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A DIVISOR PROBLEM FOR 
VALUES OF POLYNOMIALS 

ARMEL MERCIER AND WERNER GEORG NOWAK 

ABSTRACT. In this article we investigate the average order of the arithmetical func­
tion 

d\n) = #{(u,v) e N2 : pi(u)p2(v) = n}, 

wherePi(t),p2(t) are polynomials in Z [t], of equal degree, positive and increasing for 
t > 1. Using the modern method for the estimation of exponential sums ("Discrete 
Hardy-Littlewood Method"), we establish an asymptotic result which is as sharp as the 
best one known for the classical divisor problem. 

RÉSUMÉ. Dans cet article, on étudie l'ordre moyen de la fonction arithmétique 

d\n) = #{(n,v) € N2 : Pl(u)p2(v) = n}, 

oùpi(t),p2(t) sont des polynômes dans Z [/], de degrés égaux, qui sont positifs et crois­
sants pour t > 1. En utilisant la méthode moderne pour l'estimation de sommes ex­
ponentielles ("méthode discrète de Hardy-Littlewood"), on obtient un comportement 
asymptotique, aussi précis que le meilleur résultat connu, concernant le problème clas­
sique des diviseurs. 

1. Introduction. The classical Dirichlet divisor problem concerns the number of 
ways to write a positive integer n as a product of two natural numbers u\9 U2. (For its 
history and the present "state of art", see the recent textbooks of Fricker [1] and Krâtzel 
[4].) 

It seems natural to consider variants of this problem where one or both of u\, 112 are 
subject to certain restrictions. For instance, the case that u\, W2 (or at least one of them) 
lie in a given arithmetic progression has been discussed at length in the recent literature: 
See [7], [8], [9], [10], and [11]. 

In this paper, we consider the situation that u\, ui are values of given polynomials of 
equal degree (with integer coefficients), corresponding to positive integer arguments. To 
be precise, let/?i, /?2 be two polynomials, both of degree k ^ 1, with integer coefficients, 

ps(t) = ^)tk
 + ...+a\s)t + a^ (af ± 0) 
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DIVISOR PROBLEM 109 

(s = 1 or 2, throughout the paper), and suppose that the corresponding polynomial func­
tions are positive and strictly monotonie increasing on [1, oo). Denote by d*(n) the num­
ber of ways to write the natural number n in the form/?i(w)/?2(v) with positive integers 
w, v, i.e. 

d\n) = d*pup2(n) = #{(II,V) G N2 : Pl(u)p2(v) = n} . 

In this article we study the "average order" of this arithmetic function d*(n), i.e. we 
consider the summatory function 

D\x) = YJd\n), 
n<x 

where x is a large real variable. It is clear that D*(x) is the number of lattice points (of 
the standard lattice Z2) in the planar domain 

{(w, v) G R2 : u > 0, v > 0, pi(u)p2(v) < x} . 

(Enlightening surveys of the theory of lattice points in large domains may be found in the 
textbooks [1] and [4]. In these monographs, the definitions of the order symbols 0, o, <C, 
and x , which are used in the sequel, can be looked up as well.) We note that, from this 
purely geometric viewpoint, it is possible to drop the requirement that the coefficients 
a\s) be integers. Doing so, it obviously involves no loss of generality to assume that 

as we shall do in what follows. 
The objective of the present paper is a proof of the following asymptotic result. 

THEOREM. For x —* oo, fixed k ^ 1, and fixed coefficients a\s) (s = 1,2, / = 
0, . . . ,k — I), we have 

D*(x) = xxlk\og{xxlk) - Cxxlk + 0(jc^(logjc)S) , 

where 

s=\,2 kJl (Ps(u))Mlk Jl duy(ps(u))l/k/ f 

(\/J(U) = u — [u] — ^ throughout), and the O-constant depends onp\ andp2. 

REMARK. This estimate contains, as a special case, the to date sharpest result for 
the classical divisor problem: See Iwaniec and Mozzochi [3], Huxley [2], and W. Muller 
and Nowak [7]. In these papers a completely new method for the estimation of exponen­
tial sums has been developed ("Discrete Hardy-Littlewood Method") which, for quite a 
number of problems, not only yields improved results but also considerably simplifies 
the treatment. 

This very fact provides some motivation to deal with our present topic just nowadays: 
With the elementary error term 0(xxl2k), our Theorem can be established using only tools 
which were available to Dirichlet already. However, the methods employed in modern 
times (from 1950 on, say) to improve the estimate in the classic divisor problem are 
technically too involved to permit an ("easy") extension to our general situation. 
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2. Preliminaries. 

LEMMA 1. Let qs denote the inverse function ofps, defined on [p5(l), oo), then for w 
sufficiently large we have a series expansion 

oo 

9J(W0 = w1'*+ *#> + £ if V > / \ 
7 = 1 

which may be differentiated termwise up to an arbitrary order. In particular, 

(2.D ^=4 a ^-

PROOF. This is a simple exercise in classic analysis. 

The deduction of our Theorem is based on a simple elementary device ("hyperbola 
method") which gives 

D*M = E ( E fe-X^-r)]) - lq\(yfi)][q2(yfi)] = 
*=1,2 n<qs(yfi) PsW 

(2.2) = X) Ps(x) ~ *s(x)) - \(qi(y/i) + q2(yfi)) ~ [<7i(^)][<?2(v^)] + 0(1) 
5=1,2 

where 

7^)d= E <73-,(~fr), * , « = £ ^ ( ^ ( - f r ) ) . 

3. Estimation of Rs(x): The "Discrete Hardy-Littlewood Method". 

LEMMA 2. Lef M* > 1, Vx > 0, fx(u) a real function with derivatives up to an 
arbitrary order on Mx < u < 2MX. (The subscript x indicates dépendance on a large 
real parameter x.) Suppose that, for some a > 0, and every m E N, 

dm 

(3.1) tim\u) = {-^(Vx w"a))d + o(l)) 

where o(l) refers to x —> oo and is meant uniformly in Mx < u < 2MX (but not neces­
sarily in mG Nj. Suppose furthermore that 

Vx > Ml
x
+a . 

Then it follows that 

E </>(£(«)) « (VxM
l
x~

a)V22Qog(2VxMl-a))A5/22. 
Mx<n^2Mx 

PROOF. This is a suitable special case of the main result in Huxley [2] (refined 
slightly in W. Miiller and Nowak [7]). In our present statement we have only formu­
lated explicitly a sufficient condition for the function/^) on [Mx, 2MX] to admit the use 
of (one-dimensional) exponent pairs. (Cf. Krâtzel [4], p. 52.) 
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We are going to apply this deep estimate to the function 

(3.2) f(u)=q3_s(JL) 
ps(u) 

occuring in Rs(x). Estimating the first terms trivially, we may suppose that 

(3.3) xllAk<^u<^xx'2k 

(cf. Lemma 1), hence 

(3.4) x l / 2 « _ ^ < < J C 3 / 4 > 

Psi") 

We only have to show that, in this range,/(w) satisfies the requirement (3.1) of Lemma 2. 

LEMMA 3. The function f(u) defined in (3.2) satisfies (for every m G N ) 

fm\u) = {\+o(\))—(xl/ku-1), 

as x —» oo, uniformly in xllAk
 C M C J C 1 / 2k 

PROOF. By (3.2) and Lemma 1, we have (dropping the dépendance on s = 1,2 for 
notational simplicity) 

0.5) /(M) = W +*>+|>(—) • 
Now it is clear that 

xp(u)' v u uk/ yu ^2 u 

for x sufficiently large. Similarly, for every y* G N, 

,p(u),j/k _ uJ , ak-x ^ ^ a0,j/k ri , °° K 

Inserting this into (3.5), we get 

/ 1 °° 1 °° U 

/(M) = ̂ (_ + S a _ ) + , 0 + g ¥ _y + 
OO OO j . 

j=lm=\ Xl/k 

By absolute and uniform convergence, these power series permit interchange of the order 
of summation as well as iterated termwise differentiation. Recalling the bounds for w, we 
thus immediately infer the assertion of Lemma 3. 

We are now ready to estimate Rs(x). To this end we split up the range of summation 
by a geometric sequence 

Mf = 2-jqs{y/x) (j = 0 , 1 , . . . , J) 
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with J = J(x) such that A4y) X xxlAk. We may apply Lemma 2 to each interval Ij — 
]J > 1, since the validity of (3.1) is ensured by Lemma 3, with Vx — x ' , 

a = 1. (Furthermore, (h$)lHr < (qs(y/x))2 < xllk = V*.) It follows that 

E ^ ( ^ ( - ^ T ) ) « ^ 7 / m ( l 0 g x ) 4 5 / 2 2 . 
nelj PsW 

Finally we observe that J(x) <C log*, sum over j = 1,. . . , / and estimate the terms 
corresponding to n < MX

J) trivially to arrive at 

(3.6) Rs(x) = 0(x7 /m(log*)6 7 /2 2). 

4. Asymptotic evaluation of Ts(x). 
By the Euler summation formula, 

rqs(Vx) x f~ i~ \ x 

Ts(x) = / q^s(——)du - xjj (qsWx))q3-sWx) + Ô ^ - ^ — T T H 
JI Ps(u) l ps(l) 

(4.1) + / i>(u)--(q3-s(—-))du. 
Ji dux Ps(u) ' 

In view of Lemma 1, 

j-(«^-n)) = -¥lkTJre^i+tib?x-^{Ps(u)yi^P>{u) = 
duK ps(u) ' k (ps(u))l+l/k p[k J 

(4.2) = > J W + 0 ( ^ , 
* (Ps(u))l+l/k 

uniformly for u in the range of integration given in (4.1). The error term here contributes 
only 0(x~xl2k) to the last integral in (4.1). Whereas to the main term in (4.2), observe 
that, for y > 1, 

(4.3) r^u) P'ÀU\/kdu « max | ^ u \ , \ « \ , 

by the second mean-value theorem. Hence, if we define 

1 f°° , , x / > ' » 
0 kh V("))1+1/* 

it follows from (4.1) - (4.3) that 

(4.4) f ( V i V ( « ) 7 M ^ : ) ) à = -Cgy/' + Od), 
Ji duy PsW 

recalling that qs(\/x) x xl/2k. To deal with the first integral in (4.1), we use Lemma 1 in 
the weak form 

9 3 - , ( ^ T ) = xl'k(pMrl,k + b(tS) + 0{x-1'*), 
Ps(u) 
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uniformly for 1 ^ u <C xxllk. This implies 

(4.5) J™» <li-s(~)du = ^kFs(qs(V~x)) + ft<3-^'/" + 0(1) 

with 

(4.6) Fs{y) d= j*(ps(u)Txlkdu (y > 1). 

LEMMA 4. The function Fs(y) defined by (4.6) possesses the asymptotic expansion 
(as y —> ooj 

F,O0 = log? - ^ 5 ) - 7{J)i + 0(\ logy), ' 1 M ^ ^ V 9 

with 

^-rsisai)1"*' '!"=-k.-
PROOF. Observe that 

/ xdef U / 4 - 1 ao\-*/k 1 ^ (5) -/ 

(the last equation being true for M sufficiently large). Hence, for u > 1, 

g(u) = 1 + 7 ( ^ I + 0 ( 1 ) , g'(W) = -7<*>1 +0(1) . 
u ul ul u5 

Applying integration by parts, we thus obtain 

ry J ry 

Fs(y) = J{ ~g(u)du = g(y) logy - J g'(u) log udu = 

= logy + 7 , W - log? + 0(\ logy) - Cf + H - T ^ log« + 0 ( ^ ) ) du 
y y1 h v ul u5 ' 

= logy - 7^1 - Cf + 0 ( 1 logy) '1 * - l T <̂ V 9 

j r 
which proves Lemma 4. 

Appealing to Lemma 1, we see that 

logfe(v^)) = logOc1/2* + b® + O^c"1/2*)) = 

= logOc1/2*) + log(l + fc^V1/2*) + log(l + 0(JC_ 1 /*)) = 

= ±\ogx + b^x-x/2k + 0(x-Vk), 

and 
_ i — = (JCV2* + 0 ( 1 ) r l = x-l/2k + 0 ( j c - l /* } ^ 
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Thus it follows that 

Fs(qs(^)) = ~ log* - Cf + (J#> - 7 { J V 1 / 2 * + 0(x-l'k log*) -

- ^ l o g x - ^ + O C x - ^ l o g x ) 

in view of (2.1) and the definition of 7 ^ in Lemma 4. Inserting this last result into (4.5), 
and going back to (4.4) and (4.1), we finally obtain 

Ts(x) = I j c ^ l o g * - (C?> + Cf - \{ps(\)T
Xly/k+ 

(4.7) +b$-s)xl'2k - V> {qs(y/i))qi-s{yfo + 0(log*). 

Whereas to the last terms in (2.2), we see that 

\{q\{y/x) + ?2(\/*)) + [q\(Vx)][q2(Vx)] = 

- ±(<?i(^) + ?2(>/tf) + tei(v^) - ^toi(v^)) " i)(^2(v^) - 1>(q2(yfi)) -\) = 

= q\(y/x)q2{y/x) - £ *l> (qs(\/x))q3-s(Vx) +0(1) = 
j= l ,2 

5=1,2 

by one more application of Lemma 1. Inserting this together with (3.6) and (4.7) into 
(2.2), we complete the proof of our Theorem. 

Concluding remarks. 1. There is an alternative description of the constant C in our 
Theorem. Let 

OO J 

<P,(Z) = E f e ( " » " Z ( R e * > 7) 
n = l * 

be the zeta function associated with the monic polynomial ps (s — 1 or 2). It is easy to 
see that (#s can be continued analytically at least to the half plane Re z > 0, with the 
exception of a simple pole with residue £ at z — \. Let us define 

7 5 =l im(^ l ( z ) - i (z - i ) - 1 ) . 

With these notations, 
C = 1 - 7i - 72 • 

2. Our assumption that/?i,/?2 be of equal degree is not vital to obtain an asymptotic 
expansion of Ts(x). It is, however, of importance for the estimation of the ijj -sum : If p\,p2 

have different degrees k, /, the situation is similar to the "asymmetric divisor problem" 
involving the number of pairs (w, v) G N 2 with uW < x. (This is dealt with in detail in 
the book of Kràtzel [4].) Here it is usually much more cumbersome to choose an optimal 
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"strategy" for the estimation of the fractional parts sum, depending on the relative size 
of k and /. 

3. In a similar manner, one can investigate the average order of the arithmetical func­
tion 

rPuP2(n) = #{(M,V) G N2 :pi(u)+p2(v) = n} . 

This was done recently by G. Kuba and the second named author [6]. (Cf. also Kuba's 
thesis [5].) However, the details of the analysis and the results are much different from 
the situation considered in the present paper. 

ADDED IN AUGUST 1991. M.N. Huxley has meanwhile anounced an improvement 
of the error term in the classical divisor problem to OC*23/73 (log*)315/146) (Lecture at 
Oberwolfach, March 1991, and preprint "Exponential sums and lattice points, II".) Using 
the corresponding refined version of his method, one can readily sharpen the result of the 
present article to OOc 2 3 / 7 3*^ JC)315/146). 
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