

2.4. Plume shape: the case of a circular source
In the case of a circular source, the boundary conditions (2.6)–(2.10) are replaced by
corresponding conditions in cylindrical radial coordinates (e.g. with x replaced by r, and
u replaced by ur, the radial velocity). In this case, the radius of the plume (measured
from the z axis) is given by a(z) = (A(z)/π)1/2. As before, we seek a solution of the form
(2.11)–(2.13) (with u replaced by ur). The pressure p̂ satisfies a system of equations similar
to (2.16)–(2.21), with x replaced by r. In the case where W is close to unity, the solution is
calculated by separation of variables (see Appendix A), giving

p̂ ≈ −2(1 − W)Δρ ga0

∞∑
n=1

J0(j0,nr/a0)

j20,n J1(j0,n)
exp(−j0,nz/a0), (2.33)

where J0 and J1 are the 0th- and 1st-order Bessel functions of the first kind, and j0,n is the
nth zero of J0. Likewise, the plume shape is given by the solution to

a′(z) ≈ −2(1 − W)

∞∑
n=1

exp(−j0,nz/a0)

j0,n
. (2.34)
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Figure 4. Numerical and analytical results for a thinning/thickening axisymmetric plume resulting from a
circular source. (a) Plume shape for different velocity ratios W, and (b) 99 % boundary layer distance δ as
defined in (2.31). Critical values W0, W∗ and Wn are related to the sign of the discriminant Δ in (2.37) and the
stability/existence of a steady solution. Dotted lines indicate the approximate solution when W ≈ 1, for which
the plume shape is given by the solution to (2.34).

This is obtained from the linearised version of (2.20) in radial coordinates (i.e.
p̂r = −Δρ g a′(z) at r = a0) after inserting the formula for the pressure (2.33). By using
the identity J′

0(r) = −J1(r), this simplifies to (2.34).
In the case where W is not close to unity, we calculate the solution via the numerical

method described earlier. After introducing a scaled dimensionless radial coordinate

R = r/a(z), (2.35)

Laplace’s equation (2.16) becomes
[
α−2R−1 ∂R(R ∂R) +

(
∂Z − Rα′α−1 ∂R

)2
]

P = 0, (2.36)

whilst the remaining boundary conditions stay the same as (2.26)–(2.30) except with X
switched to R. The system of equations is solved using the same finite difference scheme
as in § 2.2 (except with the radius truncated at a small but finite value R = 0.01 to avoid a
singular Laplacian). Likewise, a similar discriminant function is defined as

�(Z) := α2 − 4 PR|2R=1 , (2.37)

which indicates whether or not a real solution exists.
In figure 4(a), we display the steady plume shapes calculated for W = 0.3, 0.6, 0.9, 1.1.

Likewise, the 99 % boundary layer distance δ (as defined in (2.31)) is plotted in figure 4(b).
Overall, the behaviour is similar to the case of a line source, except that the plume adjusts
over a shorter vertical length scale, resulting in smaller values of δ. The approximate
solution calculated in the case where W ≈ 1 (i.e. via integration of (2.34)) results in
a boundary layer distance δ ≈ 1.76, as shown with dotted lines in figure 4(b). Critical
values of the velocity ratio (see earlier discussion in § 2.2) are W0 = 0.1, W∗ = 0.5 and
Wn = 1.17, which are very similar to the case of a line source.
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The near-field shape and stability of a porous plume

3. Unsteady plumes and the criteria for stability

Unlike the previous sections, which have assumed a steady state, here we address the
possibility of an unsteady flow by investigating the linear stability of the system. We divide
the following analysis into several subsections that are distinguished by the velocity ratio
W. The first subsection addresses the case when W0 < W < W∗ such that the discriminant
Δ equals zero at a critical point downstream of the inlet. The second subsection addresses
velocity ratios larger than this, W∗ < W < Wn, for which the discriminant is always
positive (see discussion at the end of § 2.2). In the former case, we demonstrate the
existence of an infinitesimal perturbation to the steady plume shape that grows unbounded
over time, and hence we show that such scenarios are inherently unstable. In the latter
case, we show that such an instability cannot form. This leaves the cases W > Wn and
W < W0, for which our numerical method fails to converge to a real-valued solution,
leaving us with no base state for the plume. These cases are discussed briefly in the third
and fourth subsections. Whilst we focus on the case of the line source in the following
analysis, the case of the circular source follows approximately the same steps and has
similar conclusions.

3.1. Small velocity ratios W0 < W < W∗

As described earlier, it is expected that the flow may become unstable for small velocity
ratios, such that an unsteady model is required. In the unsteady case, the only equation that
requires modification is the kinematic boundary condition (2.9), which becomes

u = φat + waz, x = a(z, t), (3.1)

where φ is the porosity. Written in terms of the stretched dimensionless coordinates
(2.24a–d), this becomes

− α−1PX = αT +
[
1 + αZα−1PX

]
αZ, X = 1, (3.2)

where T = twb/a0φ is the dimensionless time. The rest of the governing equations and
boundary conditions remain the same as in the steady case, i.e. (2.25)–(2.28) and (2.30).

We consider a small perturbation applied to the plume shape and pressure of the form

α = ᾱ(Z) + ε α̃(Z, T), (3.3)

P = P̄(X, Z) + ε P̃(X, Z, T), (3.4)

where ε � 1 is a small parameter, and ᾱ, P̄ solve the steady problem. Inserting (3.3) and
(3.4) into (3.2), and linearising, we get

α̃T + (1 + 2β̄P̄X)α̃Z − P̄X(β̄2 + ᾱ−2)α̃ + (β̄2ᾱ + ᾱ−1)P̃X = 0 : X = 1, (3.5)

where we have introduced the notation β̄ = ᾱ′/ᾱ. In addition to (3.5), we require a set of
equations and boundary conditions for the perturbed pressure P̃ to complete the system.
These are placed in Appendix B for convenience.

The stability of the system is elucidated by considering the discriminant function (2.32)
at leading order, Δ̄ = ᾱ2 − 4P̄2

X . As described earlier, for small values of the velocity
ratio W0 < W < W∗, the discriminant function becomes zero at a critical point Z = Z∗
downstream of the inlet. To illustrate this, we have plotted the discriminant function in
figure 5(a) for W = 0.2, 0.3, 0.4, 0.5, and the corresponding critical points Z∗ are plotted
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Figure 5. (a) Discriminant function Δ̄ (steady state), and (b) vertical position of the critical point Z∗, where
the discriminant equals zero, in the case of a line source. The values of Z∗ calculated in the case of a circular
source are shown in (b) with a dashed line.

alongside in figure 5(b). Clearly, �̄(Z) is a non-monotone function that touches zero just
once, with critical values in the range Z∗ ∈ [0, 0.37] and Z∗ = 0 at W = W∗ (also note the
corresponding values for the case of a circular source, shown as a dashed line).

By definition, at the critical point (�̄(Z∗) = 0) the shape function ᾱ and its derivative
satisfy

ᾱ(Z∗) = 2P̄X(1, Z∗), (3.6)

β̄(Z∗) = −ᾱ(Z∗)−1. (3.7)

Hence, inserting (3.6) and (3.7) into the linearised kinematic condition (3.5) at the critical
point Z = Z∗ gives the ordinary differential equation

ᾱ∗ ˙̃α∗ = α̃∗ − 2 P̃∗
X

∣∣∣
X=1

, (3.8)

where a dot indicates differentiation with respect to time, and ∗ superscripts indicate
evaluation at the critical point (e.g. α̃∗(T) = α̃(Z∗, T)). The stability of the perturbation
at the critical point therefore depends on the right-hand side of (3.8), which incidentally
is proportional to the perturbed horizontal velocity at the edge of the plume (α̃∗ − 2P̃∗

X =
2ᾱ∗Ũ∗|X=1), as shown in Appendix C. Hence (3.8) is rewritten as

˙̃α∗ = 2 Ũ∗
∣∣∣
X=1

. (3.9)

To assess the stability, we consider how the sign of the perturbed velocity Ũ |X=1 relates to
the sign of the perturbation α̃ (i.e. whether the shape is deformed inwards or outwards at
the critical point).

For positive perturbations α̃ > 0, the expanded plume shape needs to be filled with
fluid, so we expect a net positive velocity perturbation in the vicinity of the critical
point, Ũ |X=1 > 0. Likewise, for negative perturbations α̃ < 0, a net negative velocity
perturbation is required, Ũ |X=1 < 0, such that the plume can shrink inwards. Hence Ũ |X=1
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α̃ < 0 α̃ > 0

Z∗Z∗ Z∗

(a) (b) (c)
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1

x/a0
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1

x/a0
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30–3

1

Ũ|X = 1

Z

Figure 6. Vector fields for the perturbed velocity, (Ũ , W̃) (see Appendix C), in the cases of both (a) a negative
perturbation α̃ < 0, and (b) a positive perturbation α̃ > 0. The stability is determined by the sign of the
perturbed horizontal velocity at the edge of the plume, Ũ |X=1, which is plotted in (c) for each case. The
steady-state plume shape is indicated with a solid blue line in (a,b). The velocity ratio for this case is W = 0.3,
which has a critical point at Z∗ = 0.35.

is positively correlated with α̃, indicating that (3.9) produces unstable solutions that grow
unbounded with time when the perturbation is applied close to the critical point. Note,
however, that when the perturbation (and therefore the flow) extends far away from the
critical point, it is not obvious how α̃ and Ũ |X=1 are correlated.

Next, we demonstrate the existence of a small localised perturbation that grows
unbounded over time. To do so we choose a simple Gaussian function for the initial
perturbation, which is of the form

α̃(Z∗, 0) = exp
[
−(Z − Z∗)2/2σ 2

]
, (3.10)

where σ is the standard deviation. Whilst there are many possible local perturbations that
cause instability to occur, we use this one since it is simple and demonstrates the point
effectively.

We apply the perturbation (3.10) (using σ = 0.1) to the case where W = 0.3 (for which
Z∗ = 0.35), and we plot the results in figure 6. Vector fields for the perturbed velocity,
(Ũ , W̃) (see Appendix C for full expressions), are plotted in figures 6(a,b) for the cases
of both a positive perturbation α̃ > 0 and a negative perturbation α̃ < 0. As shown by the
velocity vectors, positive/negative perturbations result in a local flow outwards/inwards
from the steady plume shape. Hence the perturbed horizontal velocity Ũ |X=1, which
is plotted in figure 6(c), is positive/negative (in the vicinity of the critical point) for
positive/negative perturbations, indicating that the solution is unstable.

Whilst this is just a specific case, it nevertheless demonstrates that an infinitesimal
solution can be constructed that becomes unstable. Although we do not include the results
here, we have also developed a time-dependent implicit numerical scheme that solves the
perturbed equations for the pressure and plume shape at first order. These time-dependent
numerical simulations confirm that localised perturbations of the form (3.10) become
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unstable when applied near the critical point. A more detailed eigenvalue analysis could
explore the fastest growing perturbation (eigenfunction) and corresponding eigenvalue
exponent. However, this lies outside the scope of the current study.

3.2. Moderate velocity ratios W > W∗ ∧ W ≈ 1
Now that we have addressed the case of small velocity ratios, for which the discriminant
becomes zero at a critical point, we next address the case of moderate velocity ratios for
which Δ is always positive. We restrict our attention to velocity ratios that are larger than
W∗ but which are still O(1) (i.e. ignoring W � 1). Hence, taking W ≈ 1, the pressure and
the plume shape are well approximated by the expressions (2.22) and (2.23) (which are
both O(1 − W)). Meanwhile, the time-dependent kinematic condition (3.1) approximates
to

− (k/μ)p̂x ≈ φat + wbaz, x ≈ a0. (3.11)

As before, we consider a small perturbation applied to the plume shape and pressure, but
now we avoid converting to dimensionless coordinates for simplicity. Hence we consider
a perturbation of the form

a = ā(z) + ε ã(z, t), (3.12)

p̂ = p̄(x, z) + ε p̃(x, z, t). (3.13)

Attention is required when performing this decomposition, since there are now two small
parameters in the problem, namely ε > 0 and ε = 1 − W > 0 (we consider W < 1 without
loss of generality). Hence in the following analysis, it is assumed that the perturbation to
the shape is relatively much smaller than the perturbation to uniform flow, such that an
asymptotic hierarchy 0 < ε � ε � 1 is maintained.

After inserting (3.12) and (3.13) into (2.16)–(2.19), (2.21) and (3.11), and expanding in
powers of ε, it is clear that the leading-order expressions for the pressure and shape, p̄ and
ā, are precisely (2.22) and (2.23). Meanwhile, the unsteady terms satisfy

− (k/μ)p̃x = φãt + wbãz, x ≈ a0, (3.14)

and the pressure perturbation p̃ satisfies homogeneous versions of the governing equations
and boundary conditions (2.16)–(2.19), (2.21) (i.e. with zero on the right-hand sides of all
the equations). Hence the pressure perturbation is trivial, p̃ = 0, and consequently (3.14)
also becomes homogeneous. In this way, perturbations to the plume shape ã are simply
advected downstream with dimensional velocity wb/φ, and consequently the system is
stable.

3.3. A note on the case of large velocity ratios W > 1
It is worth discussing briefly the plume behaviour in the case where W is larger than
1, since this has so far been neglected. As discussed earlier, velocity ratios W > 1 are
associated with an expanding plume shape. This expansion requires large horizontal
velocities, and hence large values of −PX|X=1, suggesting that the discriminant function
(2.32) may become zero or negative for large values of W.

It is found that the numerical solution of the steady plume shape for W > 1 has a sharp
gradient near the origin, followed by a slow tapering off. This sharp expansion causes the
discriminant to become negative (Δ < 0) near the origin for velocity ratios larger than
Wn ≈ 1.14 in the case of a line source, and Wn ≈ 1.19 in the case of a circular source.
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The near-field shape and stability of a porous plume

For W larger than these values, a numerical solution satisfying the steady kinematic
condition (2.29) cannot be found. This suggests that a steady plume shape may not be
possible, or at least may not take the form of a smooth continuous curve α(Z), as we
have prescribed. For example, it is possible that the shape may jump discontinuously from
α(0) = 1 to a larger value near the origin. However, the current modelling approach cannot
be used to investigate such scenarios since we require a smooth continuous transformation
of the form (2.24a–d).

Whilst further analytical treatment of this case lies outside the scope of this study, it is
worth commenting on the validity of the modelling approach for W � 1. In such cases,
large velocities near the origin may violate the assumptions of Darcy’s law. In particular,
the Reynolds number of the flow near the origin is given by

Re = ρ1w0dp

μ
= Wρ1wbdp

μ
, (3.15)

where dp is the pore size. Since Re ∝ W, it is expected that inertial effects may become
important for W � 1 (e.g. see Sahu & Flynn 2015). Likewise, the Péclet number is
also proportional to W, indicating that mixing due to dispersion cannot be neglected for
W � 1. Hence, to study the shape and stability of the plume in such scenarios, a more
sophisticated model that accounts for laminar flow and dispersive mixing might be more
appropriate than the linear stability analysis based on Darcy’s law used here.

3.4. Further cases and considerations
We have therefore shown that plume shapes are stable in the regime W ≈ 1, and unstable
in the regime W0 < W < W∗. It is not known whether the plume shapes for W > W∗
but W 	≈ 1 are stable or unstable (e.g. one could argue that W = 0.6 	≈ 1), and for this a
full eigenvalue analysis is required. Such an analysis could predict the largest value of W
that onsets instability (i.e. producing a positive real-valued eigenvalue). However, for the
purposes of this study, and since our experimental data suggest a stable shape for velocity
ratios as small as W = 0.58 (see figure 3a), this analysis covers the relevant and interesting
range of cases.

To go beyond the current analysis and resolve the nonlinear instability at very small
velocity ratios W < W0, a time-dependent numerical simulation is required in either two
or three dimensions (e.g. see Hewitt et al. 2013b; Hewitt & Lister 2017). In particular, it
is not clear exactly how the flow evolves over time, whether it forms fingers, filaments
or disconnected regions. Moreover, in the presence of dispersion, it is likely that thin
disconnected regions may fuse together. It is possible that the stability diagram in
figures 2(b) and 4(b) may not be complete, but in fact could contain other stable, unstable
or periodic branches. Hence such a numerical simulation could be used to explore the full
range of solution branches, and classify any bifurcation points, such as at W = W0, that
may be a fold (saddle node) or a Hopf bifurcation.

As described earlier, it is worth commenting briefly on the effects of the ambient fluid
in the unsteady case. In particular, in the above analysis we have assumed implicitly (i.e.
via the dynamic boundary condition (2.10)) that the injected fluid and the ambient fluid
are decoupled. However, in the unsteady case (unlike the steady case) the ambient fluid is
not quiescent. In fact, as the plume expands or contracts over time, the ambient fluid must
be displaced accordingly. However, as long as the perturbation to the plume shape has a
sufficiently large aspect ratio, the rearrangement of the ambient fluid should not affect the
plume growth to good approximation. This is similar to the shallow-water approximation
used for gravity currents in porous media (Huppert & Woods 1995), for which the injected
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fluid is not coupled to the ambient fluid so long as the aspect ratio of the current remains
large.

This argument does not extend to the case where the viscosity of the injected fluid is
different to that of the ambient fluid. In this case, the viscosity contrast affects the pressure
gradients on either side of the perturbation to the interface as it grows. If M = μ1/μ2
denotes the viscosity contrast between injected and ambient fluids, then the interface
becomes destabilised for M < 1 and stabilised for M > 1, as described in the famous
study by Saffman & Taylor (1958). For this reason, we do not expect the results of § 3 to
apply in the case where M /= 1.

4. Discussion and perspectives

We have studied the shape and stability of buoyancy-driven plumes near their injection
point within a porous medium. The key controlling parameter is the ratio between the inlet
velocity and the far-field (buoyancy) velocity. Whether this ratio is larger or smaller than 1
determines whether the plume is expanding or contracting downstream. For small values
of this ratio, the plume shape becomes unstable at a critical point downstream, which we
have demonstrated using a linear stability analysis. On the other hand, when the velocity
ratio is close to 1, we have shown that the plume shape is stable.

Future work could include the effects of mixing between the injected fluid and the
ambient fluid, similarly to Sahu & Flynn (2015) and Lyu & Woods (2016). In particular,
as the two fluids mix together, the difference in density between them becomes smaller.
Hence buoyancy decreases and the width of the plume increases as the flow moves
downstream. As described earlier, in § 2, the experiments of Sahu & Flynn (2015) indicated
that mixing takes place over vertical length scales ∼10 times larger than the plume width,
whereas we have shown that the near-field shape adjusts within length scales close to ∼1
times the plume width (e.g. see figures 2 and 4). Hence we have confirmed that dispersion
occurs at larger length scales than the adjustments to the plume shape studied here in the
near field.

A future study could extend this work to account for multiphase effects in the case
of immiscible fluids. In such scenarios, the effects of surface tension between phases
are represented by the capillary pressure and relative permeability functions for each
phase (Woods 2015). As shown by the famous study of Buckley & Leverett (1942) for
displacement flows, capillary pressure tends to smooth out the sharp interface between
phases. Hence one would expect this to cause the plume to widen as it moves downstream.
As it does so, the saturation would have to decrease (to conserve mass) and therefore the
relative permeability would also decrease, causing the plume to slow down. However, it
is not clear exactly what shape the two-phase plume would take, or how this affects the
near-field stability.

It would also be interesting to investigate the possible effects of a time-varying injection
Q(t) (Huppert 1982). In particular, it may be possible to stabilise/destabilise the near-field
plume shape by controlling dynamically the flow rate appropriately. In this case, the time
scale for changes in flow rate scales like t ∼ Q/Q̇, whereas the time scale for buoyancy is
t ∼ a0φ/wb. Hence we require sufficiently large values of a0φQ̇/wbQ to be able to regulate
the flow in this way.

It is worth noting the relevance of this study to the case of CO2 sequestration, in which
buoyant CO2 (originating from emissions due to power plants and industrial processes)
is injected into subsurface geological aquifers for storage. In this case, low-permeability
sedimentary layers may cause the CO2 to spread out as it rises (Bickle et al. 2007;
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The near-field shape and stability of a porous plume

Cowton et al. 2016, 2018). It is important to be able to quantify the behaviour of the
buoyant CO2 if and when it penetrates through these low-permeability layers and migrates
further upwards. Hence our study provides a tool for modelling the flow behaviour near
the breakthrough locations (as well as near injection points, in general), which is useful
for quantifying leakage rates (Gilmore et al. 2022) and the consequent CO2 migration
speeds (Neufeld, Vella & Huppert 2009). Moreover, the stability of the plume determines
how it mixes with the surrounding brine (i.e. by breaking apart into filaments, fingers
or disconnected regions), thereby influencing how it becomes trapped due to dissolution
and residual trapping (Nordbotten & Celia 2011; Krevor et al. 2015). However, in such
cases, there are other more complicated physical phenomena to account for, such as the
dissolution of the CO2 (MacMinn et al. 2012), multiphase effects (Golding et al. 2011)
and flow rearrangement due to geological heterogeneities (Benham, Bickle & Neufeld
2021a,b).

When applying this study to such real injection scenarios, it is important to acknowledge
the possible limitations of our simple modelling approach. For example, the stability
analysis in § 3 is restricted to the case where there is no viscosity contrast between
the injected and ambient fluids (M = 1). However, in the context of CO2 sequestration,
M can be as small as 1/20 or 1/30 (Bickle et al. 2017), which is likely to make the
plume more unstable due to the Saffman–Taylor instability. Furthermore, our modelling
of the input conditions as a line source or a circular source is idealised compared to real
injection scenarios, where CO2 spreads out as a fully three-dimensional plume. Modelling
such scenarios is difficult because a coordinate transformation of the form (2.24a–d),
(2.35), may not be possible. Hence it is expected that a three-dimensional time-dependent
simulation would be required to address such flows, similar to Hewitt & Lister (2017).
However, in the case where the stable shape is known, a linear stability analysis (similar
to § 3) may be possible.
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Appendix A. Derivation of the steady-state solution for a circular source

In this appendix, we describe the derivation of the pressure solution (2.33) described in
§ 2.4. We start by seeking a solution to the Darcy equations and boundary conditions
(2.4)–(2.10) (in cylindrical radial coordinates) of the form (2.11)–(2.13). In the case where
the inlet velocity is close to the buoyancy velocity (W ≈ 1), the equations are linearised
and the boundary conditions (2.9)–(2.10) are imposed at r = a0. In this way, the hatted
pressure solves the linear system

p̂zz + p̂r/r + p̂rr = 0, (A1)

p̂r = 0, r = 0, (A2)

p̂z = Δρ g(1 − W), z = 0, (A3)
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p̂z → 0, z → ∞, (A4)

p̂r = −Δρ g a′(z), r = a0, (A5)

p̂ = 0, r = a0, (A6)

which is derived in a similar manner to (2.16)–(2.21). Notice how the above system can
be solved independently of the linearised kinematic condition (A5). Once the solution is
found, (A5) can be used to calculate the shape a(z).

The solution to (A1)–(A4), (A6) is found by seeking a separable solution of the form
p̂(r, z) = F(r) G(z). Inserting this into Laplace’s equation (A1) and dividing by FG leads
to

F′′(r)/F(r) + F′(r)/r F(r) = −G′′(z)/G(z) = −λ2, (A7)

for some real eigenvalue λ. By switching to variables ξ = λr, F(ξ) = F(r), the radial part
of (A7) is rewritten as

ξ2 F ′′(ξ) + ξ F ′(ξ) + ξ2 F(ξ) = 0, (A8)

which is Bessel’s equation with index 0. The general solution is

F = C J0(ξ) + D Y0(ξ), (A9)

where J0 and Y0 are zero-order Bessel functions of the first and second kinds, and C and D
are some constants. The symmetry boundary condition (A2) indicates that D = 0, whilst
the dynamic condition (A6) gives

J0(a0λ) = 0. (A10)

There are infinitely many solutions to (A10), producing a sequence of eigenvalues

λn = j0,n/a0, n = 1, 2, . . . , (A11)

where j0,n is the nth zero of J0. For each eigenvalue, there is a corresponding coefficient
Cn, which will be determined by looking at the axial component of the pressure G(z).

The axial component of (A7) is rewritten as

G′′(z) − λ2 G(z) = 0, (A12)

which has exponentially growing and decaying solutions. Since (A4) indicates that
G′(z) → 0 as z → ∞, only exponentially decaying solutions are permitted. Hence the
separable solution is given by the infinite sum

p̂ =
∞∑

n=1

Cn J0(j0,nr/a0) exp(−j0,nz/a0). (A13)

The coefficients Cn are determined by applying the boundary condition (A3), which
becomes

∞∑
n=1

− j0,nCn

a0
J0(j0,nr/a0) = Δρ g(1 − W). (A14)

By multiplying each side by r J0(j0,mr/a0) (for some m) and integrating (using the
orthogonality properties of Bessel functions), we get

− j0,mCm

a0

∫ a0

0
r J0(j0,mr/a0)

2 dr = Δρ g(1 − W)

∫ a0

0
r J0(j0,mr/a0) dr, (A15)
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which simplifies to

− j0,mCm

a0

a2
0 J1(j0,m)2

2
= Δρ g(1 − W)

a2
0 J1(j0,m)

j0,m
. (A16)

After simplification, this gives

Cm = −2(1 − W)Δρ ga0

J1(j0,m) j20,m
, (A17)

which leads to (2.33) precisely.

Appendix B. First-order pressure perturbation

In this appendix, we describe briefly the system of equations required to calculate the
first-order pressure perturbation, which is used to analyse stability in § 3.1. After inserting
the decomposition (3.3)–(3.4) into the governing equation for the pressure (2.25), and
linearising in terms of the small parameter ε � 1, the corrected equation at first order is

AXXP̃XX + AXZP̃XZ + AZZP̃ZZ + AXP̃X = BZZα̃ZZ + BZα̃Z + Bα̃, (B1)

where the coefficients (using subscript notation for clarity) are given by

AXX = ᾱ−1(1 + ᾱ2β̄2X2), (B2)

AXZ = −2ᾱβ̄X, (B3)

AZZ = ᾱ, (B4)

AX = ᾱX(β̄2 − ᾱβ̄ ′), (B5)

BZZ = P̄XX, (B6)

BZ = −2X(2β̄P̄X − P̄XZ + β̄P̄XXX), (B7)

B = −ᾱ−2
[
ᾱ2(−3β̄2P̄X + β̄ ′P̄X + 2β̄P̄XZ)X − 2P̄XX(1 + ᾱ2β̄2X2)

]
. (B8)

Likewise, the boundary conditions (2.26)–(2.28), (2.30), linearised and keeping only
first-order terms, become

P̃X = 0, X = 0, (B9)

P̃Z − Xβ̄P̃X = P̄XXᾱ−1(α̃Z − β̄α̃), Z = 0, (B10)

P̃Z − Xβ̄P̃X → P̄XXᾱ−1(α̃Z − β̄α̃), Z → ∞, (B11)

P̃ = 0, X = 1. (B12)

The new system of equations is solved together (using the same finite difference scheme
described earlier) with the linearised kinematic boundary condition (3.5) to acquire the
first-order pressure and shape P̃, α̃.
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Appendix C. First-order velocity perturbation

In this appendix, we derive briefly expressions for the perturbed velocity field that are
used to create the vector fields in figure 6. Following the notation used in § 2.2, the
dimensionless flow velocities are given by

û/wb = −α−1PX, (C1)

ŵ/wb = −PZ + Xα′α−1PX. (C2)

Next, we insert (3.3) and (3.4) into (C1)–(C2), and expand in powers of ε, keeping only
leading-order and first-order terms. We denote the leading-order velocities as Ū , W̄ , and
the first-order velocities as Ũ , W̃ . These are given by

Ū = −ᾱ−1P̄X, (C3)

W̄ = −P̄Z + Xβ̄P̄X, (C4)

Ũ = ᾱ−2
[
α̃P̄X − ᾱP̃X

]
, (C5)

W̃ = −P̃Z +
[
(−β̄α̃ + α̃Z)P̄Xᾱ−1 + β̄P̃X

]
X. (C6)

The final two expressions, (C5) and (C6), are precisely the terms used to plot the perturbed
velocity vector field in figure 6.

It should be noted that at the critical point X = 1, Z = Z∗, the above equations simplify
to

Ū = −1/2, (C7)

W̄ = −1/2, (C8)

Ũ = (2ᾱ)−1
[
α̃ − 2P̃X

]
, (C9)

W̃ = (ᾱ−1α̃ + α̃Z)/2 − ᾱ−1P̃X. (C10)

Hence we see that the horizontal velocity perturbation (C9) is proportional to the
right-hand side of (3.8).
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