Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T12:12:05.688Z Has data issue: false hasContentIssue false

Comparative analysis of nutritional status and growth of immature oil palm in various intercropping systems in southern Benin

Published online by Cambridge University Press:  05 May 2020

Hermione Koussihouèdé
Affiliation:
UR Ecopédologie; Laboratoire de Sciences du sol; Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, BP 526Cotonou, Benin
Hervé Aholoukpè
Affiliation:
Centre de Recherches Agricoles Plantes Pérennes (CRA-PP), Institut National des Recherches Agricoles du Bénin, BP 01Pobè, Benin
Jeremie Adjibodou
Affiliation:
UR Ecopédologie; Laboratoire de Sciences du sol; Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, BP 526Cotonou, Benin
Haniel Hinkati
Affiliation:
UR Ecopédologie; Laboratoire de Sciences du sol; Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, BP 526Cotonou, Benin
Bernard Dubos
Affiliation:
CIRAD, UPR système de pérennes, F-34398Montpellier, France
Lydie Chapuis-Lardy
Affiliation:
UMR Eco&Sols, Université de Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, 34060Montpellier, France LMI IESOL, Centre de recherche ISRA-IRD, BP 1386Dakar, Sénégal
Bernard G. Barthès
Affiliation:
UMR Eco&Sols, Université de Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, 34060Montpellier, France
Guillaume Amadji
Affiliation:
UR Ecopédologie; Laboratoire de Sciences du sol; Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, BP 526Cotonou, Benin
Cathy Clermont-Dauphin*
Affiliation:
UMR Eco&Sols, Université de Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, 34060Montpellier, France LMI IESOL, Centre de recherche ISRA-IRD, BP 1386Dakar, Sénégal
*
*Corresponding author. Email: cathy.clermont@ird.fr

Abstract

Beninese smallholders associate food crops and cash crops with immature oil palms to reduce field maintenance costs and gain income before the palms reach productive phase. Little is known about the effects of these crops on the nutritional status and growth of the palms in their immature phase even though the yield of adult palms can be affected by the management practices during this phase. The objective of this study was to evaluate the most common oil palm-based intercropping systems found in southern Benin in terms of nutritional status and growth of the palm. Within 15 oil palm farms, we compared 15 immature oil palm fields where the crop succession associated with the oil palms was dominated by maize, cassava, tomato, and pineapple. The nutrient concentrations in the soil and the palm leaves, and growth indicators were measured at the end of the immature phase. We found that the palm growth indicators were the lowest in the successions with pineapple. N and P nutrition of the immature palms was satisfactory but K was deficient in all systems, especially in those with pineapple. The K levels in the soils and palm leaves were correlated. Rough field budgets comparing the amounts of N and K applied to the crop successions with their N and K exports from non-returning products indicated that soil indigenous K supply would be particularly depleted in the systems with pineapple. We concluded that the young oil palms were affected by the competition for K exerted by the crop successions with pineapple even though they were the most fertilized in the region. The high profitable crop is therefore associated with the lowest growth rates of the immature palms. The mineral fertilizer management in these oil palm temporary intercropping systems should be improved.

Type
Research Article
Copyright
© The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aholoukpé, H., Vissoh, V.P., Amadji, G., Deleporte, P., Dubos, B., Nodichao, L. and Blavet, D. (2013). Typologie des plantations villageoises de palmier à huile (Elaeis guineensis Jacq.) dans le département du Plateau au Bénin. International Journal of Biological and Chemical Sciences 7, 978999.CrossRefGoogle Scholar
Akpo, E. (2013). Analysing seed systems performance: The case of oil palm in Benin. PhD thesis, Wageningen University, Wageningen, The Netherlands.Google Scholar
Azontondé, H.A. (1991). Propriétés physiques et hydrauliques des sols au Bénin. IAHS Publ 199, 253256.Google Scholar
Azontondé, H.A., Igue, A.M. and Dagbenonbakin, G. (2009). Carte de fertilité des sols par zone agro-écologique du Bénin. Rapport finale, Afrique-Etudes, Ministère de l’Agriculture de l’Elevage et de la Pêche (MAEP), Bénin.Google Scholar
Bąk, K., Gaj, R. and Budka, A. (2016). Accumulation of nitrogen, phosphorus and potassium in mature maize under variable rates of mineral fertilization. Fragmentary Agronomy 33, 719.Google Scholar
Beaudet, P. and Tremblay, N. (2006). Bilan des éléments nutritifs de quelques cultures maraîchères. Quebec, Canada: Agriculture, pêcheries et alimentation, agriculture et agroalimentaire.Google Scholar
Caliman, J.-P., Daniel, C. and Tailliez, B. (1994). La nutrition minérale du palmier à huile. Plantations, Recherche, Développement 1, 3654.Google Scholar
Caliman, J.-P., Widodo, R.H., Suyanto, S. and Tailliez, B. (2002). Importance of palm growth during immaturity and impact on yield at an early stage. International Oil Palm Conference, Nusa Dua, Bali, Indonesia: 392–406.Google Scholar
Chogou, S.K., Gandonou, E. and Fiogbe, N. (2017). Mesure de l’efficacité technique des petits producteurs d’ananas au Bénin. Cahiers Agricultures 26, 16.Google Scholar
Corley, R.H.V. and Tinker, P.B. (2016). The Oil Palm, 5th Edn. Chichester: John Wiley & Sons, Ltd.Google Scholar
De Berchoux, C. and Lecoustre, R. (1986). Croissance et développement du palmier à huile. Chapitre II. De la germination à l’entrée en récolte. La Mé, Côte d’Ivoire: CIRAD-IRHO.Google Scholar
Fournier, S., Muchnik, J. and Requier-Desjardins, D. (2002). Enjeux et contraintes du développement de la filière huile de palme au Bénin: une approche par les systèmes agro-alimentaires localisés. Les Cahiers d’Outre-Mer. Revue de Géographie de Bordeaux 55, 475494.Google Scholar
Graves, S., Piepho, H-P and Selzer, L. with help from Dorai-Raj, S. (2019). multcompView: Visualizations of Paired Comparisons. R package version 0.1-8. Available at https://CRAN.Rproject.org/package=multcompViewGoogle Scholar
Howeler, R., Lutaladio, N. and Thomas, G. (2013). Save and Grow: Cassava. A Guide to Sustainable Production Intensification. Roma, Italy: FAO.Google Scholar
Jacquemard, J. and Baudouin, L. (1987). Contribution à l’étude de la croissance du palmier à huile. Présentation d’un modèle descriptif. Oléagineux 42, 343351.Google Scholar
Kassambara, A. and Mundt, F. (2019). Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.6. https://CRAN.R-project.org/package=factoextraGoogle Scholar
Koussihouèdé, H., Clermont-Dauphin, C., Aholoukpé, H., Barthès, B., Chapuis -Lardy, L., Jassogne, L. and Amadji, G. (2019). Diversity and socio-economic aspects of oil palm agroforestry systems on the Allada plateau, southern Benin. Agroforestry Systems 94, 4156.CrossRefGoogle Scholar
Kuznetsova, A, Brockhoff, PB and Christensen, RHB (2017). LmerTest package: tests in linear mixed effects models. Journal of Statistical Software 82, 126. http://doi.org/10.18637/jss.v082.i13CrossRefGoogle Scholar
Lenth, R. (2018). Emmeans: estimated Marginal Means, aka Least-Squares Means. R package version 1.2.3. Available at https://CRAN.R-project.org/package=emmeansGoogle Scholar
Malézieux, E. and Bartholomew, D.P. (2003). Plant nutrition. In The Pineapple: Botany, Production and Uses. Wallingford: CABI Publishing. pp. 143165.CrossRefGoogle Scholar
Ng, S.K. (1977). Review of oil palm nutrition and manuring. Scope for greater economy in fertilizer usage. Oléagineux 32, 197209.Google Scholar
Nodichao, L., Chopart, J.-L., Roupsard, O., Vauclin, M., Aké, S. and Jourdan, C. (2011). Genotypic variability of oil palm root system distribution in the field. Consequences for water uptake. Plant and Soil 341, 505520.CrossRefGoogle Scholar
Ochs, R. and Olivin, J. (1975). Le diagnostic foliaire pour le contrôle de la nutrition des plantations de palmiers à huile: prélèvement des échantillons foliaires. Oléagineux 32, 211216.Google Scholar
Okpala-Jose, A. (1995). Relating the performance of oil palm to microclimatic changes of varying distances the palms and adjacent cassava stands. PORIM, International Palm Oil Congress, pp. 603–613.Google Scholar
Ollagnier, M. and Ochs, R. (1981). Gestion de la nutrition minérale des plantations industrielles de palmiers à huile: économies d’engrais. Oléagineux 36, 409421.Google Scholar
Pegoraro, R.F., de Souza, B.A.M., Maia, V.M., da Silva, D.F., Medeiros, A.C. and Sampaio, R.A. (2014). Macronutrient uptake, accumulation and export by the irrigated’vitória’pineapple plant. Revista Brasileira de Ciência Do Solo 38, 896904.CrossRefGoogle Scholar
Rafflegeau, S. (2008) Dynamique d’implantation et conduite technique des plantations villageoises de palmier à huile au Cameroun: facteurs limitants et raisons des pratiques, Agro Paris Tech, Paris, France.Google Scholar
Rafflegeau, S., Michel-Dounias, I., Tailliez, B., Ndigui, B. and Papy, F. (2010). Unexpected N and K nutrition diagnosis in oil palm smallholdings using references of high-yielding industrial plantations. Agronomy for Sustainable Development 30, 777787.CrossRefGoogle Scholar
Rival, A. and Levang, P. (2014). Palms of Controversies: Oil Palm and Development Challenges. Bogor, Indonesia: CIFOR.Google Scholar
Sparnaaij, L.D. (1959). The analysis of bunch production in the oil palm. PhD thesis, Wageningen University, Wageningen, The Netherlands.Google Scholar
Suresh, K., Mathur, R.K. and Behera, S.K. (2016). Oil palm. In Abiotic Stress Physiology of Horticultural Crops. Springer: 333342.Google Scholar
Teixeira, L.A.J., Quaggio, J.A., Cantarella, H. and Mellis, E.V. (2011). Potassium fertilization for pineapple: effects on soil chemical properties and plant nutrition. Revista Brasileira de Fruticultura 33, 627636.CrossRefGoogle Scholar
USDA (2018). Oilseed: Worlds Markets and trade. Foreign Agricultural Service/USDA.Google Scholar
Von Uexküll, H.R. and Fairhurst, T.H. (1991). Fertilizing for High Yield and Quality – The Oil Palm. Worblaufen-Bern, Switzerland: International Potash Institute.Google Scholar
Woittiez, L.S., Turhina, S., Deccy, D., Slingerland, M., van Noordwijk, M. and Giller, K.E. (2018). Fertiliser application practices and nutrient deficiencies in smallholder oil palm plantations in Indonesia. Experimental Agriculture 55, 543559.CrossRefGoogle Scholar
Yemadje, R.H., Crane, T.A., Mongbo, R.L., Saïdou, A., Azontonde, H.A., Kossou, D. and Kuyper, T. (2014). Revisiting land reform: land rights, access, and soil fertility management on the Adja Plateau in Benin. IJAS – International Journal of Agricultural Sustainability 12, 355369.CrossRefGoogle Scholar
Supplementary material: File

Koussihouèdé et al. supplementary material

Koussihouèdé et al. supplementary material

Download Koussihouèdé et al. supplementary material(File)
File 166.9 KB