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1. Introduction. A number of different ways of defining topologies in a 
lattice or partially ordered set in terms of the order relation are known. Three 
of these methods have proved to be useful and convenient for lattices of special 
types, namely the ideal topology, the interval topology, and the new interval 
topology of Garrett Birkhoff. In another paper (2) we have shown that these 
three topologies are equivalent for chains (totally ordered sets), where they 
reduce to the usual intrinsic topology of the chain. 

Since many important lattices are either direct products of chains or sub-
lattices of such products, it is natural to ask what relationships exist between 
the various order topologies of a direct product of lattices and those of the 
lattices themselves. In particular it would be useful to know when an order 
topology of a lattice product is equivalent to the cartesian product of the order 
topologies of the factors. We answer some of these questions in this paper. 

We show that the ideal topology of a finite product of lattices is equivalent 
to the cartesian product of the ideal topologies. For an infinite product the 
topologies may be distinct. We prove that the new interval topology of a finite 
product of chains is equivalent to the cartesian topology, but that for an 
infinite product of chains the two topologies may differ. 

We show that the interval topology of a finite or infinite product of bounded 
lattices is equivalent to the cartesian topology. For products of lattices without 
extreme elements the interval topology may be unsatisfactory. However, for 
the case of a finite product of chains, each having a smallest element (or a 
largest element), we show that the interval topology is equivalent to the 
cartesian topology. We study also the relationship between the three topologies, 
and show that for finite products of chains, the ideal and new interval topolo­
gies are equivalent. 

2. The ideal topology of products. The ideal topology of a lattice is 
obtained by taking the completely irreducible ideals and dual ideals as a 
subbase for the open sets (9). An ideal 7 of a lattice is a subset such that 
a \J b G I if and only if a G I and b G I. A dual ideal is a subset D such that 
a C\ b G D if and only if a G D and b G D. An ideal I is called completely 
irreducible if it is not the intersection of ideals distinct from 7; similarly a 
completely irreducible dual ideal is not the intersection of dual ideals distinct 
from it. The entire lattice and the empty set are irreducible ideals if the lattice 
has a smallest element. For partially ordered sets that are not lattices, ideals 
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may be defined without reference to joins and meets (9). It has been shown that 
for a chain the completely irreducible dual ideals and ideals are just the open 
rays (a, + <» ) and (— °°, b) consisting of elements x > a and x < b 
respectively. 

In the direct product P = I~L Pi °f partially ordered sets PJf the order rela­
tion is defined coordinatewise ; (af) < (bj) if and only if aô < bj for every 
index j . If the sets P j are lattices, then P is a lattice and (aj) W (bj) = (aj W bj) ; 
similarly for the meet operation, (aj) P\ (bj) = (a3- H bf). 

The relationship between the ideals and dual ideals of a product of lattices 
L = I~L £J> a n d those of the factors Lj determines the relationship between 
their ideal topologies. This relationship is described in the following theorem: 

THEOREM 1. If a lattice L is the product of lattices {Lj}, then every product of 
ideals of the factors Lj is an ideal of L, and every product of dual ideals is a dual 
ideal of the product. In a finite product of lattices, every ideal is a product of ideals, 
and every dual ideal is a product of dual ideals. 

Proof. Suppose that for every index j an ideal lj of the lattice Lj is selected, 
and consider the product / = IX/iV Let a = (aj) and b = (bj) be any two 
elements of the product lattice L. Then for every index j we conclude that 
aj VJ bj G lj if and only if aj G lj and bj G Ijf since lj is an ideal. Since joins 
in the product L are defined coordinatewise, it follows that a U ô Ç / if and 
only iî a £ I and b £ I. Hence / is an ideal. Similarly, a product of dual ideals 
is a dual ideal. 

Conversely, if / is any ideal of the product lattice L, then the projection 
lj of I on the factor lattice Lj is an ideal of Lj .The set lj consists of all elements 
aj that are j-coordinates of elements a of / . If aj and bj are elements of Ijy then 
they are j-coordinates of elements a and b of I. Hence aj VJ bj is thej-coordinate 
of the element aVJ b, which is in / since / is an ideal. 

On the other hand if aj VJ bj = Cj is any element of the projection lj, then 
it is the j-coordinate of an element c of / . If we call a and b the elements of L 
obtained by replacing Cj by aj and bj in c respectively, then it is clear that 
aVJ b = c. Since / is an ideal and c G / , it follows that a £ I and b £ I. 
Hence a ; G lj and bj G lj, which shows that the projection lj is an ideal of Lj. 
In the same way it can be shown that the projection D3r of a dual ideal of the 
product lattice L is a dual ideal of the lattice Lj. 

Now any subset of a product is contained in the product of its projections. 
If / is an ideal of the product L — YLJLJ of a finite number of lattices Lj, 
we must show conversely that I contains the product of its projections. It will 
follow that / is equal to the product of its projections, and hence to a product 
of ideals. 

Let a = (aj) be any element of the product Y[j lj of the projections lj of 
the ideal I on the lattice Lj. Let bj be the element of / which has aj as its 
j-coordinate, and let b = \Jjbj. Then b £ I, since b is the join of a finite 
number of elements of / . Clearly a < b; hence a £ I also, since / is an ideal 
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and contains all elements contained in one of its members. This shows that / 
is a product of ideals. In the same way it can be shown that every dual ideal 
of a finite product of lattices is a product of dual ideals. This completes the 
proof. 

It is interesting to note that an ideal in the product of infinitely many 
lattices is not necessarily a product of ideals, but may be contained in the 
product of its projections without being equal to this product. For example, 
consider the Boolean algebra B consisting of all subsets of a countably infinite 
set. Then B can be represented as the product YLJ Tj of a countable infinity 
of copies Tj of the two-element lattice T. Let / be any non-principal maximal 
ideal of B. Since / is non-principal, every projection Ij of / is identical with Tj. 
Hence I 9^ B =YIJ ^V It follows that / is not a product of ideals, since it is 
not the product of its projections. This is related to the fact that the ideal 
topology of the product of infinitely many lattices contains, but is not in 
general identical with, the cartesian product of the ideal topologies of the 
lattices. 

THEOREM 2. The ideal topology of the direct product of a finite number of 
lattices is equivalent to the cartesian product of the ideal topologies of the lattices. 

Proof. Let L be the product of a finite number of lattices Lj. It follows from 
Theorem 1 that every ideal / of L is a product of ideals Ij of Lj. If / is a com­
pletely irreducible ideal, it is clear that each of its factor ideals Ij is completely 
irreducible; for if Ij were an intersection of ideals of Lj all distinct from Ij, 
then / could also be represented as an intersection of ideals of L distinct from / . 

Likewise, if I is completely irreducible, then at most one of its factor ideals 
Ij is a proper ideal, that is, distinct from Lj. For if two such factors Ii and I2 

were proper ideals, then I could be represented as an intersection of the two 
distinct products, obtained from the product representation of / by replacing 
Ii by L\ and Ii by L2 respectively. It follows that the only completely irre­
ducible ideals of L are L itself and products of completely irreducible ideals of 
Lj, all but one of which are equal to Lj. 

Similarly, the completely irreducible dual ideals of L consist of L itself and 
of products of completely irreducible dual ideals of Lj, only one of which is a 
proper dual ideal. 

Now we can examine the relationship between the ideal topology of L and 
its cartesian topology. A base for the open sets in the ideal topology of the 
factor lattice Lj consists of finite intersections of completely irreducible ideals 
and dual ideals of Lj. A base for the open sets in the cartesian product topology 
of L consists of products of these basic open sets in each of the lattices Lj. A 
base for the open sets of L in its ideal topology consists of finite intersections 
of completely irreducible ideals and dual ideals of L. We have just given the 
representation of these ideals and dual ideals of L as products of ideals and 
dual ideals of the lattices Lj. It follows from this representation that the two 
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collections of basic open sets of L are the same. Hence the topologies are 
equivalent. This completes the proof. 

It is easily verified that the ideal topology of a chain is equivalent to its 
intrinsic topology, since in both topologies the open rays (a, + » ) and (— °°, £) 
form a subbase for the open sets. It follows from Theorem 2 that the ideal 
topology of a lattice L which is a finite product of chains is equivalent to the 
topology of L as a cartesian product of the chains with their intrinsic topologies. 
In particular, it follows that the ideal topology of the euclidean space Rk, 
considered as a lattice which is a direct product of chains, is equivalent to the 
usual topology of Rk as a metric space. 

Theorem 2 does not extend to infinite products of lattices. The ideal topology 
of an infinite product contains the cartesian topology, since every basic open 
set in the cartesian topology is also a basic open set in the ideal topology of the 
product. This follows from Theorem 1. 

However, in the Boolean algebra B consisting of all subsets of a countably 
infinite set N, one can exhibit a subset of B which is closed in the ideal topology 
of B but not closed in B considered as the cartesian product of countably many 
two-element lattices that are discrete spaces in the ideal topology. In fact, 
let F be the ideal consisting of all finite subsets of N. Extend F by Zorn's 
lemma to be a maximal proper ideal I oi B. Then / is a completely irreducible 
ideal, and its complement is a completely irreducible dual ideal of B. It follows 
that 7 is a closed set in the ideal topology of B. (It is also an open set.) 

It is well known that B in its cartesian product topology is homeomorphic to 
Cantor's nowhere dense perfect set, whose elements are represented by infinite 
ternary expansions containing only the digits 0 and 2. The finite subsets of N 
have only a finite number of digits 2 in their expansions, and they correspond 
to the right-hand end points of the complementary middle-third intervals. The 
set F is clearly dense in B in the cartesian topology, which is the usual metric 
topology of the Cantor set. Hence the set 7, which contains F, is dense in B. 
Since it is a proper subset of B} it is not a closed set in the cartesian topology. 
However, it is closed in the ideal topology. Hence the two topologies are distinct. 

3. The interval topology of products . The interval topology of a partially 
ordered set or lattice is obtained by taking as a subbase for the closed sets the 
closed rays [a, + °° ) = {x: x > a] and (— °°, b] = {x: x < b). The closed 
intervals [a, b] = {x: a < x < b} are also closed in this topology, which 
accounts for the name. We shall show later that the closed rays and intervals 
are also closed in the ideal topology and the new interval topology. 

The interval topology is simply defined and has some useful properties. 
For chains it is equivalent to the intrinsic topology. It is known that every 
chain is a completely normal Hausdorff space in its intrinsic topology (7). It 
was proved in (8) that a complete lattice is compact in its interval topology. 
This topology has been used in the study of lattice-ordered groups and semi­
groups (11, 17). 
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However, it was pointed out by Birkhoff, Rennie, and Northam that a pro­
duct of chains without extreme elements, such as a euclidean space Rk, is not 
a Hausdorff space in its interval topology. It is shown in (14) that a Boolean 
algebra is not a Hausdorff space in its interval topology unless it is atomic. 
The ideal topology and the new interval topology were introduced in order to 
remedy some of the defects of the interval topology. 

It was stated incorrectly in the paper (8) by Frink, in which the interval 
topology was first defined, that for a product of lattices the interval topology 
is equivalent to the cartesian product of the interval topologies of the factors. 
This is true for bounded lattices and in certain other cases, but not in general. 
We now derive some theorems about the interval topology of products. 

THEOREM 3. The interval topology of the direct product of a finite or infinite 
number of bounded lattices is equivalent to the cartesian product of the interval 
topologies of the lattices. 

Proof. Let L be the product of the lattices Ljy each with smallest element 0 ; 

and largest element 1 .̂ Clearly L has also a smallest element 0 = (0;) and 
1 = (1-,). In a lattice with 0 and 1 elements, every closed ray is also a closed 
interval, since [a, + °° ) = [a, 1] and (— °°, 6] = [0, b]. Hence in such a lattice 
the closed intervals [a, b] form a subbase for the closed sets in the interval 
topology. The entire lattice is also such a closed interval, namely [0, 1]. 

I t is clear that any closed interval [a, b] of L is a product of the closed 
intervals [ajy bj\, where a = (af) and b = (bf). Conversely, any such product 
of closed intervals of Lj is a closed interval of L. Hence the closed intervals of 
the product lattice L form a subbase for the closed sets in the cartesian product 
topology of L. 

This follows from the fact, which is easily verified, that a subbase for the 
closed sets in the cartesian product topology of a product of topological spaces 
Xj is obtained by taking all products of subbasic closed sets of the spaces Xh 

provided that all, or all except a finite number of the subbases for the spaces 
Xj, contain the space Xj as an element. If infinitely many of the subbases for 
Xj do not contain Xj as a member, then it can be seen that the product space X 
is not the union of a finite number of products of subbasic closed sets, as it 
should be. 

Since the closed intervals of the product lattice L also form a subbase for the 
closed sets of the interval topology of L, this topology is equivalent to the 
cartesian product topology. This completes the proof of Theorem 3. 

It is easily verified that the interval topology of a direct product L of lattices 
Lj is always contained in the cartesian product of the lattices Lj. This follows 
from the fact that an upper closed ray [a, + °° ) of the product is a product of 
upper closed rays [ajt + °° ) of the factors; similarly for lower closed rays. The 
inclusion here is reversed for the ideal topology, since the ideal topology of a 
product contains, instead of being contained in, the cartesian product of the 
ideal topologies. 
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The interval topology of a product of only two lattices Lx and L2 may differ 
from the cartesian product of the two interval topologies, if Lx has no largest 
element, and L2 has no smallest element. This is connected with the fact that 
the product of an upper closed ray of Lx and a lower closed ray of L2 is neither 
an upper nor a lower closed ray of the product lattice. In fact, such a product 
of upper and lower closed rays may not be contained in a finite union of closed 
rays of the product. The following theorem illustrates this situation. 

THEOREM 4. The interval topology of a direct product L of lattices Lj is contained 
in, but distinct from, the cartesian product of the interval topologies of Lj, whenever 
at least one of the lattices Lx has no largest element, and another lattice L2 has no 
smallest element. 

Proof. Let C\ be any element of Lx and c2 be any element of L2 and let the set 
A of L consist of all x of L such that Xi > C\ and x2 < c2, where X\ and x2 are 
the Li and L2 coordinates of x respectively. Then the set A is closed in the 
cartesian product topology of L, since it is the product of a closed ray in Li, a 
closed ray in L2, and closed sets consisting of the entire lattice Lj for indices j 
distinct from 1 and 2. 

If the set A were also closed in the interval topology of L, it would be con­
tained in a finite union of upper and lower closed rays of L, and hence in the 
union of one upper closed ray [a, + °° ) and one lower closed ray (— °°, b], 
since any finite union of upper closed rays of a lattice is contained in a single 
upper closed ray, and any finite union of lower closed rays is contained in a 
single lower closed ray. 

Let x be any element of A, and call the Lx and L2 coordinates of this element 
Xi and x2, and let the corresponding coordinates of a and b be ah bi and a2, b2 

respectively. Since either x > a or x < b, it follows that either X\ < bi for all 
x in A, or a2 < x2 for all x in A. This would require that either Li has a largest 
element, namely bi, or L2 has a smallest element, namely a2, contrary to assump­
tion. This is because an upper bound of an upper closed ray of a lattice is 
necessarily an upper bound of the lattice, and a lower bound of a lower closed 
ray is a lower bound of the lattice. This contradiction shows that the set A is 
not closed in the interval topology of L, and the two topologies are different. 
This completes the proof. 

In order that the interval topology of a product of lattices be equivalent to 
the cartesian product of the interval topologies, it is not necessary that all the 
lattices have both largest and smallest elements, as in Theorem 3. We now 
give some other cases where the two topologies are equivalent. 

THEOREM 5. The interval topology of the product P of any chain C, with or 
without extreme elements, and any bounded lattice L, is equivalent to the cartesian 
product of the interval topologies of C and L. 

Proof. Let A be any subbasic closed set in the cartesian product topology of 
P, of the form R X J, where R = [a, + °° ) is an upper closed ray of the chain 
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C, and J = [c, d] is a closed interval of the bounded lattice L. We wish to 
show that A is also a closed set in the interval topology of P . For every x > a 
in C we define the set 

Ax = [a,x] X [c,d\\J [x, +00) X [c, + « ) . 

^ is the union of a closed interval of P and an upper closed ray of P ; hence 
it is closed in the interval topology of P. 

It is clear that A C Ax for every x > a in C. Since C is a chain, it can be 
seen that A = C\x Ax. Hence A, as an intersection of closed sets in the interval 
topology, is closed in this topology. Similarly a subbasic set of the cartesian 
topology of P which is a product of a lower closed ray of C and a closed interval 
of L is closed in the interval topology of P. Hence the two topologies are 
equivalent. This completes the proof. 

THEOREM 6. The interval topology of the product of a finite number of chains, 
each with a smallest element, or each with a largest element, is equivalent to the 
cartesian product of the interval topologies of the chains. 

Proof. We give the proof in detail only for the product P of two chains C± 
and C2 with smallest elements 0i and O2, since the proof in the general case is 
similar. It is sufficient to show that every subbasic closed set of P in the 
cartesian topology is also closed in the interval topology of P. 

Such a subbasic closed set is the product of closed rays in C± and C2. If both 
rays are upper rays or lower rays, their product is a closed ray of P . It remains 
to consider the product A = P i X P2 of an upper ray of one chain, say d , 
and a lower ray of the other chain C2. Let the upper ray be [ai, + 00). The 
lower ray of Ci is a closed interval [O2, #2], since C2 has a least element. If x is 
any element of C± such that x > a\, let Ax be the union of the closed interval 
[#i, x] X [O2, 62] of P , and the closed ray [x, + °° ) X [O2, + °° ). The set Ax is 
closed in the interval topology of P . Since C\ is a chain, it follows that 
A = f \ Ax. Hence A, as an intersection of closed sets, is closed in the interval 
topology of P . This completes the proof of Theorem 6. 

Theorem 6 shows that for certain lattices, the interval topology and the ideal 
topology are equivalent. For a finite product of chains with neither largest 
nor smallest element, they are distinct. In general, the ideal topology is larger 
than the interval topology; that is, it has more closed sets and open sets. This 
was proved by A. J. Ward (16), who showed that every closed ray of a lattice L 
is a closed set in the ideal topology of L. 

4. The new interval topology of products. The new interval topology 
was introduced by Birkhoff (5). To obtain it, one first defines the closed bounded 
sets B of a partially ordered set to be the intersections of finite unions of closed 
intervals [a, b]. One then defines a set F to be closed if its intersection F P\ B 
with every closed bounded set B is a closed bounded set. It is easily verified 
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that a set Fis closed if its intersection F C\ J with every interval / = [a, b] is a 
closed bounded set. 

This method of defining a topology is a special case of the procedure of J. W. 
Alexander (1), who starts with any family C of sets closed under intersection 
and finite union. A set is closed in Alexander's sense if its intersection with 
any member of C is a member of C. In a &-space, for example, the set C consists 
of the compact sets of the space, and a set is closed if its intersection with every 
compact set is compact. 

Birkhoff has shown that every conditionally complete lattice is a &-space in 
its new interval topology (5). It does not seem to be known whether the 
cartesian product of two ^-spaces is always a &-space, although it has been 
shown that the cartesian product of an uncountable infinity of ^-spaces is not 
necessarily a &-space. 

Birkhoff studies the new interval topology for partially ordered sets D which 
are dually directed. This means that every two elements of D have a common 
upper bound and a common lower bound. Lattices, and in particular chains, 
are always dually directed. Some of the relationships between the interval 
topology and the new interval topology have been investigated in the papers 
(2, 5). For the convenience of the reader, we exhibit these relationships in the 
form of a theorem, not all of which is new. 

THEOREM 7. Every set that is closed in the interval topology of a lattice L is also 
closed in the new interval topology of L. For chains and for bounded lattices the 
two topologies are equivalent. Whenever the two topologies are equivalent, L is the 
union of two closed rays. 

Proof. Every closed ray of L is closed in the new interval topology, since the 
intersection of a closed ray [a, + oo ) or (— œ , b] with a closed interval [c, d] is 
always either empty, a singleton, or a closed interval, and hence always a closed 
bounded set. Since any set closed in the interval topology is an intersection of 
finite unions of closed rays, it is also closed in the new interval topology. 

For bounded lattices the two topologies are equivalent. As Birkhoff showed, 
this follows from the fact that every closed ray in a bounded lattice is also a 
closed interval. That the two topologies are equivalent for chains is easily 
verified, and was shown in (2). 

The entire lattice L is always a closed set in the new interval topology, since 
its intersection with a closed bounded set B is B. If the two interval topologies 
are equivalent, then L is also a closed set in the interval topology. Hence L is 
the union of a finite number of upper and lower closed rays. In a lattice, the 
join of a finite number of upper closed rays is a single upper closed ray; likewise 
for lower closed rays. Hence L is the union of two closed rays, one upper and 
one lower. This completes the proof. 

It is not known whether the new interval topology of a finite product of 
lattices is always equivalent to the cartesian product of the new interval 
topologies. For some infinite direct products of lattices the topologies are 

https://doi.org/10.4153/CJM-1966-101-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-101-2


1012 R. A. ALO AND ORRIN FRINK 

distinct, as we shall show. The next theorem indicates that the new interval 
topology of the product of any number of lattices at least always includes the 
cartesian product topology. 

THEOREM 8. If L is the direct product of any number of lattices LJf then every 
set F of L which is closed in the cartesian product of the new interval topologies of 
the lattices Lj is also a closed set in the new interval topology of L. 

Proof. A subbase for the closed sets in the cartesian product topology of L 
consists of products of the form F = Fk X P , where P = Y\&k ^J a n d Fk is 
any set closed in the new interval topology of Lk. The set F will be closed in the 
new interval topology of L if its intersection with every closed interval J oî L 
is a closed bounded set of L. This intersection F P\ J has the form E = Ck X Pk, 
where Ck = FkC\ Jk, J =Yli JJ> a n d Fk = Ylfck Jj- Since Fk is closed in the 
new interval topology of Lk, then Ck is a closed bounded set of Lk. Hence 
F C\ J is the product of a closed bounded set and a product of closed intervals, 
and is thus a closed bounded set in the new interval topology of L. 

It follows that F is also closed in the new interval topology of L. Since all 
sets of a subbase for the closed sets in the cartesian product are closed in the 
new interval topology of L, so are all closed sets of the cartesian product. 
This completes the proof. 

THEOREM 9. The new interval topology of the product C of a finite number of 
chains Cj is equivalent to the cartesian product of the new interval topologies of Cj. 

Proof. By Theorem 8 it is sufficient to show that any set F that is closed in 
the new interval topology of C is also closed in the cartesian product topology. 
Let F be any such set, and let x = {xf) be any element of C not in F. We must 
show that x has a neighbourhood in the cartesian topology which is disjoint 
from F. 

If J is any closed interval of C, then F C\ J is a closed bounded set of C. If 
none of the coordinates Xj of the element x is an extreme element of the chain 
Cj, then there will exist a closed interval / = [a, b] of C containing x, and such 
that dj < Xj < bj for every index j . Consider the intersection F C\ J. As a 
closed bounded set it is the intersection of finite unions of closed intervals of C. 
Hence it is closed in the cartesian product topology of / considered as the direct 
product of a finite number of closed intervals of the chains Cj. 

Since x is not in F P\ / , it follows that there is a basic open set in the cartesian 
topology of / , containing x, and disjoint from F P\ J. Such a basic open set G 
is the product of open intervals of the chains Cj such as (Cj,dj), where 
aj < Cj < dj < bj. If a coordinate Xj of the element x is a largest or smallest 
element of the chain Cj, then the definition of the open set G must be modified 
by replacing the open interval (cjy dj) by an appropriate open ray (cjy oo ) or 

Since G is disjoint from F C\ J and G C\ / , it follows that G is disjoint from F. 
Since for every element x not in F there exists a set G open in the cartesian 
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topology of C, containing x, and disjoint from F, it follows that F is also 
closed in the cartesian topology. This completes the proof. 

Theorem 9 does not extend to products of infinitely many chains. This 
follows from an example given in (12, p. 240), of a lattice L that is the direct 
product of uncountably many copies of the real line R. In its topology as a 
cartesian product of chains R with the intrinsic topology, or the equivalent 
new interval topology, L is not a &-space. In fact, as Kelley shows, there 
exists in L a set A that is not closed in the cartesian topology, but whose 
intersection A Pi C with every compact set C is compact. 

But L is a conditionally complete lattice, and therefore L is a &-space in 
its new interval topology. As Birkhoff has shown (5), a subset of a conditionally 
complete lattice is closed and bounded if and only if it is compact in the new 
interval topology. It follows that every conditionally complete lattice is a 
&-space in its new interval topology. Since L is not a &-space in its cartesian 
topology, the two topologies are distinct. 

THEOREM 10. In any finite product of chains the ideal topology is equivalent 
to the new interval topology, and each is equivalent to the cartesian product of the 
intrinsic topologies of the chains. This topology is that of a completely regular 
Hausdorff space. 

Proof. This follows from Theorems 2 and 9, and from the fact that for chains 
the ideal topology and the new interval topology are equivalent to the intrinsic 
topology; see (2). It is known that every chain is a completely normal Haus­
dorff space in its intrinsic topology. Hence the cartesian topology of a finite 
product of chains is that of a completely regular Hausdorff space. This completes 
the proof. Note that it follows from Theorem 10 that both the ideal topology 
and the new interval topology of the euclidean space Rk are equivalent to its 
usual topology as a metric space. It is not known whether every product of 
chains is a normal space in its cartesian topology, although it is known that 
not every such product is completely normal. 

5. Conclusion. The ideal topology and the new interval topology both 
include the interval topology. In some lattices the ideal topology includes the 
new interval topology. We have not proved that this is always the case. It is 
not known whether the new interval topology of a finite product of lattices is 
always equivalent to the cartesian product of the new interval topologies. We 
have proved this only for chains. 

It is known that a Boolean algebra is always a Hausdorff space in its ideal 
topology, but unknown whether this is the case also for all distributive lattices. 
It might be interesting to modify the new interval topology by defining a set in a 
lattice to be closed if its intersection with every closed ray is closed in the 
interval topology. 

Many of our results can be generalized from lattices to partially ordered sets. 
In the case of the ideal topology, this would require extending the notion of 
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ideal from lattices to more general partially ordered sets, as is done by Frink 
(9). Recently J. Mayer and M. Novotny, in a paper entitled "On some 
topologies of products of ordered sets," which has not yet been published, have 
generalized the notion of ideal in partially ordered sets, and have obtained some 
results on products of ideal topologies analogous to our Theorem 2. 
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