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Khovanov–Rozansky homology for infinite
multicolored braids
Michael Willis
Abstract. We define a limiting slN Khovanov–Rozansky homology for semi-infinite positive mul-
ticolored braids. For a large class of such braids, we show that this limiting homology categorifies
a highest-weight projector in the tensor product of fundamental representations determined by the
coloring of the braid. This effectively completes the extension of Cautis’ similar result for infinite
twist braids, begun in our earlier papers with Islambouli and Abel. We also present several similar
results for other families of semi-infinite and bi-infinite multicolored braids.

1 Introduction

The Jones–Wenzl projector Pn [16] is a special idempotent element of the Temperley–
Lieb algebra representing a highest-weight projector in the representation theory
of Uq(sl2), used in particular to define WRT-invariants for 3-manifolds (see, for
example, [8]). Similarly we have analogous highest-weight projectors in the repre-
sentation theory of Uq(slN) for all N. A sequence of papers by various authors
[4, 6, 13] showed that, in all of these cases, such highest-weight projectors could be
categorified via infinite chain complexes associated to the stable limiting Khovanov–
Rozansky complex of infinite full twists (including the case as N →∞ corresponding
to Khovanov–Rozansky HOMFLY-PT homology). Indeed similar statements hold
when we consider infinite full twists where we allow ourselves to color the strands
with any natural number less than N, corresponding to irreducible antisymmetric
representations of Uq(slN).

A natural question for all of these cases one might ask would be what happens if
we consider the limiting Khovanov–Rozansky complex of some other infinite braid.
Together with Islambouli in [7] and Abel in [1], the author has shown that, for all
(semi-)infinite uni-colored braids B̃ that are both positive and complete (a braid is
complete if each braid group generator appears infinitely many times; intuitively, this
means that B̃ contains all the crossings necessary to build the infinite full twist F∞),
the limiting Khovanov–Rozansky complex CN (B̃) is chain homotopy equivalent to
CN (F∞), the limiting complex of the infinite full twist. Thus we have the following
imprecise theorem (see the original papers for the precise versions).
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Figure 1: An example of a positive semi-infinite braid (assuming this pattern of crossings
continues indefinitely) that is complete if colors are ignored, but is not color-complete since
the strands colored i and k never interact. For a more precise definition, see Section 4.4.

Theorem 1.1 ([7] Theorem 1.1, [1] Theorem 1.1) All positive complete semi-infinite uni-
colored braids categorify highest weight projectors in the tensor product of fundamental
representations determined by the coloring of the braid.

The goal of this paper is to remove the “uni-colored” restriction from Theorem 1.1.
Doing so will require a new restriction on the types of braids that are considered. The
imprecise version is presented here (the precise version will be stated in Section 4.5).

Theorem 1.2 All positive color-complete semi-infinite braids categorify highest weight
projectors in the tensor product of fundamental representations determined by the
coloring of the braid.

We will define color-completeness precisely in Section 4.4, but intuitively this will
mean that the braid B̃ will contain all of the ‘properly colored’ crossings necessary to
build the ‘properly colored’ infinite full twist F∞. Figure 1 shows an example of a braid
which is complete but not color-complete, and it can be seen why such a restriction
might be expected. Since the strands colored i and k in that example never interact, it
seems plausible that the resulting limiting complex may not be related to the complex
of the infinite full twist in which the strands colored i and k must twist around each
other infinitely often.

From Theorem 1.2 we will be able to deduce corollaries for a variety of situations.
We will have results for semi-infinite braids with finitely many negative crossings
(Corollary 5.4) allowing for a version of Theorem 1.2 taking Reidemeister II moves into
account (Corollary 5.5). We also have results for certain non-color-complete braids
(Corollary 5.6). All of these are similar to our previous results in [1, 7]. We will also
discuss bi-infinite braids, for which defining a coloring and a corresponding limiting
complex requires some more care.
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Theorem 1.3 All positive color-complete bi-infinite braids B̃ have limiting complexes
of the form P ⊗C⊗ P′ where P and P′ indicate categorified projectors for two (possibly
different) sequences of colors depending on the coloring of B̃, while C is a complex
categorifying certain maps between the representations determined by the two color
sequences.

The precise version of Theorem 1.3 will be presented as Corollary 5.10.
The proof of Theorem 1.2 effectively generalizes the earlier proofs for different

versions of Theorem 1.1 in [1, 7]. We present a short outline here. Let B be a semi-
infinite braid word representing the infinite braid B̃, and let B� denote the finite
‘partial’ braid word consisting of the first � crossings in B. We view B as a limit
of B� as the length of the words �→∞. Unlike in previous versions, this limit will
be taken along a subsequence of lengths such that each B� represents a so-called
‘color-pure’ braid (where the sequences of colors at the top and bottom of the braid
must match). The color-completeness assumption will ensure we have maps roughly
of the form F� ∶ CN (B�) → CN (Fz(�)) where z is some nondecreasing function of
� such that z →∞ as �→∞ along the necessary subsequence. Our goal then is to
show that F� is an isomorphism in homological degrees below some bound ∣F�∣h that
grows arbitrarily large as �→∞. This is accomplished by keeping track of homological
shifts in the cone of F� (actually in a larger complex containing Cone(F�)) resulting
from pulling ‘rungs’ through crossings and full twists. Despite the structural similarity
to the earlier versions of the proof, there are significant differences in the details of
this version of the construction which we will focus on: the color-completeness and
color-purity requirements for B̃ and B� respectively; the resulting care needed to
properly construct the system maps, the map F�, and its cone; and the slightly different
combinatorics encountered when computing the necessary homological shifts.

Remark 1.4 The local nature of the arguments in this paper potentially lends them
well to similar homology theories for links in other 3-manifolds. For instance, we
expect all of our results to hold for the link homologies defined in the recent papers
[11, 12] when applied to an infinite braid within a 3-ball. We leave precise statements
and proofs about such generalizations for future consideration.

This paper is arranged as follows. Section 2 will present a short review of the
necessary homological algebra, focused on defining and comparing limits of inverse
systems of complexes as well as manipulating complexes defined as multicones.
Section 3 will review the relevant definitions and manipulations of colored Khovanov–
Rozansky homology for braids. Section 4 is the technical heart of the paper, providing
the proof of Theorem 1.2. Section 5 will explore a variety of corollaries, including the
handling of negative crossings and bi-infinite braids.

2 Homological Algebra Background

In order to properly state and prove our theorems about semi-infinite chain complexes
coming from semi-infinite braids, we will need the following ideas from homological
algebra. Throughout this section, we work in the homotopy category of complexes
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over some additive category with differentials increasing homological grading by one.
Furthermore, all of our complexes are assumed to be bounded below.

Definition 2.1 We employ the following basic notations.
• Chain complexes shall be denoted by capital boldface letters, as in A, with differen-

tial dA (the subscript will be omitted if no confusion is possible).
• Superscripts on capital letters will indicate homological degree. Thus Ai will denote

the objects of A in homological degree i, while A≥i will denote the subcomplex of
A consisting of all objects in homological degrees greater than or equal to i.

• Single terms within a complex shall often be denoted by lowercase greek letters; the
notation α ∈ A indicates that α is a term in the complex A.

• For α ∈ A, hA(α) shall denote the homological degree of the term α within A.
• h will also denote the homological shift functor, so that htA indicates the complex

A where all terms have been shifted upwards in homological degree by t.
• The notation f ∼ g will indicate that two chain maps f and g are homotopic. The

notation A ≃ B will indicate that two complexes A and B are chain homotopy
equivalent.

2.1 Inverse Systems and Limits

The entirety of this section is based on definitions in [14, Section 2.2.2], and expands
upon the similar sections in [1, 7].

Definition 2.2 Let A and B be two chain complexes that are bounded below, and
suppose f ∶ A → B is a chain map. Define the homological order of f, which we denote
by ∣ f ∣h, to be the maximal degree d for which the cone Cone(A

f�→ B) is chain
homotopy equivalent to a complex C that is trivial below homological degree d ( Ci = 0
for i < d). If the cone Cone(A

f�→ B) is contractible, then we write ∣ f ∣h = +∞.

Roughly speaking, the homological order ∣ f ∣h of a chain morphism f ∶ A → B
measures how “homologically close” A and B are, since the complexes fit into an
exact triangle with Cone(A

f�→ B)measuring the “homological difference” between A
and B as related by f (see [14, Section 2.2.2] where the equivalent concept is denoted
∣Cone(f)∣h, and complexes are bounded above instead of below).

Definition 2.3 An inverse system of chain complexes is a sequence of chain complexes
equipped with chain maps

{Ak , fk} = A0
f0←� A1

f1←� A2
f2←�⋯.

An inverse system is called Cauchy if ∣ fk ∣h → +∞ as k →∞.

Definition 2.4 An inverse system {Ak , fk} has a limit (or inverse limit), which we
denote by A∞ or lim Ak , if there exist maps f̃k ∶ A∞ → Ak such that
• fk ○ f̃k+1 ∼ f̃k for all k ≥ 0, and
• ∣ f̃k ∣h →∞ as k →∞.
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Theorem 2.5 ([14] Propositions 3.7 and 3.12) An inverse system {Ak , fk} of chain
complexes has a limit A∞ if and only if it is Cauchy.

Based on Definition 2.4, it is easy to see (see [14, Theorem 2.6]) that limits to inverse
systems are unique (up to a homotopy equivalence) if they exist. From this it is also
easy to prove the following lemma, which will be used mainly for concatenations of
finite and infinite braid complexes.

Lemma 2.6 Given an inverse system {Ak , fk} with (bounded below) limit A∞ and a
bounded complex B, all over some monoidal category with tensor product ⊗, there is a
corresponding inverse system {(B⊗Ak), (IB ⊗ fk)} with inverse limit satisfying

lim(B⊗Ak) ≃ B⊗A∞.

In other words, the limiting process commutes with the tensor product.

Proof Apply the functor B⊗ (⋅) to the diagram comprised of the inverse system
{Ak , fk} together with A∞ and the maps f̃k . Note that homological orders of maps
cannot decrease, and then appeal to the uniqueness of the limit. ∎

We conclude this section with a result from [7] which allows us to prove two inverse
systems have equivalent limits.

Proposition 2.7 ([7] Proposition 2.13) Suppose {Ak , fk} and {B� , g�} are two Cauchy
inverse systems with limits A∞ and B∞ respectively. Let z(�) be a nondecreasing function
onN such that lim�→∞ z(�) = ∞. Suppose there are maps F� ∶ B� → Az(�) satisfying, for
all �,

F�g� ∼ fz(�) fz(�)+1⋯ fz(�+1)−1F�+1 ,

where the sequence of structure maps fz(�) fz(�)+1⋯ fz(�+1)−1 is empty if z(� + 1) = z(�).
If ∣F�∣h →∞ as �→∞ then A∞ ≃ B∞.

In Figure 2 we include a diagram to better explain the situation in Proposition 2.7.
In principle we could allow cases where z(� + 1) > z(�) + 1, necessitating the use of
multiple structure maps fk as described in the statement of the proposition; in the
cases of interest in this paper, however, this will never be the case and z will only ever
increase by one or not at all.

2.2 Multicone Complexes

Many of the complexes that we will be concerned with in this paper are most easily
understood and manipulated using a generalization of the usual cone construction as
follows (a large portion of this section is taken nearly verbatim from [17]).

Definition 2.8 Suppose we are given the following data in a fixed category of chain
complexes over some additive category:
• A finite index set C with a Z-grading hC ∶ C→ Z.
• For all i ∈ C, a chain complex Ai with differential d i .
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Figure 2: The diagram for Proposition 2.7. In this diagram both {Ak , fk} and {B� , g�} are
Cauchy inverse systems. The limits A∞ and B∞ and the maps f̃ , f̃k , g̃ , g̃� all exist from Theorem
2.5. If we can find the maps F�, then Theorem 2.5 also provides the map F∞. We simply need
to show that ∣F�∣h →∞ as �→∞ to prove that F∞ is a homotopy equivalence.

• For all i , j ∈ C, a map (not necessarily a chain map) f i j ∶ Ai → hhC( j)−hC(i)−1A j
satisfying
– f i i ∶= d i ,
– for all j ≠ i in C with hC( j) ≤ hC(i), f i j ∶= 0, and
– for all i , k ∈ C, ∑ j∈C f jk f i j = 0.

Then we can form the multicone

M = Mcone
i , j∈C

(Ai
f i j�→ hhC( j)−hC(i)−1A j)(1)

which is a chain complex M whose terms are the direct sum of all of the terms of the
complexes Ai

M ∶= ⊕
i∈C

Ai

and whose differential dM is the sum of all of the maps f i j

dM ∶= ∑
i , j∈C

f i j .
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For a term α ∈ Ai ⊂ M, we determine the homological grading as the sum of the
contributions of viewing α in Ai and viewing Ai in C

hM(α) ∶= hA i (α) + hC(i).(2)

The reader may verify that this definition gives a well defined chain complex. When
hC( j) − hC(i) = 1, the maps f i j assemble to define chain maps; when hC( j) − hC(i) =
2, the maps f i j assemble to form null-homotopies for the compositions of any two of
these chain maps; and so on. Because the original system C was finite, this process
must eventually end, and so of course the sum in the definition of dM is finite. When
C = {1, 2} and we have the single chain map f12 ∶ A1 → A2, this construction recovers
the usual cone on f12.

Remark 2.9 We employ the term ‘multicone’ in Definition 2.8 following [15]. A
complex built in this manner is also often referred to as a totalization or convolution
of a twisted complex. See for instance [3].

Note that any finite chain complex B can be represented as a multicone by declaring
that C is indexed by the terms in B while the maps f i(i+1) are given by the differentials
of B. Meanwhile all of the maps f i j with hC( j) − hC(i) ≥ 2 are zero maps (ie no
homotopies are needed).

The following proposition gives us our main tool for manipulation of multicone
complexes.

Proposition 2.10 Given a chain complex presented as a multicone M as in Equation
(1), and given chain homotopy equivalences ιi ∶ Ai → A′i for each i ∈ C, there exist maps
f ′i j such that we can form the multicone

M′ ∶= Mcone
i , j∈C

(A′i
f ′i j�→ hhC( j)−hC(i)−1A′j)

that is chain homotopy equivalent to M:

M ≃ M′ .

Proof This is a standard result generalizing the fact that the homotopy category of
complexes over an additive category is triangulated (Proposition 2 in [3]). ∎

3 Colored sl(N) Link Homology Background

3.1 The sl(N) Foam Category and Colored Khovanov–Rozansky Homology

Colored Khovanov–Rozansky homology was first constructed independently by Wu
[18] and Yonezawa [19]. This homology theory generalizes the original construction
of Khovanov and Rozansky [9] and categorifies the colored SL(N) polynomial when
coloring components by fundamental representations. Queffelec and Rose gave a
combinatorial/geometric construction of colored Khovanov–Rozansky homology in
terms of ‘webs’ and ‘foams’ [10]. It is this construction which we will briefly recall here
(again, a large portion of this review is taken nearly verbatim from [1]).
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Figure 3: Basic slN -webs (all edges are oriented upwards).

Figure 4: Selected relations for slN -webs (all edges are oriented upwards). See [5] for a full list.

We begin with the category NWeb, as described by Cautis, Kamnitzer, and Morri-
son in [5]. The objects of NWeb are given by sequences γ = (γ1 , . . . , γ�) where � > 0
and γ i ∈ {0, 1, . . . , N} called colorings, together with a zero object. The 1-morphisms
are formal sums of upward oriented trivalent graphs with edges labeled by integers in
the same coloring set {0, 1, . . . , N}. At any vertex, the labels of the two edges of similar
orientation (incoming or outgoing) are required to sum up to give the label of the third
edge. Such graphs are generated by the basic graphs in Figure 3. There is also a set of
local relations for such trivalent graphs; we list a few of the most important ones in
Figure 4, and refer the reader to [5] for a complete list.

We interpret any such graph as a mapping between the coloring at the bottom
to the coloring at the top. These graphs are called slN -webs due to their relation
to the representation theory of Uq(slN), where colors i correspond to fundamental
representations Λ i

C
N of Uq(slN), and trivalent vertices correspond to natural maps

of the form Λ i
C

N ⊗ Λ j
C

N → Λ i+ j
C

N and Λ i+ j
C

N → Λ i
C

N ⊗ Λ j
C

N (see [5] for
more details). Accordingly, we will sometimes omit edges labeled by 0 and N, but
allowing these labels in the definition will make later definitions easier to write. By
convention, we will also allow edges labeled by integers larger than N for the sake of
later definitions. However, any web with such an edge will be set equal to the zero web
(that is, the unique morphism factoring through the zero object).
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Figure 5: The basic generating slN -foams in NFoam (Image from [10]).

We now move on to the 2-category NFoam. The objects and 1-morphisms of
NFoam are the same as those for NWeb, except that the 1-morphisms are considered
as direct sums rather than genuine sums, and the relations between such 1-morphisms
are discarded for the moment. The 2-morphisms are matrices of labeled singular
cobordisms between slN -webs, called slN -foams. These cobordisms are generated by
the basic cobordisms in Figure 5.

Similar to the convention for slN -webs, we will interpret slN -foams as mapping
from the bottom boundary to the top boundary. Each facet of an slN -foam is labeled
with an element of {0, 1, . . . , N}. Any facet whose boundary is shared with an edge of
a web must share the same label as that edge of the web. We allow decorations ●p on
the facets of the foams where p is a symmetric polynomial in a number of variables
equal to the label of the facet. There also exists a set of local relations for these slN -
foams which allow for a lifting of the web relations in NWeb (such as those in Figure
4) to 2-isomorphisms between the corresponding 1-morphisms in NFoam. The reader
should consult §3 of [10] for more details.
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The 2-morphisms in NFoam satisfy an adjunction equality in the following sense. If
δa and δb are two slN -webs ( 1-morphisms in NFoam), then we have an isomorphism
of 2-morphism spaces

hom2(δa , δb) ≅ hom2(δa ⋅ δ∧b , I).(3)

Here hom2(⋅, ⋅) denotes the 2-morphism spaces, I denotes the relevant colored iden-
tity diagram, and δ∧b denotes the dual of δb obtained from δb by reflection about a
horizontal line. The ⋅ notation in Equation (3) indicates concatenation of slN -webs,
which plays the role of (monoidal) tensor product. An illustration of this isomorphism
will be provided in Figure 7 for the more general setting of complexes over NFoam.

The category NFoam also admits a grading. We will note the gradings in cases
that it is necessary, but will once again refer the reader to [10] for more complete
information. All chain complexes of foams are assumed to have degree 0 differentials.
We will denote grading shifts in NFoam with the notation qk for a grading shift
upwards by k.

Finally, for technical reasons which will be indicated below (see the proofs of
Lemmas 3.5 and 3.6), we pass to the Karoubi completion of NFoam, which we denote
by K(NFoam).

Now to any tangle diagram T whose components are labeled by elements of
{0, 1, . . . , N}, we can associate a chain complex in K(NFoam), which we will denote
by CN (T). The homotopy equivalence type of CN (T) is an isotopy invariant of the
tangle T. In diagrams and figures, we will often omit the notation CN (⋅) and simply
draw the corresponding tangle or web unless there is a chance for confusion. In this
text we will exclusively focus on the case that the tangle T is actually a braid.

To build a chain complex in K(NFoam) for a colored braid (by convention we
orient all of the strands upwards), we construct basic chain complexes for each
crossing. Suppose that i ≤ j, then

j i

i j

∶=

j i

i j

0 d0 q

j i

i j

1 d1 ⋯ d i−1 qi

j i

i j

i(4)

j i

i j

∶=

j i

i j

i d′i−1 q

j i

i j

i − 1 d′i−2 ⋯ d′0 qi

j i

i j

0(5)

Trivalent graphs of the form illustrated on the right-hand side of Equations (4) and
(5) will be referred to as ladders; the nearly horizontal slanted edges will be referred
to as rungs. The term furthest to the left is taken to have homological degree zero, and
the differential has homological degree 1. The symbol q is used to denote a shift in the
internal quantum grading; we will often omit this shift as it will have no bearing on
our arguments. We remark that the labeled edges determine all edges in each web, and
that certain webs may be zero webs if they have a label larger than N.
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Figure 6: The simplest example of viewing CN (T) as a multicone along a chosen set of cross-
ings (in this case, along one crossing denoted τ(i j)). The second line illustrates the multicone
notation we will use for such a complex. The symbols δx , δy denote diagrams appearing in the
complex CN (τ(i j)). We omit the CN (⋅) notation and the various grading shifts for simplicity.

The maps dk are degree 0 foams as specified in [10]. The maps d′k are the same
foams, but reflected to switch the source and target webs. Finally, if i > j, then we
reflect each web around a vertical axis and perform the analogous transformation to
the foams dk and d′k .

We note that our conventions differ from those of [10]. In particular, our CN
⎛
⎝

j i ⎞
⎠

differs from their definition of CN
⎛
⎝

j i ⎞
⎠

by a shift of hi qi (where i ≤ j). However, our

convention makes studying stabilization behavior more straightforward. We remark
that under our convention, Reidemeister I and II moves hold only up to a shift (see
[1]). In particular, a Reidemeister II move incurs a shift of ht where t is the minimum
between the two colors involved. Reidemeister I shifts will not be relevant for us in
this paper.

In order to complete the definition of CN (T) for a positive braid T, we take the

planar tensor product of the various CN
⎛
⎝

j i ⎞
⎠

and CN
⎛
⎝

j i ⎞
⎠

for each crossing

in T in the usual sense of Bar-Natan’s planar algebras [2]; that is, we stitch together
the various webs and foams while taking the tensor product of the corresponding
complexes. Thus, if we choose to apply Equations (4) and (5) to only certain crossings
within a given braid, we will construct multicone complexes where each term involves
ladder diagrams within a larger braid-like diagram (see Figure 6 for an example
illustrating this notion and our notation). We refer to such diagrams as web-braid
diagrams ( slN -webs generically embedded in a 3-ball with n incoming and n outgoing
strands, projected to the plane with no turnbacks present).

The category of complexes over K(NFoam) admits an adjunction equality much
like that of Equation (3). Given two tangles (or more generally, two web-braid
diagrams) T1 and T2, the space of chain maps hom(CN (T1), CN (T2)) between their
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Figure 7: A diagrammatic example of Equation (6) using two web-braid diagrams which we
denote B and A, both having coloring γ at the top and coloring γ′ at the bottom. The complex
of chain maps between them is itself chain homotopy equivalent to the complex of maps from
CN (B ⋅ A∧) to the γ-colored identity tangle. The CN (⋅) notation has been omitted.

Figure 8: Sliding a rung under a strand. There are similar moves sliding any rung over or under
any strand. Any such move incurs a homological shift in the corresponding complex according
to Proposition 3.1. There is also a q-degree shift which we will ignore.

Figure 9: Twisting a rung through a crossing. There is a similar move for a rung slanted in the
opposite direction as in the diagrams of Figure 6. Any such move incurs a homological shift in
the corresponding complex according to Proposition 3.1. There is also a q-degree shift which
we will ignore.

corresponding complexes is itself a complex, and satisfies

hom(CN (T1), CN (T2)) ≃ hom(CN (T1 ⋅ T∧2 ), CN (I))(6)

where once again T∧2 is obtained from T2 by a horizontal reflection, and I is the relevant
(colored) identity tangle. We illustrate this diagrammatically in Figure 7.

3.2 Manipulating Some Basic Complexes in K(NFoam)

Given a web-braid diagram, we may ‘slide’ and/or ‘twist’ rungs past various crossings
(see Figures 8 and 9). In such cases, the colors involved at the crossings that have been
passed by will change and we will need to understand how this affects the resulting
complex. The following proposition is proved in [1].
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Figure 10: The full twist F for n = 4.

Proposition 3.1 ([1] Proposition 2.19) Let T1 and T2 be any two colored positive web-
braid diagrams such that we can transform T1 into T2 via a sequence of braid-like
Reidemeister moves, rung slides (see Figure 8) and rung twists (see Figure 9). Then
CN (T1) ≃ htqsCN (T2) where

t = ∑
τ∈T1

min(τ) − ∑
χ∈T2

min(χ).(7)

Here each sum is taken over all crossings τ, χ in each diagram. The notation min(τ)
denotes the minimal color amongst the two strands at the crossing τ.

If we look at Equation (4), the homological size of the complex is dependent on
the minimum of the two colors at hand, and so Equation (7) is really just saying that,
during such an isotopy of web-braids, the right-most homological grading remains
fixed regardless of the overall size of the complex. In any case, if we want to use
Proposition 3.1 to compute homological shifts, we have to keep track of possible
minimums between the two colors involved in any crossing both before and after
performing some web-braid isotopies. For the moves that we will be considering, it
turns out to be helpful to have the following definition which removes the specific
braid from consideration and only looks at the coloring (that is, the sequence of colors)
being used.

Definition 3.2 Given a coloring γ = (γ1 , . . . , γn), we define the color size of γ,
denoted by ∣γ∣c, to be

∣γ∣c ∶= ∑
1≤i< j≤n

min(γ i , γ j).

We end this short section with a color size computation that we will require later.
Let Bn denote the braid group on n strands and σ1 , , . . . σn−1 denote its standard
(positive) generators. We let F denote the full twist braid (σ1⋯σn−1)n on n strands
(see Figure 10 for a specific example).
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Proposition 3.3 Given a coloring γ, let F(γ) denote the full twist on n strands colored
according to γ. Then in the notation of Equation (7), we have

∑
χ∈F(γ)

min(χ) = 2∣γ∣c

Proof A full twist involves each pair of strands crossing each other precisely twice.
Meanwhile, ∣γ∣c computes the sum of the minimum color between each pair of
colors. ∎

3.3 The Complex for a Uni-Colored Crossing

In order to prove Theorem 1.2, we will need to understand the complexes associated
to certain special colored braids. The first and easiest scenario is the one utilized in [1].
Consider the case of Equation (4) when i = j. In other words, consider the complex
associated to a uni-colored positive crossing. In this case, the left-most term on the
right-hand side of Equation (4) has a zero on both rungs, and so the diagram is in fact
the identity diagram on two strands colored i. We shall denote this 2-strand identity
diagram by I(i).

Lemma 3.4 Let τ(i) denote a single positive crossing between two strands colored by
γ = (i , i). Then CN (τ(i)) is equal to a cone

CN (τ(i)) = Cone(I(i) → X)
where X is a complex such that, for any diagram δx ∈ X,
• hX(δx) ≥ 0, and
• δx is a ladder diagram containing an intermediate coloring γx with ∣γx ∣c < ∣γ∣c.

Proof This is a direct translation of Equation (4) in the case when i = j; the complex
X is precisely h−1C≥1

N (τ(i)) and the intermediate colorings are of the form (i −
hCN (δ), i + hCN (δ)). Visually we see

i i

i i

=

i i

i i

�→

i i

i i

i + 1i − 1 1 �→ ⋯ �→

i i

i i

2i0 i

where intermediate colorings can be seen at the vertical midpoints of ladder diagrams.
As usual, we are ignoring the q-degree shifts. ∎

3.4 The Complex for a Two-Colored Clasp

The author learned the following argument from conversations with Matt Hogan-
camp. We begin with a simple lemma from homological algebra.

Lemma 3.5 Consider a chain complex A of the form

A = A0
1 ⊕ A0

2 → A≥1
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over some additive category where idempotents split, with no terms in negative homolog-
ical grading. Let π∗ ∶ A → A0

2 be the projection map onto the one-term complex sitting
in homological degree zero. Suppose that π∗ is chain-homotopic to the zero map. Then
A is chain homotopy equivalent to a complex of the form

A ≃ A0
1 → X

where the term A0
2 has been removed, and the complex X is a direct summand of the

original A≥1.

In fact the summand X in the statement of Lemma 3.5 is unique up to isomorphism
of chain complexes, but since we will have no use for this fact, we will not explore this
further.

Proof of Lemma 3.5 Letting d denote the differential of A, a chain homotopy
between π∗ and 0 is precisely a map H ∶ A1 → A0

2 satisfying

Hd = 1A0
2
.

From this we see that the map dH ∶ A1 → A1 is idempotent, since (dH)(dH) =
d(Hd)H = dH, allowing us to split A1 accordingly and perform a Gaussian elimina-
tion. ∎

In the statement of the following lemma, we use the notation I(i j) to indicate the
two-strand identity diagram with strands colored i and j.

Lemma 3.6 Let τ2
(i j) denote a pair of adjacent positive crossings (called a clasp)

between two strands colored by γ = (i , j). Then CN (τ2
(i j)) is chain homotopy equivalent

to a cone

CN (τ2
(i j)) ≃ Cone(I(i j) → X)

where X is a direct summand of a complex C satisfying, for any diagram δx ∈ C,
• hC(δx) ≥ 0, and
• δx is a ladder diagram containing an intermediate coloring γx with ∣γx ∣c < ∣γ∣c.

Proof We will consider the case where j ≥ i (the case of j < i is similar). We begin by
expanding CN (τ2

(i j)) along both crossings into a complex of various web diagrams.
It is not hard to see from Equation (4) that the only term in homological degree zero
is the trapezoid

j − i

j − i

i j

i j
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while every other diagram, sitting in C≥1
N (τ2

(i j)), contains intermediate colorings of
lesser color-size. We will declare C to be the complex C≥1

N (τ2
(i j)). If j = i, we are

done (letting X = C, trivially a direct summand as desired). Otherwise, we use the
2-isomorphism which lifts the second equation of Figure 4 to replace this trapezoid
with a large direct sum of terms (all still in homological degree zero). Expanding the
right-hand side of Figure 4, we see that precisely one of these summands will be the
identity diagram I(i j), while the other summands will contain (q-shifted) trapezoids
of the form

p

p

i j

i j

for p > 0.
Now we fix any such trapezoidal diagram, calling it εp . As in Lemma 3.5, we

consider the projection map

π∗ ∶ CN (τ2
(i j)) → CN (εp)

to the corresponding one-term complex in homological degree zero. Using the duality
equivalence of Figure 7, together with the fact that any such trapezoid εp is symmetric
about its central horizontal axis, we deduce the following:

π∗∈hom

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

i j

i j

,

p

p

i j

i j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≃ hom

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p

p

i j

i j

,

i j

i j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≃ hom

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

h2p

p

p

i j

i j

,

i j

i j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The positive homological shift in the first diagram of the last hom-space is derived
from Proposition 3.1. This shift ensures that this hom-space is actually the zero-space,
and thus we must have π∗ chain homotopic to the zero map. Since we work over
the Karoubi completion K(NFoam), Lemma 3.5 allows us to conclude that there is a
Gaussian elimination argument which removes any such diagram εp from the complex
CN(τ2

(i j)), replacing C with some direct summand of itself. Iterating this process to
remove all such trapezoids from the homological degree zero term leaves us with a
complex of the desired form. ∎

4 Proving Theorem 1.2

Theorem 1.2 is about limiting complexes associated with certain semi-infinite braids.
Such braids will be represented by semi-infinite braid words up to finitely many
Reidemeister moves. In order to prove Theorem 1.2, we begin by proving a version
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for semi-infinite braid words; this will take up the majority of this section. Once we
have this result (Section 4.5), it will be relatively simple to lift the result to semi-infinite
braids.

The overall strategy for the semi-infinite braid words is similar to that of [1, 7],
and we summarize it here. We will construct inverse systems for the infinite twist,
as well as for other semi-infinite words, where the system maps are quotient maps
corresponding to resolving certain crossings as vertical identity braids (Proposition
4.7). In the case of the infinite twist, it will be relatively simple to show that the system
is Cauchy and thus has a limit categorifying a projector as in Cautis’ results (Theorem
4.13). For the systems coming from other semi-infinite words, we will construct maps
F� to the system for the infinite twist that are also quotient maps corresponding
to identity resolutions (Section 4.5.1); this will guarantee that these maps commute
with all system maps. We will then seek to apply Proposition 2.7 by estimating the
homological orders ∣F�∣h of these maps; this will be done by expanding Cone(F�)
as a multicone, simplifying the multicone using Proposition 2.10, and estimating the
resulting homological orders of elements using Propositions 3.1 and 3.3 (Section 4.5.2).

Throughout this section, I will denote the identity braid on n strands.

4.1 Color-Pure Braids

If β ∈Bn is a braid on n strands, we will use the notation β(γ)(γ′) to indicate that β has
been colored so that the sequence of colors at the top (respectively bottom) of β is given
by γ (respectively γ′). Of course, since β is a braid, γ′ must be some permutation of γ
determined by β.

Definition 4.1 A colored braid β(γ)(γ′) is called color-pure (with respect to γ) if γ = γ′.
In such a case we will omit the superscript and simply write β(γ) for the color-pure
braid.

Clearly all pure braids are color-pure with respect to any γ. If γ = (i , i , . . . , i)
denotes a uni-coloring, then all colored braids β(γ)(γ′) are color-pure. Meanwhile, if
γ = (i , j, . . . , �) denotes a coloring using all distinct colors, then a colored braid β(γ)(γ′)
is color-pure if and only if it is pure. Note that the full twistF is pure, and so our earlier
notationF(γ) agrees with the convention of omitting the superscript for Definition 4.1.

Our first task is to combine Lemmas 3.4 and 3.6 into a more general statement
about color-pure braids. We begin with a helpful lemma that will help us find clasps.

Lemma 4.2 Any nontrivial positive color-pure braid β(γ) that does not have any uni-
colored crossings must be braid isotopic to another positive color-pure braid β′(γ), having
the same number of crossings as β(γ) with again no uni-colored crossings, that contains
some clasp τ2.

Proof We begin by noting that a color-pure braid β that does not have any uni-
colored crossings must in fact be pure. Indeed if we have a color-pure braid that is not
pure, there must be some strand that begins at one colored end-point a and ends at a
different end-point b of the same color. If this is the case, then the strand that begins at
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b must end at another end-point c of the same color without crossing the first strand.
It is not hard to see that this must eventually lead to a contradiction due to having only
finitely many strands.

We now label our n strands 1 through n independent of their colors, and we label
each crossing (braid group generator) of β by the unordered pair {a, b} according to
which two strands are being crossed. Since β is pure, any such crossing label must
occur an even number of times. Starting from the beginning of the braid word, we
search for the first crossing label {a0 , b0} which appears twice, and consider only
the crossings between the first and second {a0 , b0}-crossing. If there are no such
crossings, we are done and β = β′.

If there are such crossings, they must involve some other strands that start on
one side of the pair a0 , b0 and end on the other side (otherwise some strand would
cross one of a0 , b0 twice, contradicting the fact that {a0 , b0} were the first repeated
crossing label). Any such strand passes entirely over (or under) the strands a0 , b0
since β was positive. Therefore, we can use Reidemeister III moves to pass our second
{a0 , b0}-crossing under (or over) the extra strands to arrive at the desired β′. Note
that Reidemeister III moves preserve the number of crossings and the crossing labels
involved—in particular, β′ will have the same number of (positive) crossings and will
once again have no uni-colored crossings. ∎

We now state and prove the key proposition about the structure of the complex
associated to a positive color-pure braid.

Proposition 4.3 Given a positive color-pure braid β(γ) on n strands, the complex
CN (β(γ)) is chain homotopy equivalent to a cone

CN (β(γ)) ≃ Cone(I(γ) → X)

where X is a direct summand of a complex C satisfying, for any diagram δx ∈ C,
• hC(δx) ≥ 0, and
• δx is a ladder diagram containing an intermediate coloring γx with ∣γx ∣c < ∣γ∣c.

The simplified complex written in this way will be denoted ̃CN (β(γ)).

Proof Let β1 ∶= β(γ) denote our starting braid. If there is a uni-colored crossing σa in
β1, we apply Lemma 3.4 to σa allowing us to write CN (β1) as a cone as in a two-term
version of Figure 6:

CN (β1) = Cone (CN (β2) → X1) .

Here the braid β2 is derived from β1 by deleting σa , while the complex X1 is based
upon concatenating h−1C≥1

N (σa) with the rest of the braid. For the sake of notational
convenience moving forward, we declare C1 ∶= X1 so that X1 is trivially a direct
summand of the complex C1.

Now since we have not changed any of the colors at the top or bottom of the braid,
we see that β2 is again color-pure but with one less crossing than β1. If β2 contains
another uni-colored crossing, we apply the same reasoning again to get
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CN (β1) = Cone(Cone (CN (β3) → X2) → X1).

We can continue in this way until we have written CN (β1) as a large iterated cone
with initial term CN (β�) where β� is a positive color-pure braid with no uni-colored
crossings (here � − 1 is the number of uni-colored crossings that were in β1, which have
now been deleted). Each of the complexes Xk satisfies the properties of Lemma 3.4,
and we can view any Xk as a trivial direct summand of Ck ∶= Xk satisfying these same
properties.

According to Lemma 4.2, our color-pure β� with no uni-colored crossings must be
braid isotopic to some β′� having a clasp τ2. Thus we can apply Lemma 3.6 to this clasp
and write CN (β�) as a cone again as in Figure 6:

CN (β�) ≃ CN (β′�) ≃ Cone (CN (β�+1) → X�)

where the braid β�+1 is obtained from β′� by deleting the clasp, while X� is a direct
summand of the complex C� which is based upon concatenating h−1C≥1

N (τ2)with the
rest of the braid as in the logic of Figure 6. Since a cone is just a two-term multicone,
Proposition 2.10 allows us to plug this cone in place of the complex CN (β�) in the
iterated cone for CN (β1), so we have

CN (β1) ≃ Cone (Cone ( ⋯Cone(CN (β�+1) → X�) ⋯ → X2) → X1) .

Thus β�+1 is again a color-pure braid with two fewer crossings than β�, again with
no uni-colored crossings, and so we can apply the same reasoning yet again. We
continue in this way until we have CN (β1) written as a large iterated cone with initial
term I(γ), the one-term complex associated to the identity braid colored by γ:

CN (β1) ≃ Cone (Cone (⋯Cone (Cone(I(γ) → Xp) → Xp−1)⋯ → X2) → X1)

Here p describes the number of steps it took to delete all of the uni-colored crossings
and two-colored clasps from β1 to arrive at the identity braid. Every complex Xk is
a direct summand of some Ck whose terms satisfy the desired properties. The cone
operation simply takes direct sums of the objects in the complexes (with a positive
homological shift), and so the statement of the proposition is satisfied by taking X ∶=
⊕p

k=1 Xk and C ∶= ⊕p
k=1 Ck . ∎

4.2 Color-Pure Semi-Infinite Braids

We begin by giving a more precise definition for our main class of braids. Let Gn
denote the standard set of multiplicative generators for the braid group Bn .

Definition 4.4 A semi-infinite braid word B on n strands is a map B ∶ N→ Gn ,
written as an infinite word

B = σ ε1
i1

σ ε2
i2

σ ε3
i3
⋯

on the generators σi (where each ε i ∈ {−1, 1}). We call Bpositive if each ε i = 1, so we
may ignore them from the notation.
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In order to use the results of Section 2.1, we need to describe a semi-infinite braid
word as a limit of finite braid words. First we establish notation.

Definition 4.5 Let B = σ ε1
i1

σ ε2
i2

σ ε3
i3
⋯ be a semi-infinite braid word and � ∈ N. We

define the �th partial braid of B, denoted by B�, as

B� = σ ε1
i1

σ ε2
i2
⋯σ ε�

i� .

More generally, the partial sub-braid from a to b, denoted by Ba
b , is defined to be the

braid word

Ba
b ∶= σ ε ia+1

ia+1
σ ε ia+2

ia+2
⋯σ ε ib

ib
.

In this way, the �th partial braid B� is equivalent to B0
� , and in general Ba

b ⋅Bb
c = Ba

c .
We will also use the notation Ba

∞ to denote the truncated infinite braid word obtained
from B by deleting the first a crossings.

In this text we are concerned with colored braids. In our previous papers on the
subject [1, 7], when all strands in a braid were colored by i, the uni-coloring (i , i , . . . , i)
at the start and end of a semi-infinite braid word B could easily be identified with
the coloring at the start and end of any partial braid B�. When we allow arbitrary
colorings, however, more care is needed.

Definition 4.6 Let γ = (γ1 , . . . , γn) ∈ {0, 1, . . . , N}n be a fixed coloring. Then a semi-
infinite braid word B ∶ N→ Gn gives rise to a sequence of colorings γ(⋅) ∶ N ∪ {0} →
{0, 1, . . . , N}n by defining γ(0) ∶= γ, and then defining γ(�) for � ∈ N as the coloring
at the bottom of B� determined by coloring the top by γ. We call B color-pure with
respect to γ if γ(�) = γ for infinitely many � ∈ N, and denote it B(γ). The sequence
m1 < m2 < ⋯ of all m i such that γ(m i) = γ is called the maximal purity sequence
for B(γ).

It is clear that, after fixed an ‘initial’ coloring γ for the ‘top’ of B, any partial sub-
braid Ba

b within B is colored as (Ba
b)
(γ(a))
(γ(b)).

With the notation set up, we have the following proposition allowing us to build
complexes for certain semi-infinite braid words.

Proposition 4.7 If B(γ) is a positive semi-infinite color-pure braid word with maximal
purity sequence m1 < m2 < ⋯, then there is a corresponding inverse system of complexes

{CN (Bmk), fk} = CN (Bm0)
f0←� CN (Bm1)

f1←� CN (Bm2)
f2←�⋯

whereBm0 is defined to be the colored identity braid I(γ) and the maps fk are the quotient
maps implied by Proposition 4.3. Furthermore, if this inverse system is Cauchy with limit
denoted CN (B∞) and �1 < �2 < ⋯ is any subsequence of the maximal purity sequence,
then there is a corresponding inverse system

{CN (B)� j
, g j} = CN (B�0)

g0←� CN (B�1)
g1←� CN (B�2)

g2←�⋯

which is also Cauchy with a chain homotopy equivalent limit

lim CN (B� j) ≃ CN (B∞).
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Proof First we describe the maps fk in slightly more detail. Fixing k, we let β denote
the partial sub-braid B

mk
mk+1 of crossings in Bmk+1 that are not in Bmk ; by assumption β

is color-pure with respect to γ. If we use Proposition 4.3 to write the simplified complex
C̃N (β) for β, and then expand CN (Bmk+1) along this cone as in Figure 6, we see (with
a slight abuse of notation)

CN (Bmk+1) ≃ Cone

⎛
⎜⎜⎜⎜
⎝

Bmk

I �→
Bmk

X

⎞
⎟⎟⎟⎟
⎠

.

The map fk is the quotient map from this cone to the complex CN (Bmk). From this
it is clear that a subsequence �1 < �2 < ⋯ has its own set of quotient maps g j and we
can construct a commuting diagram of inverse systems as in Figure 2 where all of the
horizontal maps are identity maps. Being a subsequence ensures that our new inverse
system is also Cauchy (the subsequence structure maps g j consist of compositions
of the sequence structure maps fk , and ∣ fk ○ fk+1∣h = min(∣ fk ∣h , ∣ fk+1∣h)), and since
identity maps have infinite homological order, Proposition 2.7 gives us our desired
chain homotopy equivalence. ∎

We can now present the main definitions for semi-infinite braids.

Definition 4.8 A semi-infinite braid B̃ is an equivalence class of semi-infinite braid
words B, where B is equivalent to B′ if and only if B′ can be arrived at from B via
a finite set of braid moves. We call B̃ positive if some choice of representative word is
positive. We call B̃ color-pure with respect to γ, and denote it B̃(γ), if any (and thus
every) word representing B̃ is color-pure (note that this condition is not affected by
finitely many braid moves).

Remark 4.9 The restriction to allowing only finitely many braid moves was neglected
in our earlier papers [1, 7], but it is clearly necessary to avoid situations where a
sequence of braid moves starting from the word B ‘limits’ to a new word B′ that does
not share the properties of B. For instance consider the following sequence of braid
moves in Bn for n = 4:

B = σ3σ1σ1σ1⋯
≅ σ1σ3σ1σ1⋯
≅ σ1σ1σ3σ1σ1⋯
⋮

which would show ‘in the limit’ that B is equivalent to the infinite twist on the
first two strands with no occurrence of σ3. We wish to disallow such limiting
statements.

Proposition 4.10 Let B̃(γ) be a positive color-pure semi-infinite braid, and let B

and B′ be two positive semi-infinite words representing B̃ with corresponding inverse
systems {CN(Bmk), fk} and {CN (B′m′

�
), f ′�} via Proposition 4.7. Then there are maps
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F� ∶ CN(B′m′
�
) → CN (Bmk) commuting with the system maps such that ∣F�∣h →∞ as

�→∞. In particular, if {CN (Bmk), fk} is Cauchy, then so is {CN(B′m′
�
), f ′�} and their

limits are chain homotopy equivalent.

Proof If B and B′ are related by finitely many Reidemeister moves, then there exists
some κ and λ such that the partial braid words Bmκ

and B′m′λ
are braid isotopic, and

the truncated semi-infinite braid words Bmκ
∞ and B′

m′λ
∞ are equal.

Bmκ
≅ B′m′λ

, Bmκ
∞ = B′

m′λ
∞

The maps F�, for � > λ, are the chain homotopy equivalences induced by this braid
isotopy while keeping the ‘later’ crossings B′

m′λ
m�

fixed. Since the system maps of
Proposition 4.7 beyond this point rely only on resolutions of color-pure braids within
B′

m′λ
m′

�
and Bmκ

mk
, our maps F� trivially commute with the system maps.

Furthermore, because each of these F� are chain homotopy equivalences, we have
∣F�∣h = ∞ and f ′� ∼ F−1

�−1 fk F� so that {CN(B′m′
�
), f ′�} is Cauchy and we are done via

Proposition 2.7. (The maps F� for � ≤ λ are irrelevant and can be taken to be projection
maps to the identity B0 via Proposition 4.3, trivially commuting with all system
maps.) ∎

Thus for a positive semi-infinite color-pure braid B̃(γ), we have a well-defined
inverse system up to maps F� connecting any two such systems arising from different
(positive) words representing B̃(γ). If any such word provides a Cauchy inverse
system, we have a well-defined limiting system CN(B̃(γ)) up to chain homotopy
equivalence. The requirement that we consider only positive representative words
is only a crutch for the moment; we will see in Section 5.1 that allowing words
with negative crossings produces degree shifts (as is to be expected; we have already
remarked upon this fact for Reidemeister II moves in our normalization) but does not
change the nature of our results.

4.3 The Infinite Full Twist

Ultimately, we will use Proposition 2.7 to compare our Cauchy inverse systems to a
well understood Cauchy inverse system coming from studying the infinite full twist
which we now discuss.

Fix n ∈ N. We begin by noting that a single full twist F is a positive pure braid
(and thus is color-pure with respect to any coloring γ), so that the semi-infinite braid
word F∞ ∶= FFF⋯ is color-pure with respect to any γ via the sequence of partial
braid words defined by (F∞)mk ∶= Fk . We can therefore speak of the colored infinite
full twist F∞(γ). In [14], Rozansky proved that the standard (uncolored, sl2) Khovanov
complex of the infinite full twist was a well-defined complex and that it categorified
the Jones–Wenzl projector. We now state the analogous result in colored Khovanov–
Rozansky homology due to Cautis.
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Theorem 4.11 (Cautis [4]) Let F(γ) ∈Bn denote the positive full twist braid on n
strands colored by γ. Then, taking all complexes over the ground ring C,

lim
k→∞

CN (Fk
(γ))

is a well-defined idempotent chain complex categorifying a highest weight projector

pn ,(γ) ∶
n
⊗
i=1

(
γ i

⋀(CN
q )) →

n
⊗
i=1

(
γ i

⋀(CN
q ))

factoring through the unique highest weight subrepresentation of ⊗n
i=1(⋀γ i (CN

q )) corre-
sponding to the sum of the weights indicated by the individual colors.

In this text, we will write Pn ,(γ) ∶= limk→∞ CN (Fk
(γ)) for Cautis’ limiting complex

for the sake of brevity.

Remark 4.12 Strictly speaking, Theorem 4.11 is proved for Rickard complexes in the
categorification of Uq(slN). However this category is equivalent to NFoam and thus
Cautis’ theorem can be viewed as a result for complexes associated to full twist braids
in K(NFoam) (See [4] and [10] for more details).

As indicated above, Cautis’ proof assumes that the ground ring is actually the field
C. Furthermore, Cautis’ complex is based on taking the inverse system built from the
sequence of complete full twists, which may not necessarily be the maximal purity
sequence for the semi-infinite colored braid F∞(γ). In the theorem below we will prove
the existence of this limiting complex over any ground ring using the maximal purity
sequence for the given coloring γ, and then Proposition 4.7 will show that our maximal
purity sequence version recovers Pn ,(γ) in the case that the ground ring was C. The
proof of this theorem provides a good warm-up for the proof of Theorem 1.2 to come
afterwards.

Theorem 4.13 Fix a coloring γ and let p1 < p2 < ⋯ denote the maximal purity sequence
for the colored infinite full twist A ∶= F∞(γ). Then the corresponding inverse system
{CN (Apk), fk} is Cauchy with limiting complex denoted

Pn ,(γ) ∶= CN (A∞).

In particular, when the ground ring is C, this limiting complex is chain homotopy
equivalent to the complex of Cautis in Theorem 4.11, justifying the notation.

Proof By definition, we must show that the homological orders of the maps ∣ fk ∣h
grow infinite as k →∞.

Fix k > 0. As in the proof of Proposition 4.7, we apply Proposition 4.3 to the (color-
pure) partial sub-braid A

pk
pk+1 . Then fk is defined as a quotient map on the correspond-

ing cone (we will omit the notations CN (⋅) as usual in the visual presentations):
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Cone

⎛
⎜⎜⎜⎜
⎝

Apk

I �→
Apk

X

⎞
⎟⎟⎟⎟
⎠

fk�→
Apk

I = Apk .

As such, we have Cone( fk) ≃ CN (Apk) ⊗X and since X is a direct summand of a
complex C whose terms satisfy the properties of Proposition 4.3, Cone( fk) is likewise
chain homotopy equivalent to a direct summand of the complex CN (Apk) ⊗C.

We now expand the complex CN (Apk) ⊗C as a multicone along C as expressed
visually below:

Apk

C ≃ Mcone
δx ,δy∈C

⎛
⎜⎜⎜⎜
⎝

Apk

δx
�→

Apk

δy

⎞
⎟⎟⎟⎟
⎠

.

From here, we consider terms Apk ⋅ δx within this multicone. First of all, since A =
FF⋯ we must have

Apk =
F�

α

for some � ≥ 0 and some color-pure braid α. Note that we must have �→∞ as
k →∞. Meanwhile, Proposition 4.3 shows that δx has an intermediate coloring γx
with ∣γx ∣c ≤ ∣γ∣c − 1. We use this fact to write δx as a concatenation at this intermediate
coloring:

δx

γ

γ =
δ top

x

δbot
x

γ

γx

γ

where the colorings γ and γx are indicated at various points of the diagram. Thus, our
multicone for CN (Apk) ⊗C is comprised entirely of complexes of the form

F�

α

δ top
x

δbot
x

γ

γ

γx

γ

.

Now we use the fact, described in Remark 3.17 of [1], that the web-braid diagram
α ⋅ δ top

x commutes with the full twists via a braid-like isotopy that ‘pulls rungs through
the interior of the torus’ as illustrated for a single rung in Figure 11 (pulling through α
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Figure 11: An illustration of pulling a rung through a full twistF via passing through the interior
of the torus defining F. Since the full twist is central in the braid group, we conclude that any
web-braid diagram commutes with F.

is merely restating the well-known fact that the full twist is central in the braid group).
Thus we have

F�

α

δ top
x

δbot
x

γ

γ

γx

γ

≅

α

δ top
x

F�

δbot
x

γ

γ

γx

γx

γ

This isotopy produces a homological shift tx according to Proposition 3.1 that can
be estimated with the help of Proposition 3.3. Since all of the crossings in the web-braid
remain colored the same except those within the full twist, we have

tx = ∑
τ∈F�

(γ)

min(τ) − ∑
χ∈F�

(γx )

min(χ)

= 2�(∣γ∣c − ∣γx ∣c)
≥ 2�.
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As such, every complex within the multicone expansion for CN(Apk) ⊗C can
be replaced (up to chain homotopy equivalence, via Proposition 2.10) by one of
the form htx CN(α ⋅ δ top

x ⋅ F� ⋅ δbot
x ), with minimum nonzero homological degree

bounded below by tx (all crossings in the web-braid diagram are positive). Thus any
diagram ε coming from such a complex within our multicone for CN(Apk) ⊗C has
overall homological degree estimated with the help of Equation (2):

h(ε) ≥ hC(δx) + tx ≥ 2�,

where we have used Proposition 4.3 to ensure that hC(δx) ≥ 0. As such, our complex
CN(Apk) ⊗C is chain homotopy equivalent to one supported in homological degrees
greater than or equal to 2�. Then since Cone( fk) ≃ CN(Apk) ⊗X is a direct summand
of this complex, we can conclude that

∣ fk ∣h ≥ 2�

and as mentioned above, �→∞ as k →∞. This completes the proof that the inverse
system {CN(Apk), fk} is Cauchy.

In the case when the ground ring is C, Cautis’ inverse system amounts to taking
the limit using a subsequence of the maximal purity sequence for the infinite twist,
and so Proposition 4.7 shows that our limiting complex is chain homotopy equivalent
to his. ∎

4.4 Color-Complete Semi-Infinite Braid Words

Informally, a color-pure semi-infinite braid word B is called color-complete if one
could arrive at the infinite full twist F∞ by deleting some color-pure braid words from
the infinite word B. In order to make this notion more precise, we need to establish
some notation.

Definition 4.14 Let B = σi1 σi2⋯ denote a positive semi-infinite braid word that is
color-pure with respect to γ. Given a < b, the notation B/Ba

b will indicate the positive
semi-infinite braid word

B/Ba
b ∶= σi1 σi2⋯σia σib+1 σib+2⋯

derived fromB by deleting the partial sub-braidBa
b . Similarly, we will use the notation

B/ (Ba1
b1

,Ba2
b2

. . . ) to denote the word derived from B by deleting multiple (possibly
infinitely many) partial sub-braids. See Figure 12 for a visual illustration.

Lemma 4.15 If B is a positive semi-infinite braid word that is color-pure with respect
to γ, and the partial sub-braid Ba

b is color-pure with respect to γ(a), then B/Ba
b is also

a positive semi-infinite braid word that is color-pure with respect to γ.

Proof Deleting a color-pure sub-braid within an infinite braid word does not affect
the colorings either before or after it. However, the maximal purity sequence may be
shifted beyond the point where Ba

b was deleted. See Figure 12. Details are left to the
reader. ∎

https://doi.org/10.4153/S0008414X20000437 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000437


Khovanov–Rozansky homology for infinite multicolored braids 1265

Figure 12: A partial braid B� expanded as the product of several partial sub-braids along a
sequence 0 < a < b < ⋯ < e < �. If it so happens that Ba

b is color-pure with respect to γ(a), so
that γ(a) = γ(b), then we can also define the (still color-pure) semi-infinite braid word B/Ba

b
by deleting Ba

b from B.

Definition 4.16 A positive color-pure semi-infinite braid word B(γ) is called color-
complete if there exists a (finite or infinite) sequence of natural numbers (occurring in
pairs a i , b i )

a1 < b1 < a2 < b2 < ⋯

such that the following conditions hold.
• Each partial sub-braid Ba i

b i
is color-pure with respect to γ(a i) (that is, γ(a i) =

γ(b i)).
• The semi-infinite braid word B/ (Ba1

b1
,Ba2

b2
. . . ) is (braid move equivalent to) the

infinite full twist F∞.
This definition is preserved under finitely many allowable braid moves, and so we

can consider a positive color-pure semi-infinite braid B̃(γ) to be color-complete if any
positive word representing it is color-complete.

4.5 The Main Result for Braid Words

With the language of the preceding sections in place, we can state and prove our main
result on the level of braid words.

Theorem 4.17 Fix n ∈ N, and let γ = (γ1 , . . . , γn) be any coloring in {0, 1, . . . , N}n .
Let B(γ) be any color-complete positive semi-infinite braid word with maximal purity
sequence m1 < m2 < ⋯. Then the corresponding inverse system {CN (Bm�

), g�} coming
from Proposition 4.7 is Cauchy, with limiting complex CN (B(γ)) satisfying

CN (B(γ)) ≃ Pn ,(γ)

where Pn ,(γ) is the complex for the infinite full twist defined in Theorem 4.13.

We will prove this theorem using Proposition 2.7. Having fixed γ, the infinite
twist A ∶= F∞(γ) has some maximal purity sequence p1 < p2 < ⋯ giving rise to a
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Cauchy inverse system {CN (Apk), fk} such that the limiting complex CN (A) sat-
isfies CN (A) ≃ Pn ,(γ) (Theorem 4.13). In order to use Proposition 2.7, we must first
construct ‘horizontal’ maps F� ∶ CN (Bm�

) → CN (Apk) which commute with the
system maps, and then we will need to show that ∣F�∣h →∞ as �→∞. We split these
tasks into subsections for organizational clarity below.

4.5.1 Constructing the Maps F� ∶ CN (Bm�
) → CN (Apk)

The color-completeness of B implies that, if we fix some � ∈ N, the partial braid word
Bm�

contains some color-pure partial sub-braids Ba1
b1

,Ba2
b2

, . . .Bar
br

such that

(Bm�
)/ ((Bm�

)a1
b1
(Bm�

)ar
br
) ≅ Apk ,

where k = z(�) for some nondecreasing function z ∶ N→ N such that z(�) → ∞ as
�→∞ (this will be precisely the indexing function required by Proposition 2.7). The
index r depends on � as well, but this dependence will be irrelevant moving forward.
In an attempt to mimic the proof of Proposition 4.3, we will use the notation

β1 ∶= Ba1
b1

, β2 ∶= Ba2
b2

, . . . βr ∶= Bar
br

which allows the following visual presentation of Bm�
:

Bm� ≅

A0
q1

β1

A
q1
q2

β2

⋮

βr

A
qr
pk

where the indices q i depend on the exact word B, but will not concern us. The
important point is that Bm�

can be presented in a piecewise fashion as indicated.
Now Proposition 4.3 ensures that, for each i = 1, . . . , r, we have

CN (β i) ≃ Cone(I → Xi)

where Xi is a direct summand of a complex Ci with specified properties. We begin by
applying this fact to each of the β i in Bm�

in an iterative fashion. If we follow along the
reasoning presented in the proof of Proposition 4.3, we arrive at the following iterated
cone presentation for CN (Bm�

) (we have omitted the word ‘cone’ from the notation
to avoid clutter):
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Bm� ≃

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋯

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A0
pk →

A0
qr

Xr

A
qr
pk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

→

A0
qr−1

Xr−1

A
qr−1
qr

βr

A
qr
pk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⋯ →

A0
q2

X2

A
q2
q3

β3

⋮

βr

A
qr
pk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

→

A0
q1

X1

A
q1
q2

β2

⋮

βr

A
qr
pk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We again collapse this into a single cone

CN (Bm�
) ≃ Cone(CN (Apk) → X̃)(8)

where X̃ ∶= ⊕r
i=1 X̃i is a direct summand of the complex C̃ ∶= ⊕r

i=1 C̃i with the defini-
tions of X̃i and C̃i illustrated below:

X̃i ∶=

A0
q i

Xi

A
q i
q i+1

β i+1

⋮

βr

A
qr
pk

, C̃i ∶=

A0
q i

Ci

A
q i
q i+1

β i+1

⋮

βr

A
qr
pk

.

This allows us to define F� ∶ CN (Bm�
) → CN (Apk) via the quotient map implied

by Equation (8). Since all of the system maps are built as similar quotient maps
corresponding to deleting various partial sub-braids, it is clear that F� commutes with
the system maps fk , g� as required.

4.5.2 Estimating ∣F�∣h With a Lower Bound b(�)

In order to estimate ∣F�∣h, we need to understand Cone(F�) ≃ X̃. Mimicking the proof
of Theorem 4.13, we consider the complex C̃ instead. We examine a single summand
C̃i of C̃ by expanding it as a large iterated multicone along each C̃N (β j) for i < j ≤ r
(recall the notation C̃N (⋅) for the simplified cone complex of Proposition 4.3). We
illustrate the first two steps in Figure 13.

In the end we may collapse the resulting iterated multicone into one large multicone
incorporating all of the possible complexes. In order to write this cleanly, we introduce
some notation.
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Figure 13: The first two steps expanding Ci as an iterated multicone. The vertical ellipses here
are meant to indicate that the remainder of the diagram below the lowest δ matches the diagram
defining C̃i below the corresponding point. The next step would be to expand all four of the
terms visualized in the bottom row along ̃CN (β i+3), and we would continue in this fashion
until there are no β j left.

Definition 4.18 We will write C̃N (β) as a shorthand to indicate the formal tensor
product ⊗r

j=i+1 C̃N (β j), with objects δ ∶= δ i+1 ⊗⋯⊗ δr . To the formal object δ we
associate a diagram also denoted δ formed by placing each δ j in place of β j in the
diagram for C̃i as illustrated below

δ = δ i+1 ⊗⋯⊗ δr 7⇒ δ ∶=

A0
q i

Ci

A
q i
q i+1

δ i+1

A
q i+1
q i+2

⋮

δr

A
qr
pk

, for diagrams δ j ∈ C̃N (β j) for i < j ≤ r.
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Maps between two formal objects δx , δy ∈ C̃N (β) then induce maps between the
diagram complexes CN (δx), CN (δy) formed by stitching together cobordisms in the
usual way.

With this notation we can collapse our iterated multicone into a single multicone

C̃i ≃ Mcone
δx ,δy∈C̃N(β)

(CN (δx) �→ CN (δy)) ,(9)

for which we have the formula

hC̃N(β)(δ) =
r
∑

j=i+1
hC̃N(β j)

(δ j).(10)

From here, we analyze the single complexes within this multicone (9) in a manner
very similar to the proof of Theorem 3.3 in [1]. We begin by fixing such a complex
CN (δ), and we define two quantities based on δ. First, we have

c1(δ) ∶= ∣{ j ∈ {i + 1, . . . , r} ∣ δ j ∈ X j}∣.

Since any δ j ∈ X j must have hC̃N(β j)
(δ j) > 0, Equation (10) quickly produces the

bound

hC̃N(β)(δ) ≥ c1(δ).(11)

Second, we define

c2(δ) ∶= largest number of uninterrupted full twists in the diagram δ,

and we make the following claim.

Lemma 4.19 Any complex CN (δ) of the form indicated above is chain homotopy
equivalent to a complex Y(δ) having no terms in homological degree less than 2c2(δ).

Proof Indeed if we expand CN (δ) as its own multicone along the complex Ci , we
see (denoting the terms in Ci by δ i parallel to the notation for δ j ∈ C̃N (β j))

CN (δ) ≃ Mcone
δ i ,x ,δ i ,y∈Ci

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A0
q i

δ i ,x

A
q i
q i+1

δ i+1

⋮

A
qr
pk

→

A0
q i

δ i , y

A
q i
q i+1

δ i+1

⋮

A
qr
pk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Recall from Proposition 4.3 that any δ i ,x ∈ Ci is a ladder diagram containing an
intermediate coloring γx with ∣γx ∣c < ∣γ(q i)∣c, so that we may split δ i ,x just as in the
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proof of Theorem 4.13. We also have c2(δ) full twists available somewhere in the
diagram (independently of the choice of δ i ,x ) which commute with any and all web-
braids (recall Figure 11), and so we can perform the following moves on any single
complex within the multicone:

CN

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A0
q i

δ top
i ,x

δbot
i ,x

α

Fc2(δ)

α′

γ

γ(q i)

γx

γ(q i)

γ̂

γ̂

γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≃ htx CN

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A0
q i

δ top
i ,x

Fc2(δ)

δbot
i ,x

α

α′

γ

γ(q i)

γx

γx

γ(q i)

γ̂

γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.(12)

In these diagrams, α and α′ are web-braid diagrams consisting of various partial sub-
braids Aa

b together with various δ j depending on the precise format of our original
diagram δ. The various intermediate colorings are also indicated. Since all of the δ j
came from color-pure diagrams β j , and sub-braids can permute colors but not change
them, we have some intermediate coloring γ̂ between α and α′ that is a permutation
of γ. In particular, ∣γ̂∣c = ∣γ∣c > ∣γx ∣c. Now when we commute the full twists past the
other parts of the diagram, we leave all colors on all crossings unchanged except for the
crossings of the full twists, and so we have an overall homological shift of tx ≥ 2c2(δ)
again just as in the proof of Theorem 4.13.

From here, Proposition 2.10 ensures that our multicone for CN (δ) is equivalent
to another multicone Y(δ) made up entirely of complexes of the form on the right-
hand side of Equation (12). Using the formula (2) for homological grading of terms
in a multicone, together with the fact that hCi (δ i) ≥ 0 for any δ i ∈ Ci (Proposition
4.3), we can conclude that Y(δ) indeed has no terms in homological degree below
2c2(δ). ∎

We now apply Proposition 2.10 to the multicone (9) to replace the complexes
CN (δ) with the corresponding complexes Y(δ) from Lemma 4.19:

C̃i ≃ Mcone
δx ,δy∈C̃N(β)

(Y(δx) �→ Y(δy)) .

Any nonzero term in our multicone for C̃i must be a diagram of the form εδ coming
from some Y(δ) in the multicone. The homological grading of εδ is computed via
Equation (2):

hC̃i
(εδ) = hC̃N(β)(δ) + hY(δ)(εδ).

We then invoke the bound of Equation (11) together with our homological condition
on the complex Y(δ) (Lemma 4.19) to conclude that

hC̃i
(εδ) ≥ c1(δ) + 2c2(δ)
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and in turn that the complex C̃ = ⊕r
i=1 Ci is supported in homological gradings greater

than or equal to the bound b(�) defined as

b(�) ∶= min
i∈{1,. . . ,r}

( min
δ∈C̃N(β) in Ci

(c1(δ) + 2c2(δ))) .(13)

Since X ≃ Cone(F�) is a direct summand of C, we can conclude the same about
Cone(F�) giving us ∣F�∣h ≥ b(�).

4.5.3 Finishing the Argument

Proof of Theorem 4.17 We have two inverse systems {CN (Apk), fk} and
{CN (Bm�

), g�} together with maps F� between them creating the commuting dia-
gram of Figure 2 (Section 4.5.1). We have also produced a lower bound b(�) (13) on
the homological orders ∣F�∣h (Section 4.5.2).

Just as in the proof of Theorem 3.3 in [1], the reader can quickly verify that the color-
completeness of B ensures that this bound must grow infinite as �→∞. Roughly
speaking, as � grows, so too does k (this is color-completeness), and thus we have
an ever-growing number of full twists ‘available’ in any diagram δ involved in any C̃i .
If the full twists are largely uninterrupted, c2 must be large by definition; otherwise
we have many nonidentity δ j diagrams ‘in the way’, and so c1 must be large. In either
case, their sum which defines b(�) is growing without bound as � grows.

A similar (and simpler) argument shows that the system {CN (Bm�
), g�} is Cauchy,

and so by Proposition 2.7 we are done. ∎

Corollary 4.20 If B̃(γ) is a positive color-complete semi-infinite braid, then there is a
well-defined limiting system CN (B̃(γ)) ≃ Pn ,(γ) up to chain homotopy equivalence built
from the inverse system arising from any positive word representing B̃(γ).

Proof Combine Theorem 4.17 and Proposition 4.10. ∎

5 Further Corollaries and General Results

In this section we record some corollaries of our work that explore a variety of
situations. We begin with a quick corollary that shows how our limiting complexes
behave similarly to categorified highest weight projectors.

Corollary 5.1 If β is a positive braid color-pure with respect to some coloring γ, then

CN (β) ⊗ Pn ,(γ) ≃ Pn ,(γ) ⊗ CN (CN (β)) ≃ Pn ,(γ).

Proof Since β is positive and color-pure with respect to γ, we can view the con-
catenation β ⋅ F∞ as a single positive semi-infinite color-complete braid word with
limiting complex Pn ,(γ) by Theorem 4.17. The statement of the corollary then follows
from Lemma 2.6. ∎
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Corollary 5.2 If B(γ) is a positive semi-infinite color-complete braid word with maxi-
mal purity sequence m1 < m2 < ⋯, then CN (B) ≃ CN (Bm i ) ⊗ CN (Bm i

∞ ) ≃ CN (Bm i
∞ )

for any i. That is to say, the complex for B(γ) is independent of the ‘starting point’ for the
braid word, provided that this starting point is colored by γ.

5.1 Negative Crossings

In order to deal with semi-infinite braid words involving negative crossings, we
require the following proposition that can be seen as a weak generalization of
Proposition 4.3.

Proposition 5.3 Given a color-pure braid β(γ) on n strands, let

t− ∶= ∑
τ−∈T1

min(τ−)(14)

denote the sum of the minimum colors at each negative crossing τ− in β. Then the complex
A ∶= CN (β(γ)) is chain homotopy equivalent to a multicone satisfying the following
properties.
• There is a single term corresponding to the identity diagram I, and hA(I) = t−.
• Every other term δx ∈ A contains some intermediate coloring γx with ∣γx ∣c < ∣γ∣c.

Proof This proposition is proved in the same general fashion as Proposition 4.3, but
is much simpler because we are not attempting to isolate the identity diagram. As such
we will be brief.

We begin by expanding A as an iterated multicone along each of the uni-colored
crossings as in the logic of Figure 6. The identity resolutions of such crossings sit in
right-most homological degree for negative crossings, and so we have the uni-colored
negative crossings contributing their part to t− (and all other resolutions contain
intermediate colorings as required).

We then have a corresponding version of Lemma 4.2 stating that a color-pure
braid with no uni-colored crossings is braid isotopic to one having a positive clasp,
a negative clasp, or a Reidemeister II move available. A Reidemeister II move can be
applied, creating a shift by the minimum of the two colors as necessary. Clasps can be
expanded as a tensor product of two copies of Equation (4) or (5); in either case, we
have a trapezoid (in either far left or far right homological degree) that can be replaced
by a sum of terms including the identity diagram just as in the proof of Lemma 3.6,
except this time we do not bother with Gaussian eliminations. Instead, we simply note
that all of the non identity diagrams, whether in the same homological degree or not,
have intermediate colorings as required. The details of this expansion and the resulting
homological placement of the identity diagram are left to the reader. ∎

Now given a color-pure semi-infinite braid word B(γ) with only finitely many
negative crossings, there is some minimal r such that Br is color-pure and Br

∞ is both
color-pure and positive. ThusBr

∞ has a maximal purity sequence m0 < m1 < ⋯, which
we can use to define an inverse system {CN (Bmk+r), fk} for B.
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Corollary 5.4 If B(γ) is a color-complete semi-infinite braid with only finitely many
crossings, then the inverse system assigned to B has an inverse limit CN (B(γ))
satisfying

CN (B(γ)) ≃ ht−qs Pn ,(γ)

where t− is defined as in Equation (14) and s is some other shift depending on the negative
crossings present in B.

Proof Let r be as above; B(γ) being color-complete ensures that (Br
∞)(γ) is color-

complete and positive. Combining Lemma 2.6 and Theorem 4.17 we have

CN (B) ≃ CN (Br) ⊗ CN (Br
∞) ≃ CN (Br) ⊗ Pn ,(γ) ≃ lim CN (Br ⋅ Fk)

where we have used the subsequence of complete full twists rather than the maximal
purity sequence for simplicity.

Now we use Proposition 5.3 to expand each CN (Br ⋅ Fk) as a multicone along
CN (Br) ≃ A. Every nonidentity term in A has intermediate colorings of lesser color-
size than γ, which means that each such term gets shifted in homological degree
by some amount that grows with k just as in the proof of Theorem 4.13. Thus each
CN (Br ⋅ Fk) is chain homotopy equivalent to a complex with Fk in homological
degree t−, and other terms in higher homological degrees (once k is large enough).
This enables one to build quotient maps F� from our inverse system to the system for
F∞, whose cones live in larger and larger homological orders, allowing Proposition
2.7 to finish the argument as usual. The details are left to the reader. ∎

Corollary 5.5 Given a positive semi-infinite color-complete braid B̃(γ) on n strands,
the corresponding limiting complex CN (B̃(γ)) is well-defined up to a degree shift
that depends on the negative crossings included in the choice of word representing B̃.
Equivalently, a Reidemeister II move on a semi-infinite braid induces the same degree
shift on the limiting complex that it would induce on a finite braid (this shift depends on
the colorings of the strands).

Proof This follows from Corollary 5.4 since we allow only finitely many Reidemeis-
ter moves. ∎

5.2 Horizontal Splittings

Corollaries 5.2 and 5.4 use finite ‘vertical’ composition of color-pure braids. We also
have a result utilizing ‘horizontal’ composition. Rather than set up special notation just
for this case, we present a simplistic visual version of the relevant result. The reader
can consult Corollary 3.8 in [1] for a more detailed statement in the uni-colored case.

Corollary 5.6 Suppose B(γ) is a positive color-pure semi-infinite braid word that can
be decomposed as
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B(γ) =

γ

B0
r

γ γ̂1

B̂1

γ̂2

B̂2 ⋯

γ̂k

B̂k

for some finite r ≥ 0 such that
• B0

r is color-pure with respect to γ, and
• each semi-infinite B̂i (on n i < n strands) is color-complete with respect to the coloring

γ̂ i obtained from partitioning γ as indicated.
Then there is a well-defined limiting complex CN (B(γ)) satisfying

CN (B(γ)) ≃
CN (B0

r )

Pn1 ,(γ̂1) Pn2 ,(γ̂2) ⋯ Pnk ,(γ̂k)
.

Proof As in Corollary 5.4 we use our value r to define CN (B(γ)) ∶= CN (Br) ⊗
CN (Br

∞). We then appeal to Lemma 2.6 and the ‘horizontal’ concatenation properties
of K(NFoam) to complete the proof. See the proof of Corollary 3.8 in [1] for slightly
more detail. ∎

5.3 Bi-Infinite Braids

For semi-infinite braids it was easy to consider a given coloring γ as applying to the
strands at the ‘start’ of the braid B. In order to write down a well-defined limiting
complex CN (B) then, it was required that the coloring at the ‘end’ of the braid B was
also fixed. Demanding that the ‘start’ and ‘end’ match naturally leads to the definition
of color-purity forB, as motivated by the purity (and hence color-purity) of the powers
of the full twist.

If we wish to generalize to bi-infinite braids, we will need to alter our approach
slightly.

Definition 5.7 A bi-infinite braid word is a map B ∶ Z→ Gn ; the word is called
positive if no inverse generators are used (see Definition 4.4). Partial words Ba

b and
truncated words B−∞a ,Bb

∞ are defined in the obvious way. We say B is colored from
γ to γ′, and denote it B(γ)(γ′), if there exist two integers �0 ≤ m0, called starting points,
such that the following properties hold.

• The partial word B�0
m0

can be colored as (B�0
m0
)(γ)(γ′), and neither γ nor γ′ exist as

intermediate colorings in B�0
m0

.
• The truncated semi-infinite words B−∞�0

and Bm0
∞ are color-pure with respect to γ

and γ′, respectively. (Here color-purity of B−∞�0
is defined in the obvious way.)
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In this case we have a function γ(⋅) ∶ Z→ {1, . . . , N}n of induced colorings
between crossings as before, with two maximal purity sequences �0 > �1 > ⋯ and
m0 < m1 < ⋯ satisfying γ(�i) = γ and γ(m i) = γ′ for all i.

Thus we visualize a colored bi-infinite braid word as having some central ‘starting
word’, and ‘growing outwards’ from there:

B

γ

γ′ =

γ
B−∞�0

γ
B�0

m0
γ′

Bm0
∞

γ′

.

Now bi-infinite braids should be considered unchanged by finitely many Reide-
meister moves as before, but also by shifts in the function B since there is no well-
defined ‘starting point’ for the braid.

Definition 5.8 Given a bi-infinite braid word B and a finite s ∈ Z, the shifted braid
word B[s] ∶ Z→ Gn is the map B[s](i) ∶= B(i − s). Then a bi-infinite braid B̃ is an
equivalence class of bi-infinite braid words up to finitely many braid moves and shifts,
and as before we consider B̃ positive if some word representing it is positive, and we
can color B̃ if we can color one (and thus all) of its representatives.

It should be clear that a colored positive bi-infinite braid B gives rise to inverse
systems for B−∞�0

and Bm0
∞ , which we can concatenate with B�0

m0
to define an inverse

system for B. Such a system would appear to depend on the choice of starting points
�0 < m0 in general. Still, this viewpoint makes it clear what color-completeness should
mean.

Definition 5.9 A positive colored bi-infinite braid wordB
(γ)
(γ′) is called color-complete

if, for some (and thus any) choice of starting points �0 < m0 satisfying the coloring
definition, both semi-infinite braid words B−∞�0

and Bm0
∞ are color-complete with

respect to γ and γ′, respectively. As usual, the positive braid B̃
(γ)
(γ′) is color-complete if

some (and thus any) representative word for B̃ is.

The following corollary provides a precise version of Theorem 1.3.

Corollary 5.10 To a positive color-complete bi-infinite braid word B
(γ)
(γ′) we may assign

an inverse system with limiting complex

CN (B(γ)(γ′)) ≃ Pn ,(γ) ⊗ CN (B�0
m0
) ⊗ Pn ,(γ′)

that is independent of the choice of starting points �0 < m0 up to chain homotopy
equivalence. Thus we may assign a corresponding limiting complex to any positive color-
complete bi-infinite braid that is well-defined up to degree shifts allowing for Reidemeister
II moves creating (or deleting) finitely many negative crossings in the representative word.
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Proof For a fixed choice of starting points �0 < m0 it is clear from Theorem 4.17
and Lemma 2.6 that our assumptions ensure that the inverse system has limiting
complex as described. If we choose different starting points �′0 < m′0, we partition B

into separate pieces using all four starting points. Depending on the relative positions
of the starting points, we will then have a color-pure finite braid available which can
be absorbed into one of the limiting complexes on either end via Corollary 5.1. One
case is illustrated below, with the CN (⋅) notation omitted:

γ

Pn ,(γ)
γ

B�0
m0

γ′

Pn ,(γ′)
γ′

≃

γ

Pn ,(γ)
γ

B�0
m0

γ′

Bm0
�′0

γ

B
�′0
m′0

γ′

Pn ,(γ′)
γ′

≃

γ

Pn ,(γ)
γ

B
�′0
m′0

γ′

Pn ,(γ′)
γ′

.

The equivalence on the left is viewing Bm0
m′0

as color-pure with respect to γ′, while the
equivalence on the right is viewing B�0

�′0
as color-pure with respect to γ.

With finitely many negative crossings in a word B, we use a suitably modified
version of Corollary 5.4 to get our result. Finite shifts are also easy to handle by shifting
the starting points as well. Details are left to the reader. ∎
Remark 5.11 We can apply similar (and simpler) reasoning to assign limiting com-
plexes to positive semi-infinite braid words B colored from γ to γ′ (that is to say,
γ(0) = γ and γ(a) = γ′ for infinitely many a). If we let r be the smallest index for
which γ(r) = γ′, then we can decompose B = B0

rB
r
∞ and conclude

CN (B(γ)(γ′)) ≃ CN (B0
r ) ⊗ Pn ,(γ′) .

We leave it to the reader to fill in the details, including the passage to positive semi-
infinite braids where a Reidemeister move may change the necessary value of r, but
the limiting complex will remain the same up to chain homotopy equivalence (and
degree shifts for Reidemeister II moves) thanks to Lemma 2.6 and Corollary 5.1.

Remark 5.12 Definition 5.7 and Corollary 5.10 view bi-infinite braids as built ‘out-
wards’. This seems the most natural definition to us, or at least the most amenable to
our methods in this paper. One could also imagine an infinite braid built ‘inwards’,
perhaps by defining B as a ‘limit’ of a sequence of finite words where Bi+1 is built by
inserting various braids throughout Bi . As long as such insertions are color-pure, this
would preserve the overall coloring leading to a well-defined inverse system and the
potential for a limiting complex as above. However, it is possible to have several non-
color-pure insertions that, when taken together, maintain the colors at the endpoints.
It seems unclear whether such a process could also produce an inverse system of maps
leading to a well-defined limiting complex.
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