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Archaeological investigations of the effects of anthropogenic fire on the subsistence economies of small-scale societies, par-
ticularly those of the prehispanic northern American Southwest, are embryonic in scope and disciplinary impact. When burn-
ing has been mentioned in such studies it typically has been with reference to its alleged effectiveness in clearing land or
deforesting areas for maize agriculture. In this article, in contrast, we present the results of our initial efforts to estimate
the yield and socioecological consequences of cultivating a common fire-responsive ruderal—amaranth—whose growth is
enabled by anthropogenic burning of understory vegetation in the Southwest’s pinyon-juniper ecosystems. With data from
the Upper Basin (northern Arizona), we show that, in an area that is not environmentally conducive to maize production, popu-
lations could be supported with systematic, low-intensity anthropogenic fires that promoted the growth of amaranth and other
ruderals, such as chenopodium, which consistently dominate archaeobotanical and pollen assemblages recovered from a var-
iety of archaeological and sedimentary contexts in the region. Based on this evidence, as well as modern fire ecological data, we
propose that fire-reliant ruderal agriculture, in contrast to maize agriculture, was a widespread, sustainable, and ecologically
sound practice that enhanced food supply security independently of variation in soil fertility and precipitation.

Las investigaciones arqueológicas sobre los efectos de los incendios antropogénicos para las economías de subsistencia de las
sociedades de pequeña escala, especialmente aquellas de la zona norte del suroeste norteamericano en la época precolombina,
se encuentran todavía en un estado naciente y tienen poca influencia en la disciplina. Cuando se mencionan los incendios en
tales estudios, es típicamente en referencia a su supuesta eficacia para el desmonte o la deforestación de tierras antes de sembrar
maíz. En contraste, en este artículo presentamos la primera estimación del rendimiento y de las consecuencias socio-ecológicas
del cultivo de amaranto, una especie ruderal común cuyo crecimiento incrementa en respuesta al incendio antropogénico de la
vegetación del sotobosque en el ecosistema piñón-junípero del suroeste norteamericano. Con datos procedentes de la cuenca
superior del Río Colorado, en el norte de Arizona, demostramos que en áreas marginales para la cultivación del maíz las comu-
nidades agrícolas pudieron causar incendios de baja intensidad para promover el crecimiento del amaranto y otros ruderales
tales como el quenopodio—plantas que dominan las muestras de polen arqueológico en sedimentos encontrados en esta región.
Con base en esta evidencia y en datos recientes sobre la ecología del fuego, planteamos que una agricultura ruderal dependiente
de los incendios, en contraste con el cultivo del maíz, fue generalizada, sostenible, ecológicamente saludable, e incrementó la
seguridad de la provisión de alimentos independientemente de variaciones en la fertilidad de la tierra y precipitación.

Cross-disciplinary understanding of the
transformative effects of anthropogenic
landscape fire on ecosystems, their struc-

ture, and associated “services” has accelerated
dramatically in recent decades (e.g., Bowman
et al. 2009). Thinking globally about these devel-
opments in the context of human prehistory, it is

rare for modern research regarding human-envir-
onment interactions not to mention anthropogenic
fire as one of the principal ecosystem-shaping
forces during the Pleistocene and Holocene (Sup-
plemental Text 1). Archaeological studies world-
wide, ranging from the Upper Paleolithic (Haws
2012:72) andMesolithic (Mason 2000) inWestern
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Europe, to the early Neolithic in Southeast Asia
(Hunt and Rabett 2014:26), to the late Holocene
in eastern North America (Abrams and Nowacki
2008), indicate that human-controlled fire influ-
enced the nature of social formations and food sup-
ply systems of the ancient and modern worlds
(Bond and Keeley 2005). These investigations
are especially timely in view of the current atten-
tion directed at the contributions of fire-induced
particulates to climate change (Han et al. 2016)
and the continuing controversy over whether the
onset and duration of the Anthropocene (Braje
2015) should be defined in terms of atmospheric
chemistry (Ruddiman 2013) or domestication pro-
cesses (Smith and Zeder 2013).

Interestingly, these studies are unified by a
topic with deep historical roots and broad interdis-
ciplinary connections—understanding the relation
between anthropogenic landscape fire ecology and
subsistence economies (Supplemental Text 2). As
many environmental historians have remarked,
appreciating the ecological dynamics and evolu-
tionary consequences of this entangled relationship
intrinsicallyengages archaeology (e.g.,Bonnicksen
2000). However, archaeological data that reflect the
extent towhichhumanspersistentlyemployed land-
scapefire for subsistence purposes are “surprisingly
scarce” (Scherjon et al. 2015:321). One complicat-
ing factor is that, despite the rich ethnographic,
ethnohistoric, and historic accounts of humans
igniting landscape fires for a variety of reasons
(Supplemental Text 3), including wild plant hus-
bandry, gamemanagement, and pest control (Huff-
man 2013; Roos 2017), such descriptions provide
few details that archaeologists can draw upon
to inform their investigations of anthropogenic
fire and its economic aftermath (Lightfoot et al.
2013:286).

One approach that has gained considerable
attention in the American Southwest, however,
is applied historical ecology (Swetnam et al.
1999), which infers the effects of landscape burn-
ing by examining “paleofire proxies,” such as fire
scar, sedimentologic, palynological, and geoan-
thracological (detrital charcoal) records, and car-
bon isotope ratios of soil organic matter (French
et al. 2009; Roos 2015). The results of these
theoretically robust and empirically rich stud-
ies demonstrate that anthropogenic landscape
burning was indeed a transformative landscape

management and ecosystem-structuring technique
(Liebmann et al. 2016; Roos and Swetnam 2012).
Nevertheless, the applicability of applied histor-
ical ecology is constrained by the “fading record”
problem (e.g., most fire scar records in the Ameri-
can Southwest postdate AD1500; Fulé et al. 2003)
and by the likelihood that knowledge of the
range of fire regimes may be historically biased
because of the “no analogue” problem (Swetnam
et al. 1999:1192, 1198).

We see these issues, however, as opportunities
to expand the usefulness of applied historical ecol-
ogy by exploring the possibility that, in regions
prone to the record-fading and no-analogue pro-
blems, such as the Coconino Plateau and Grand
Canyon (Williams and Baker 2013:298), the
effects of low-intensity anthropogenic fire would
register in archaeobotanical remains recovered
from well-dated archaeological contexts (Miller
and Tausch 2001:17). Specifically, we posit that
people intentionally burned understory vegetation
in Southwestern pinyon-juniper woodlands to
produce fire-responsive ruderals (Sullivan 2015)
that, once harvested, processed, and discarded in
a variety of locations, became concentrated in
and around now-abandoned settlements (Yarnell
1965). This proposition underscores the centrality
of incorporating direct evidence from the archae-
obotanical record in establishing the role of
fire in economic prehistory (Smith 2014:369),
particularly for those periods of occupation in
the American Southwest for which there is scant
ethnographic documentation for fire-related
subsistence practices (Roos 2017; Sullivan and
Forste 2014).

Our objective here is to illustrate the explana-
tory potential of the fire foodway model for the
American Southwest’s vast pinyon-juniper wood-
lands,1 which, in contrast to maize (Zea mays)
agriculture, takes advantage of the principles of
fire ecology and aligns with the existing archaeo-
botanical record (Ford 1981:6). We first discuss
the key elements of current maize agriculture
farming models for pinyon-juniper woodlands,
which intrinsically do not consider burning a cul-
tivation method (except for land clearing; Crab-
tree et al. 2017:125; Wyckoff 1977). Next,
adopting the basic structure of maize farming
and productivity models (Bocinsky and Varien
2017; Kohler 2012), we determine the per capita
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caloric intake needed to sustain one individual on
only one ruderal species (amaranth; Amaranthus
spp.), derive population estimates for one human
generation (25 years), and develop productivity
estimates for amaranth to support various levels
of population during different periods of occupa-
tion in the Upper Basin. Then, we introduce the
fire foodway model of ruderal cultivation, which
is based on two well-secured ethnographic
findings: (1) creating anthropogenic niches with
burning is a common ecosystem-transforming
technique worldwide (Smith 2011), and (2) burn
plots established within anthropogenic niches,
whose use is rotated on a two- to three-year cycle,
take advantage of the invariable appearance of
ruderals during the earliest postburn succes-
sional cycle (Everett and Ward 1984). Finally,
inspired by firsthand contemporary observations
of how ruderals predictably respond to a variety
of fire types, severity, and origin, we offer some
thoughts about how these considerations have
the potential to integrate applied historical ecol-
ogy and niche construction theory to enrich our
narratives of past human-environment interac-
tions and economic prehistory in the American
Southwest.

Maize Farming in Pinyon-Juniper
Woodlands

Maize productivity modeling studies for pinyon-
juniper woodlands in the upland Southwest are
based on the following propositions:

• Pinyon-juniper woodlands were characterized
by low primary productivity with “slowly regen-
erating resources” (Kohler et al. 2012:31) and
were inhabitable on a perennial basis only after
the introduction of maize agriculture (Ford
1984:128–130).

• Maize production was the principal (if not
exclusive) mode of subsistence (Bocinsky
and Varien 2017:282–283; Spielmann et al.
2011), and maize consumption accounted for
at least 60% to 77% of an average person’s
diet per annum (Crabtree et al. 2017:117;
Van West and Lipe 1992:112).

• Climatic variation and soil fertility profoundly
affected maize production and related cultural
dynamics (Kohler et al. 2005).

• Maize farming occurred largely on the surfaces
of alluvial deposits (especially floodplains;
Dean 1996:37), dunes, or mesa tops (Bellorado
and Anderson 2013; Kohler et al. 2000:163).

• Frequent, low-intensity anthropogenic fires in
pinyon-juniper woodlands were rare (or did
not register unambiguously in paleofire proxy
data; Allen 2002; Floyd et al. 2003:268–
275), although human populations may have
taken advantage of “patchy natural openings
in the pinyon and juniper forest caused by
fire” (Ford 1984:129; emphasis added).

Discussion

The fire foodway model does not rely on any of
these assumptions but is informed, instead, by
two understandings. First, the production of
fire-responsive (or fire-stimulated [Nabhan et al.
2004:18–19]) economic plants, such as amar-
anth, chenopodium (Chenopodium spp.), and
various grasses (Bohrer 1975), promotes a secure
livelihood in conditions that are considered mar-
ginal for maize farming (e.g., Benson et al. 2013;
Sullivan 1996). These ruderals, which typically
colonize and thrive in human-created distur-
bances or niches (Smith 2014), have been (1)
categorized as weeds or inadvertent by-products
of maize farming (e.g., Ford 1984), (2) desig-
nated as starvation or famine foods (Minnis
1991), or (3) asserted to have been rarely (if
ever) cultivated or the focus of sustained culti-
vation (e.g., Plog et al. 2015:11) despite wide-
spread archaeological evidence to the contrary
(Table 1; Fritz 2007:289–291). In fact, the sin-
gle plant we focus on here, amaranth, has a his-
tory of cultivation and use that is as long as that
of maize (Supplemental Text 4), and its yield
“per unit of land may be greater than that of
corn” (Jones 1953:91; see also Bohrer 1962:108).
Ethnographic (Anscheutz 2006) and ethno-
botanical (Bye 1981) studies likewise attest
to the economic significance of amaranth, as
well as chenopodium, in ancient and modern
Southwestern subsistence economies (Doolittle
2000:95; Ford 2000:217; Morrow 2006:22).
Second, Southwest archaeologists have rarely
thought of fire itself as an applied technology
for direct food production (e.g., Adams and Fish
2011:167–170), even though such applications
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are common worldwide (Dods 2002; Roos et al.
2016:4–5).

Suitability of the Upper Basin for
Maize-Based Foodways

Our study area is the Upper Basin, which is a
downfaulted and tilted graben of the Coconino
Plateau that extends south of the eastern South
Rim of the Grand Canyon (2,256 m asl at
Desert View) to the base of the Coconino Rim
(1,859 m asl at Lee Canyon; Figure 1). Today,
the Upper Basin is blanketed by a dense pinyon-
juniper woodland (Vankat 2013) that becomes
intermixed with ponderosa pine on its western
edge but grades to grassland farther south (Dar-
ling 1967). Like so many areas in the upland
Southwest occupied between AD 875 and 1200
(Euler 1988), the Upper Basin is thickly stocked
with abandoned one- to two-room structures and
other features, such as rock alignments and ter-
races (Sullivan et al. 2015), which conventionally
have been interpreted as landscape signatures of
maize production (e.g., Effland et al. 1981; Stew-
art and Donnelly 1943). However, these appear-
ances are deceiving when we examine the area’s
modern and ancient environmental characteristics
and its archaeo-economic record and evaluate the
extent to which they align with the attributes of
maize-based foodways.

Soils

Pinyon-juniper woodlands are notorious for estab-
lishing themselves on nutrient-poor soils (West
1999:289), and the Upper Basin is no exception.
Surface material ranges from bedrock and very
cobbly/very gravelly loams in the Upper Basin’s
upper and central reaches (considered “agricul-
turally unsuitable” according to the Natural
Resources Conservation Service; Lindsay et al.
2003; Merkle 1952:377) to very gravelly/gravelly
sandy loams in its lower reaches (suitable only for
rangeland after “conversion;” Figure 2; Brewer
et al. 1991). Soil chemical and texture analyses
of archaeological terrace sediments (Homburg
1992; Sullivan 2000) attest to the Upper Basin’s
thin and rocky soils (Hendricks 1985). Pollen
analyses of these anthropogenic terrace sediments
yielded only a dozen or so Zea mays pollen grains
(<0.5%) out of thousands examined, and two sets
of samples contained nomaize pollen whatsoever
(Bozarth 1992; Davis 1986).

Precipitation

With respect to the other major constraint on
maize production—water availability during the
frost-free growing season—hydrologic studies
in the Upper Basin confirm that runoff from
rainfall or snowmelt is negligible (Rand 1965:13–
14), which means that water cannot be directed

Table 1. Archaeological Studies that Mention Amaranth, Chenopodium, or “Cheno-ams” as Cultivated or Economically
Significant Plants in the American Southwest.

Locality Site Plant Part Age/Date Reference

Southwest Colorado Site 22 (La Plata) Seeds Basketmaker III Jones and Fonner (1954)
Southwest Colorado Johnson Canyon Seeds Pueblo III Cummings (1995)
West-central New Mexico Grants 1 Dune Seeds 6880 ± 400 BP Agogino (1960:46)
Northeast New Mexico Cimarron District sites Seeds Basketmaker II and III Kirkpatrick and Ford (1977)
South-central New Mexico High Rolls Cave Chaff 2640 ± 40 BP Bohrer (2007:221)
Northern New Mexico Salmon Ruin Seeds AD 1088–1094 Doebley (1981)
East-central New Mexico Pecos River Valley sites Pollen AD 900–1250 Jelinek (1966)
Central Arizona (Tonto Basin) Tonto Ruins Seeds AD 1350–1400 Bohrer (1962)
Central Arizona (Phoenix) Los Canopas Seeds AD 500–1470 Fritz et al. (2009)
Northern Arizona (Flagstaff) Lizard Man Village Seeds AD 1064–1250 Hunter (1997)
Northern Arizona (Wupatki) Sunset Crater Ashfall Pollen AD 1150–1250 Berlin et al. (1990)
Northern Arizona (Grand
Canyon)

Upper Basin sites Seeds/pollen AD 1049–1080 Sullivan and Ruter (2006)

East-central Arizona Hay Hollow site Seeds/pollen 300 BC-AD 300 Bohrer (1972)
East-central Arizona Broken K Pueblo Pollen AD 1150–1280 Hill and Hevly (1968)

Note: Studies presented in this table were selected to maximize spatial and temporal variability and date of publication.
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to where it might be needed for maize production
(Metzger 1961; cf. Benson 2011:40–41). Further,
interannual variation in the Upper Basin’s
paleoprecipitation patterns was so unpredictable
(Sullivan and Ruter 2006:185–188)2 that, given
the sensitivity of maize to the timing and amount
of rain it needs to germinate (Adams 2015:29–
32), successful harvests were undoubtedly uncom-
mon events (Schwartz et al. 1981:121; see also
Bocinsky and Varien 2017:299). On the other
hand, importantly, even the lowest values of
tree ring–reconstructed annual precipitation for
the Upper Basin, that is, 25.4 cm in AD 1067,
are more than adequate to ensure the survival
of ruderals, such as amaranth (Salt Spring Seeds
2014:3) or chenopodium (Chenopodium quinoa
[Smith 2017:2]).

Discussion

In terms of soil fertility and frost-free precipi-
tation, the two principal factors stipulated in
maize productivity modeling studies, the Upper
Basin’s pinyon-juniper woodland is a “hostile”

environment that is ill-suited for maize production,
even during the best of times (i.e., when annual
precipitation equaled or exceeded the average
of 36.6 cm). It is hardly surprising, therefore,
to learn that no ethnographic, ethnohistoric, or
historic accounts mention maize farming in the
Upper Basin or on the eastern Coconino Plateau
by Native Americans or Euro-Americans (Begay
and Roberts 1996:199–202; Cleeland et al. 1990;
Hough and Brennan 2008; Martin 1985). These
factors explain, as well, why we have encoun-
tered negligible amounts of maize remains such
as botanicals or pollen (for comparable results
from Black Mesa, see Ford 1984:131; Ruppé
1985:521) in archaeological contexts that typ-
ically are associated with maize farming in the
upland Southwest (Sullivan and Forste 2014).
In fact, no matter which consumption or pro-
duction contexts are examined—structures or
processing areas (Supplemental Table 1)—the
archaeo-economic assemblages from them are
overwhelmingly and consistently dominated
by ruderal seeds and pinyon nuts (Figure 3).

Figure 1. Location of the Upper Basin, northern Arizona, showing excavated sites and area burned by the
Scott Fire.
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Suitability of the Upper Basin for Fire-Based
Ruderal Foodways

Estimating Amaranth Consumption and
Production

To illustrate the feasibility of the fire foodway
provisioning strategy, we estimate how much
amaranth would be required to support one person
for a year. This estimate is based on the same

parameters featured in numerous maize-based
productivity studies and, therefore, involves the
following considerations (based on Kohler et al.
2000:160; Pool 2013:96; Van West and Lipe
1992:111):

• One person requires at least 2,000 kcal/day,
which is roughly the midpoint in the published
range for preindustrial populations (1,560 to
2,550 kcal/day).

• Sixty-nine percent of the annual diet was amar-
anth, which is roughly the midpoint of the pub-
lished range for maize consumption (60% to
77%).

• One kilogram of amaranth yields 3.7 kcal (Put-
nam et al. 1989:4), which is comparable to
maize (3.5 kcal/kg).

With these understandings, one person would
require 0.37 kg of amaranth per day, or 136 kg
per year.

Although estimates for amaranth (and, for
comparison, chenopodium) productivity vary
widely, ranging from 340.25 to 4,310 kg/ha
(Supplemental Table 2), we chose the lowest
yield value (Amaranth 2) because it is frommod-
ern hand-cultivated amaranth farming, which we
think more closely approximates prehistoric cul-
tivation practices. Adoption of this value means
that 0.40 ha (ca. 1 ac) of land would be needed
to produce enough amaranth to satisfy one per-
son’s needs per year.

Estimating Population

To estimate the number of people that amaranth
could have supported between AD 875 and
1200 in the Upper Basin, we projected the num-
ber of room spaces (n = 886) that surveys have
recorded (Foust 2015) and “time-corrected” it
to yield the number of architectural spaces per
25-year period (Downum and Sullivan 1990),
or roughly one human generation (cf. Roberts
2011:13). These “corrections” allow us to maxi-
mize population in the face of Grand Canyon’s
complicated and incompletely understood popu-
lation history, which involves several groups
(Cohonina, Virgin Anasazi [sensu Euler 1992],
and Grand Canyon Anasazi [sensu Schwartz
1990]) whose perennial settlements were occu-
pied no longer than 10–15 years (Mink 2015;

Figure 2. Agriculturally unproductive soils in the Upper
Basin: (a) bedrock and very cobbly loam; (b) cobbly
and very gravelly sandy loam; (c) very gravelly/sandy
loam. (Color online)
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cf. Matson et al. 1988:253–254; Ortman et al.
2016:235).

Next, we calibrated the time-corrected room
counts by a perennial occupancy rate. This calcu-
lation involved dividing the number of structures
(n = 324) whose artifact density exceeded seven
artifacts/m2 (based on an excavated perennial
settlement [Sullivan 2008]) by the number of
room spaces (n = 604) for which we have con-
trolled, standardized artifact inventories (Uphus
2003). To convert time-corrected and perennially
occupied room counts into numbers of people,
we multiplied those values by 2.5 (which is the
average interior floor area of 226 single-room
structures [13.8 m2] divided by 5.6 m2/person
[Liebmann et al. 2016]). These estimates over-
represent the maximum number of people to be
fed during any year (Supplemental Text 5).

Finally, these figures were multiplied by 0.40
ha to yield the maximum number of hectares to
be cultivated per year to sustain the estimated
population on amaranth alone (Figure 4).

Managing Fire-Foodway Ecological
Impacts on the Landscape

In modeling the ecological impact of fire-based
amaranth production, our assumption is that
the Upper Basin’s occupants ignited many
small fires rather than a few large conflagrations
(Adams 2011:125; Scherjon et al. 2015:309). To
constrain these estimates further, we rely on Mel-
lars’s (1976) classic article in which he posits
that, for pinyon-juniper woodlands in northern
Arizona, a burn plot no larger than 400 m
in diameter (12.6 ha) maximizes ruderal

Figure 3. Variation in the abundance and ubiquity of seeds and nuts (n = 3,485) identified in 110 samples recovered from
features (postholes, thermal features, fire-cracked rock piles), artifacts (vessels, grinding stones), and occupation sur-
faces at 10 archaeological sites in the Upper Basin and Grand Canyon National Park (see Supplemental Table 1 for
details). Each dot represents the frequency of nuts or seeds in a single sample, broken down by taxon (seeds classified
by different archaeobotanists as cheno-am seeds, amaranth seeds, or chenopodium seeds are aggregated as
“Cheno-am”). The data do not include counts of indirect indicators of plant use, such as cone scales, seed coats, nutshell,
bark, needles, stems, leaves, wood, or cupules. This method was selected because it tightly constrains frequencies of
edible plant parts—seeds or nuts—that in all likelihood were the objects of wild plant cultivation, wild plant gathering,
or domesticated plant cultivation (Sullivan et al. 2015:44). Ubiquity values are given in parentheses.
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production. Applying this figure to the quantities
of amaranth needed to support varying numbers
of people, based on differing productivity esti-
mates, means that between five and 72 400 m
diameter fires would have to be ignited per year
(Table 2), burning at most no more than 4.2%
of the Upper Basin (218.73 km2, excluding
unburnable locations, such as bedrock and rock-
filled drainages).

Combining the facultative ecological orien-
tation of niche construction theory with the
methodological robustness of applied histor-
ical ecology, we propose that anthropogenic niches
1.1 km in diameter (0.95 km2) were established to
enable the ignition of 400 m diameter burn
plots within which ruderal production occurred
(Figure 5; this configuration is comparable con-
ceptually to the 200 m2 [4 ha] cells that have
been used for maize production modeling in
southwest Colorado [e.g., Kohler and Van West
1996:179]). Furthermore, we suggest that to ensure
sufficient fuel accumulation to carry low-intensity
surface fires, to avoid nutrient depletion that
would arise from overuse, and to prevent the
establishment of shrubs in the burn plots (which

would decrease yields and reduce species diversity;
Huffman et al. 2013), each burn plot would have
been used only once every three years, which
is a rotational pattern that aligns with pinyon-
juniper ecological succession patterns (Wagner
et al. 1984:617) and ethnographic accounts (Myers
and Doolittle 2014:13; Roos 2017:689–690).

As a measure of the sustainability and low eco-
logical impact of thefire foodwaymodel, we predict
that through time, burn plotswithin anthropogenic
niches were deactivated and anthropogenic niches
were abandoned altogether as population declined
(Figure 6). For instance, if we focus on the yields
for Amaranth 2 (Table 2), nine burn plots would
have been established initially in nine anthropogenic
niches between AD 875 and 1000. Thereafter, as
population increased, the original nine anthropo-
genic niches would have been supplemented by
33 new ones during AD 1000–1050 and with 30
new ones during AD 1050–1075. After AD 1075,
our figures indicate that no new anthropogenic
niches needed to be established and, importantly,
burning in previously established niches and their
associated burn plots would have declined at an
accelerating rate, thereby conserving thewoodlands

Figure 4. Estimated time-corrected room counts, annual population, and hectares to be cultivated under different yields
(kg/ha) of amaranth and chenopodium (based on data in Supplemental Table 2).
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and their economic resources (cf. Peeples et al.
2006).

The Archaeological Significance of the 2016
Scott Fire

Sometime shortly after midnight on June 28,
2016, a lightning strike ignited the Scott Fire in
thewestern reaches of theUpper Basin (Figure 1).

By the time the fire was suppressed on July 18,
2016, a total of 1,076.5 ha had burned, much
of it so severely that the woodland was destroyed
(Figure 7), a consequence of high fuel loads
attributable to fire exclusion and suppression,
among other factors (Fulé 2010:376; Vankat
2013:278–281).

The Scott Fire is significant for the fire food-
way model in several respects. First, to provide a

Table 2. Estimated Number of Fires Needed per Year Based on Different Productivity Estimates for Amaranth and
Chenopodium.

Amaranth 1
(0.20)b

Chenopodium 1
(0.305)b

Chenopodium 2
(0.342)b

Amaranth 2
(0.40)b

Perioda Population Ha Fires Ha Fires Ha Fires Ha Fires

1 285 57.0 5 86.9 7 97.5 8 114.0 9
2 1,304 261.0 21 398.0 32 446.0 36 522.0 42
3 2,273 455.0 36 693.3 53 777.4 62 909.0 72
4 1,854 371.0 30 565.5 45 634.1 51 742.0 59
5 788 158.0 13 240.3 20 69.5 22 315.0 25

Note: Estimated fires are 400 m in diameter. See Supplemental Table 2 for background data.
aPeriod 1 = AD 875–1000; Period 2 = AD 1000–1050; Period 3 = AD 1050–1075; Period 4 = AD 1075–1115; Period 5 = AD
1115–1200.
bValue in parentheses indicates productivity estimate in hectares per person per year (ha/person/year).

Figure 5. Randomly placed, spatially scaled anthropogenic niches (1.1 km in diameter), with insert showing embedded
burn plots (400 m in diameter) by time period in the Upper Basin.
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sense of scale in considering the effects of food
fires on landscapes, the area burned by the
Scott Fire is larger than the highest estimated
number of hectares burned based on Amaranth
2 yields, 909 ha (Table 2). Second, as Figure 8
shows, by spring 2017, significant portions of
the burned area were covered by “fetid goose-
foot” (Dysphania graveolens), which historically
has been an economically important plant to
Pueblo peoples (Springer et al. 2009:324–325).

The fact that this ruderal was particularly dense
in and around abandoned masonry structures
suggests not only that it is fire-responsive but
that its seedbed has endured for centuries (Yar-
nell 1965). Third, that the effects of the Scott
Fire on the appearance of ruderals are not anom-
alous can be appreciated by considering the data
in Table 3, which show a uniform ruderal
response despite differences in fire size, ignition
type, or severity.

Figure 6. Dynamics of anthropogenic niche and burn plot establishment and abandonment in the Upper Basin through
time.

Figure 7. Upper Basin pinyon-juniper woodland (a) before (2008) and (b) after (2017) the lightning-caused Scott Fire
(2016). (Color online)
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In addition to providing evidence for Yarnell’s
(1965) “Camp Follower” hypothesis, which is
intended to explain abnormally high densities of
wild economic plants in and around archaeo-
logical sites, the results of our study lend support
for Henry Dobyns’s (1972) “Altitude Sorting”
hypothesis. Based on ethnohistoric accounts that
describe the ubiquity of amaranth and chenopo-
dium production in NewWorld economies, wide-
spread archaeological occurrences of cheno-ams
in the American Southwest, and the environmen-
tal constraints on maize farming, particularly for
densely occupied upland locales after AD 1000,
Dobyns proposed that upland groups “depended
upon amaranth and perhaps chenopodium cultiva-
tion,” in contrast to populations living in lower
elevations that “grow more corns, beans, squash,
and cotton, and less chenopodium and amaranth”
(1972:45; see Bohrer 1991:232–233 on the use of
fire for ruderal production in the Sonoran Desert).
The results of our and other modern archaeological
investigations broadlyalignwith theCampFollower

and Altitude Sorting hypotheses (e.g., Merrill et al.
2009) and indicate thatmaize dependencywas loca-
lized and uneven across the prehispanic American
Southwest (Bayman and Sullivan 2008; Rocek
1995; cf. Spielmann et al. 2011).

Fire-Based Ruderal Production and the
Economic Prehistory of the American

Southwest

From southwestern Arizona (Bayman et al.
2004:132) to northeastern New Mexico (Kirkpa-
trick and Ford 1977) and from southeastern
Nevada (McGuire et al. 2014) to southeastern
New Mexico (Jelinek 1966), archaeological evi-
dence indicates that chenopodium and amaranth
have been economic keystone species for centur-
ies in the Southwest (Fritz et al. 2017) and else-
where in the New World (Carmody et al. 2017).
The method of their cultivation, however, is
poorly understood (Ford 1981:22) because con-
siderations of the economic effects of burning

Figure 8. Aftermath of the Scott Fire, which burned 1,076.5 ha in the Upper Basin between June 28 and July 18, 2016,
showing dead trees and prehistoric masonry structure surrounded by fetid goosefoot in April 2017 (image used with
permission of Neil Weintraub, Kaibab National Forest, US Department of Agriculture Forest Service).
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have not been coupled with the understanding
that these plants are fire-responsive and that fire
was an essential food-producing technology of
prehistoric Southwestern societies. The plausi-
bility of the fire-foodway model can be appre-
ciated, we suggest, by embracing the idea that
the effects of low-intensity burning on under-
story vegetation align with forest ecology, fire
ecology, and the contents of the archaeobotanical
record in ways that maize agriculture does not.
Moreover, with human-controlled landscape fire,
people actively manage the structure and compos-
ition of vegetation communities by disrupting
ecological succession patterns, manipulating
understory fuel loads, and rotating burn plots
to encourage species diversity without soil nutrient
loss (Bird 2015). In short, the evidence indicates
that sustainable fire-based ruderal agriculture
was practiced extensively and in areas where
maize agriculture was a risky and insecure
endeavor (Dean 1996).

We realize that some aspects of this model are
ideal, if not mechanistic, constructs, for example,

the size of burn plots, number of annual fires, and
duration of fallow periods, but they serve to illus-
trate that, even when considering the lowest
yields of just one plant and the caloric needs of
the highest levels of population, fire foodways
could easily provision the occupants of pinyon-
juniper woodlands in areas that are environmen-
tally hostile to maize farming. In addition, in
view of the low impact of ruderal cultivation on
pinyon-juniper woodlands, food fires could be
ignited virtually continuously wherever suffi-
cient fuels accumulate without jeopardizing the
integrity of the ecosystem and its other economic
resources, such as pinyon nuts and cactus (cf.
Innes et al. 2013:88). In this regard, Lanner’s
observation that “the food potential of piñon for-
ests in the Southwest has never been reliably esti-
mated, but it is enormous” (1981:105) is supported
by our rough estimates of fire-responsive ruderal
yields. Importantly, significant quantities of eco-
nomic resources can be produced without much
labor, without destroying the woodlands them-
selves, and by increasing edible biomass enormously,

Table 3. Forest Fires in the Upland American Southwest that Produced Amaranth or Chenopodium.

Location Date Name Fire Type Forest Type

Area
Burned
(Ha)

Ruderal
Species
Observeda Reference

Upper Basin, Kaibab
National Forest,
northern Arizona

2016 Scott Wildfire Pinyon-juniper 1076.5 Chenopodium,
amaranth

Judith D. Springer
(personal com-
munication 2017)

Kaibab National
Forest, Tusayan,
Arizona

2004 Topeka Experimental Pinyon-juniper − Chenopodium,
amaranth

Huffman et al.
(2013)

White Mountain
Apache
Reservation, East-
central Arizona

2002 Rodeo-
Chediski

Wildfire Ponderosa pine,
pinyon-
juniper,
mixed conifer

189,650 Chenopodium,
amaranth

Kuenzi et al.
(2008)

Grand Canyon
National Park,
northern Arizona

1999 Fire Point Wildfire Ponderosa pine 156 Chenopodium Laughlin et al.
(2004)

Grand Canyon
National Park,
northern Arizona

1993 Northwest III Prescribed Mixed conifer 490 Chenopodium Huisinga et al.
(2005)

Mesa Verde National
Park, Colorado

1989 Long Mesa Wildfire Pinyon-juniper − Chenopodium Adams and
Dockter (2013)

Bandelier National
Monument, New
Mexico

1977 La Mesa Wildfire Ponderosa pine 6070.5 Chenopodium Foxx (1996)

Mesa Verde National
Park, Colorado

1959 Morfield
Canyon

Wildfire Pinyon-juniper 826.8 Chenopodium Erdman (1970)

aOne to two years post-burn.
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particularly if more than one ruderal was cultivated
(Bye 1981; Ford 1984:135–137).

By incorporating aspects of the forest ecology
and fire ecology of the Southwest’s pinyon-
juniper woodlands, our study illustrates the syn-
ergistic potential of applied historical ecology
and niche construction theory in revealing the
effects of anthropogenic fire in transforming the
carrying capacity of these once heavily occupied
ecosystems. Hence, it seems unlikely that the
livelihoods of the prehistoric occupants of the
Southwest’s pinyon-juniper woodlands were
challenged by slowly regenerating resources, by
low carrying capacity, by scarce wild resources,
and by the uncertain effectiveness of slash-
and-burn maize cultivation (Wilcox 1978). It is
more ecologically realistic to view these wood-
lands as having been structured by the historic
dynamics of anthropogenic fire regimes—sys-
tematic understory burning during periods of
occupation, dramatic reduction of understory
burning during periods of abandonment, and
exclusion or suppression of fire during the twen-
tieth century (Margolis 2014).3

Conclusion

In archaeological contexts across the prehistoric
American Southwest, the widespread ubiquity
and high frequencies of ruderal plant remains—
especially seeds and pollen from amaranth and
chenopodium—support the proposition that the
cultivation practices for these plants involved
deliberately set understory fires (Sullivan and For-
ste 2014). Furthermore, we think that anthropo-
genic fires, which triggered the disturbances that
enabled ruderal production whenever and wher-
ever sufficient understory fuels had accumulated,
represent a form of sustainable agriculture whose
yields were independent of the problematic rainfall
and soil conditions that bedevil maize product-
ivity and made it such a risky venture (Bocinsky
and Varien 2017). The systematic management
of understory fuel loads with low-intensity burn-
ing not only provided a dependable food sup-
ply, whose productive capacity was controlled
by the ecosystem’s inhabitants, but insulated the
forests from catastrophic crown fires by elimin-
ating the ladder-fuel problem that makes our
overgrown woodlands so vulnerable to wildfires

today (Huffman et al. 2013), as the Scott Fire
dramatically demonstrates.

Ruderal-producing fire foodways were sus-
tainable because they required minimal fuel
loads and efforts to ignite them, could be prose-
cuted on the most agriculturally unproductive
soils, and, in the case of amaranth specifically,
did well with less than 25 cm of precipitation
and did not deplete soil of nitrogen to the same
degree as maize. Intercropped with other drought-
resistant, fire-responsive ruderals, such as chenopo-
dium and various grasses, low-intensity understory
“food fires” created a foodway that was largely
inoculated against long-term climatic change and
short-term environmental variability (Fulé et al.
2002a:44). Moreover, fire foodways take advan-
tage of highly predictable successional pathways
(Barney and Frischknecht 1974) that virtually guar-
anteed, with fire rotation (i.e., resting formerly
burned areas for a year or two to promote fuel
regeneration; Lightfoot and Cuthrell 2015:1585),
interannual continuity in food provisioning (Bates
and Davies 2016:127). Hence, this sustainable
strategy contributed to a degree of food security
that was rarely enjoyed by maize-based foodways
in view of their vulnerability to capricious and
largely uncontrollable environmental factors. The
fire-foodway model illustrates that, by integrating
archaeobotanical,fire-ecological, and surface arch-
aeological data, we can enrich our narratives about
how groups of economically autonomous people,
with the judicious application of fire, engineered
landscapes and secured livelihoods by unleashing
the productivity capacity of ancient pinyon-juniper
woodlands—upland ecosystemswhosefire regimes,
structure, and appearance have few counterparts
in the twenty-first century.

Notes

1. Estimates range from 47,133 km2 in Arizona alone
(Miller and Tausch 2001:16) to 153,100 km2 (Vankat
2013:268) to 291,374 km2 (West 1999:288) for the greater
Southwest.

2. Given the extensive interannual variability in paleo-
precipitation patterns, there is no correlation between the pre-
cipitation values for a given year and its prior year (r = 0.025,
p = 0.663, n = 301). Also, the results of a nonparametric Runs
test (number of runs = 164) indicate that annual precipitation
values (n = 301) are randomly distributed using either
the mean (x̅ = 36.6 cm, Z = 1.46, p = 0.144) or median (Md =
36.2 cm, Z = 1.44, p = 0.149; Thomas 1986:339–340). (Data
provided courtesy of Jeffrey S. Dean, Laboratory of Tree-Ring
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Research, University of Arizona, Tucson, personal communi-
cation 2001.)

3. The results of grain size, soil phosphorous (P), char-
coal concentration, and carbon isotope ratio analyses of
axial alluvial fan deposits (McNamee 2003; Roos et al.
2010) and from botanical and pollen analyses of samples
recovered from a wide variety of archaeological contexts
(Sullivan and Ruter 2006; Sullivan et al. 2015) support the
argument that the prehistoric fire regime in the Upper Basin
between circa AD 875 and 1200 consisted of frequent, low-
intensity, surface, understory anthropogenic fires (West
1984:1310). Mixed-severity or high-severity (lethal) fires
(where 20% to more than 70% of the overstory is killed by
fire [Williams and Baker 2013:301]) were rare until the area
was abandoned (i.e., perennial occupation ceased ca. AD
1200). In contrast, the fire regime between AD 1700 and
2000, based on fire scar records (Fulé et al. 2003) and analysis
of historic forest structure (Fulé et al. 2002b; Williams and
Baker 2013), is characterized by infrequent, low- to
medium-intensity, surface, nonanthropogenic fires punctu-
ated by periodic severe (stand-replacing) canopy fires (Fulé
2010; cf. Liebmann et al. 2016). The character of the fire
regime between AD 1200 and 1700 is unknown save for
the presumption that fuel loads and ignitions were unman-
aged by humans (cf. Herring et al. 2014:860).
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