Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-25T23:24:21.489Z Has data issue: false hasContentIssue false

Effect of melanism of alpine Colias nastes butterflies (Lepidoptera: Pieridae) on activity and predation1

Published online by Cambridge University Press:  02 April 2012

Jens Roland
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 (e-mail: jroland@ualberta.ca)

Abstract

Melanism in the sulphur butterfly Colias nastes Boisduval was quantified and related to their ability to remain active under cool or cloudy conditions and to their risk of predation. Darker individuals were more active, moved greater distances, and disappeared from the population at a greater rate. Disappearance of darker individuals was not due to greater predation. Light-coloured individuals suffered greater predation than dark individuals, but only at higher elevations. The broad geographical pattern of increased melanism in Arctic and alpine Colias butterflies is likely a response to the consistent pattern of cooler temperatures in these habitats rather than local variation in predation pressure.

Résumé

L'importance du mélanisme chez des coliades verdâtres, Colias nastes Boisduval, a pu être mise en relation respectivement avec leur capacité de demeurer actifs dans des conditions fraîches ou nuageuses et avec leur risque de prédation. Les individus plus foncés sont plus actifs, ils se déplacent sur de plus grandes distances et ils disparaissent de la population à un rythme plus élevé. La disparation des individus plus foncés n'est pas due à une prédation accrue. Les individus plus clairs subissent une prédation plus grande que les individus plus foncés, mais seulement aux altitudes plus élevées. Les grands patrons géographiques d'augmentation du mélanisme chez les papillons Colias arctiques et alpins sont vraisemblablement des réactions aux patrons uniformes de températures plus froides dans ces habitats plutôt qu'à la variation locale de la pression de prédation.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chapman, R.F. 1982. The insects: structure and function. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Ellers, J., and Boggs, C.L. 2004 a. Functional ecological implications of intraspecific differences in wing melanization in Colias butterflies. Biological Journal of the Linnean Society, 82: 7987.Google Scholar
Ellers, J., and Boggs, C.L. 2004 b. Evolutionary genetics of dorsal wing colour in Colias butterflies. Journal of Evolutionary Biology, 17: 752758.Google Scholar
Geiger, R. 1965. Mountain, valley, and slope. In The climate near the ground. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Heinrich, B. 1981. Insect thermoregulation. Wiley, New York.Google Scholar
Hochachka, P.W., and Somero, G.N. 1973. Strategies of biochemical adaptation. Saunders, Philadelphia, Pennsylvania.Google Scholar
Kettlewell, H.B.D. 1973. The evolution of melanism, the study of a recurring necessity. Clarendon Press, Oxford.Google Scholar
Kingsolver, J.G. 1983 a. Thermoregulation and flight in Colias butterflies: elevational patterns and mechanistic limitations. Ecology, 64: 534545.CrossRefGoogle Scholar
Kingsolver, J.G. 1983 b. Ecological significance of flight activity in Colias butterflies: implications for reproductive strategy and population structure. Ecology, 64: 546551.CrossRefGoogle Scholar
Kingsolver, J.G. 1984. Mechanistic constraints and optimality models: thermoregulatory strategies in Colias butterflies. Ecology, 65: 18351839.CrossRefGoogle Scholar
Kingsolver, J.G., and Watt, W.B. 1983. Thermo-regulatory strategies in Colias butterflies: thermal stress and the limits to adaptation in temporally varying environments. The American Naturalist, 121: 3255.Google Scholar
Mani, M.S. 1968. Ecology and biogeography of high altitude insects. Junk, The Hague.CrossRefGoogle Scholar
Ring, R.A. 1981. The physiology and biochemistry of cold tolerance in arctic insects. Journal of Thermal Biology, 6: 219229.CrossRefGoogle Scholar
Ring, R.A., and Tesar, D. 1981. Adaptations to cold in Canadian arctic insects. Cryobiology, 18: 199211.CrossRefGoogle ScholarPubMed
Roland, J. 1978. Variation in spectral reflectance of alpine and arctic Colias (Lepidoptera: Pieridae). Canadian Journal of Zoology, 56: 14471453.CrossRefGoogle Scholar
Roland, J. 1981. The adaptive value of melanism in alpine Colias butterflies (Lepidoptera: Pieridae). M.Sc. thesis, University of British Columbia, Vancouver.Google Scholar
Roland, J. 1982. Melanism and diel activity of alpine Colias (Lepidoptera: Pieridae). Oecologia, 53: 214221.CrossRefGoogle ScholarPubMed
Sokal, R.R., and Rohlf, F.J. 1969. Biometry. WH Freeman and Co., San Francisco, California.Google Scholar
Stiles, E.W. 1979. Evolution of color pattern and pubescence characteristics in male bumblebees: automimicry vs. thermoregulation. Evolution, 33: 941957.CrossRefGoogle ScholarPubMed
True, J.R. 2003. Insect melanism: the molecules matter. Trends in Ecology and Evolution, 18: 640647.CrossRefGoogle Scholar
Watt, W.B. 1968. Adaptive significance of pigment polymorphisms in Colias butterflies. I. Variation of melanism pigment in relation to thermo-regulation. Evolution, 22: 437458.Google Scholar