Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-08T07:45:46.610Z Has data issue: false hasContentIssue false

Stratigraphic record of Neoproterozoic ice sheet collapse: the Kapp Lyell diamictite sequence, SW Spitsbergen, Svalbard

Published online by Cambridge University Press:  13 November 2009

M. G. BJØRNERUD*
Affiliation:
Geology Department, Lawrence University, Appleton, Wisconsin 54911, USA

Abstract

The diamictites of the Neoproterozoic Kapp Lyell Sequence in northern Wedel Jarlsberg Land, southwest Spitsbergen, have long been recognized as ancient glacial deposits, but their place within the global stratigraphic framework of ‘snowball Earth’ has remained unclear, owing to the complexity of superimposed Caledonian deformation and to the relatively inaccessible terrain in which they occur. Recently deglaciated exposures of the rocks now provide a more complete picture of the changing environment in which the diamictites were deposited, and new understanding of regional correlations help constrain their place in the global chronostratigraphy of the Cryogenian Period. The 2500 m thick Kapp Lyell Sequence consists of three distinct types of glaciomarine diamictite. The succession begins with about 1000 m of finely laminated diamictite containing abundant lonestones. The millimetre- to centimetre-scale laminae, apparent suspension deposits, consist of sand- to silt-sized particles of quartz and dolomite alternating with thin films of graphitic phyllite. The laminated unit gives way abruptly to 500–1000 m of unsorted, unlayered diamictite that alternates and interfingers with graded beds of conglomerate to sandstone. These apparent turbidite deposits become increasingly prevalent toward the top of the exposed section. Regional lithostratigraphic relationships suggest that the Kapp Lyell sequence corresponds to the second major stage of Neoproterozoic glaciation at c. 635 Ma. The graphitic material in the laminated unit yields δ13C values in the range of −20 to −22 ‰, pointing to a biogenic origin and an active marine biosphere at the time of deposition. The preservation of organic carbon and unusually large ratios of highly reactive Fe to total Fe suggest that low oxygen conditions prevailed in the deep basin that received these sediments. The transition from laminated, to unsorted, to graded diamictites may represent change from (1) a stable ice margin that released rare icebergs into a deep, quiet basin to (2) a collapsing ice sheet that unleashed flotillas of icebergs and large volumes of sediment to (3) submarine landslides that triggered turbidity flows from the rapidly deposited, gravitationally unstable sediments. The Kapp Lyell diamictite sequence appears to chronicle the demise of a large ice mass in this part of the Neoproterozoic world.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, P. A. & Etienne, J. 2008. Sedimentary challenge to Snowball Earth. Nature Geoscience 1, 817–25.CrossRefGoogle Scholar
Berner, R. 1970. Sedimentary pyrite formation. American Journal of Science 268, 123.CrossRefGoogle Scholar
Birkenmajer, K. 1981. The geology of Svalbard, the western part of the Barents Sea, and the continental margin of Scandinavia. In The Ocean Basins and Margins, vol. 5: The Arctic Ocean (eds Nairn, A., Churkin, M. & Stehli, F.), pp. 265329. New York: Plenum Press, 672 pp.Google Scholar
Bjørnerud, M. 1990. An upper Proterozoic unconformity in northern Wedel Jarlsberg Land, southwest Spitsbergen: Lithostratigraphy and Tectonic Implications. Polar Research 8, 127–39.CrossRefGoogle Scholar
Bjørnerud, M., Craddock, C. & Wills, C. J. 1990. A major late Proterozoic tectonic event in southwestern Spitsbergen. Precambrian Research 48, 157–65.CrossRefGoogle Scholar
Bjørnerud, M., Decker, P. & Craddock, C. 1991. Reconsidering Caledonian deformation in southwest Spitsbergen. Tectonics 10, 171–90.CrossRefGoogle Scholar
Bond, G., Showers, W., Elliot, M., Evans, M., Lotti, R., Hadjas, I., Bonani, G. & Johnson, S. 1999. The North Atlantic's 1–2 kyr climate rhythm: Relation to Heinrich events, Dansgaard/Oeschger and the Little Ice Age. In Mechanisms of Global Climate Changes at Millennial Timescale (ed. Clark, P. U.), pp. 3558. Washington, DC: American Geophysical Union.CrossRefGoogle Scholar
Bowring, S., Grotzinger, J., Condon, D., Ramezani, J. & Newall, M. 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. American Journal of Science 307, 10971145.CrossRefGoogle Scholar
Broecker, W. S. 1994. Massive Iceberg Discharges as Triggers for Global Climate Changes. Nature 372, 421–4.CrossRefGoogle Scholar
Canfield, D., Poulton, S., Knoll, A., Narbonne, G., Ross, G., Goldberg, T. & Strauss, H. 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 321, 9249–52.CrossRefGoogle ScholarPubMed
Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A. & Jin, Y. 2005. U–Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–8.CrossRefGoogle ScholarPubMed
Coplen, T. 2006. After two decades, a second anchor for the VPDB δ13C scale. Rapid Communications in Mass Spectrometry 20, 3165–6.CrossRefGoogle ScholarPubMed
Corsetti, F., Olcott, A. & Bakermanns, C. 2006. The biotic response to Snowball Earth. Paleogeography, Paleoclimatology, Paleoecology 232, 114–30.CrossRefGoogle Scholar
Dallmann, W., Hjelle, A., Ohta, Y., Salvigsen, O., Bjørnerud, M., Hauser, E., Maher, H. & Craddock, C. 1990. Geologic map of Svalbard, Sheet B11G: Van Keulenfjorden. Oslo: Norsk Polarinstitutt.Google Scholar
Dowdeswell, J., Whittington, R., Jennings, A., Andrews, J., Mackensen, A. & Marienfeld, P. 2000. An origin for laminated glaciomarine sediments through sea-ice build-up and suppressed iceberg rafting. Sedimentology 47, 557–76.CrossRefGoogle Scholar
Dowdeswell, J., Otteson, D., Evans, J., Cofaigh, C. & Anderson, J. B. 2008. Submarine glacial landforms and rates of ice-stream collapse. Geology 36, 819–22.CrossRefGoogle Scholar
Garwood, E. J. & Gregory, J. W. 1898. Contributions to the glacial geology of Spitzbergen. Quarterly Journal of the Geological Society of London 54, 197225.CrossRefGoogle Scholar
Gee, D. & Teben'kov, A. 2004. Svalbard: A fragment of the Laurentian margin. In The Neoproterozoic Timanide Orogen of Eastern Baltica (eds Gee, D. & Pease, V.), pp. 191206. London: Geological Society of London.Google Scholar
Grotzinger, J. & Knoll, S. 1995. Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios 10, 578–96.CrossRefGoogle Scholar
Harland, W. B. 1964. Critical evidence for a great infra-Cambrian glaciation. Geologische Rundschau 54, 4561.CrossRefGoogle Scholar
Harland, W. B. 1971. Tectonic transpression in Caledonian Spitsbergen. Geological Magazine 108, 2741.CrossRefGoogle Scholar
Harland, W. B. & Gayer, R. 1972. The arctic Caledonides and earlier oceans. Geological Magazine 119, 527–51.Google Scholar
Harland, W. B., Hambrey, M. & Waddams, P. 1993. Vendian geology of Svalbard. Norsk Polarinstitutt Skrifter 193, 150 pp.Google Scholar
Halverson, G., Maloof, A. & Hoffman, P. 2004. The Marinoan glaciation (Neoproterozoic) in northeast Svalbard. Basin Research 16, 297324.CrossRefGoogle Scholar
Halverson, G., Hoffman, P., Schrag, D., Maloof, A. & Rice, A. H. 2005. Toward a Neoproterozoic composite carbon-isotope record. Geological Society of America Bulletin 117, 11811207.CrossRefGoogle Scholar
Hjelle, A. 1969. Stratigraphical correlation of Hecla Hoek succession north and south of Bellsund. Norsk Polarinstitutt Årbok 1967, 4651.Google Scholar
Hoffman, P., Halverson, G., Domack, E., Husson, J., Higgins, J. & Schrag, D. 2007. Are basal Ediacaran (635 Ma) post-glacial “cap dolostones” diachronous? Earth and Planetary Science Letters 258, 114–31.CrossRefGoogle Scholar
Hoffman, P., Kaufman, A., Halverson, G. & Schrag, D. 1998. A Neoproterozoic Snowball Earth. Science 281, 1342–6.CrossRefGoogle ScholarPubMed
Hoffman, P. & Schrag, D. 2002. The snowball Earth hypothesis: Testing the limits of global change. Terra Nova 14, 129–55.CrossRefGoogle Scholar
Hulbe, C., MacAyeal, D., Denton, G., Kleman, J. & Lowell, T. 2004. Catastrophic ice shelf breakup as the source of Heinrich event icebergs. Paleoceanography 19, PA1004, doi:10.1029/2003PA000890.CrossRefGoogle Scholar
Hyde, W., Crowley, T. J., Baum, S. & Peltier, W. R. 2000. Neoproterozoic “snowball earth” simulations with a coupled climate/ice-sheet model. Nature 405, 425–9.CrossRefGoogle ScholarPubMed
James, N. P., Narbonne, G. M. & Kyser, T. K. 2001. Late Neoproterozoic cap carbonates: Mackenzie Mountains, northwestern Canada: precipitation and global glacial meltdown. Canadian Journal of Earth Sciences 38, 1229–62.CrossRefGoogle Scholar
Jiang, G., Kennedy, M. & Christie-Blick, N. 2003. Stable isotope evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426, 822–6.CrossRefGoogle ScholarPubMed
Jiang, G., Kennedy, M., Christie-Blick, N., Wu, H. & Zhang, S. 2006. Stratigraphy, sedimentary structures, and textures of the Late Neoproterozoic Doushantuo cap carbonate in South China. Journal of Sedimentary Research 76, 978–95.CrossRefGoogle Scholar
Johannson, Å., Gee, D., Larionov, A., Ohta, Y. & Teben'kov, A. 2005. Grenvillian and Caledonian evolution of eastern Svalbard – a tale of two orogenies. Terra Nova 17, 317–25.CrossRefGoogle Scholar
Kennedy, M. 1996. Stratigraphy, sedimentology, and isotopic geochemistry of Australian Neoproterozoic postglacial cap dolostones: Deglaciation, δ13C excursions and carbonate precipitation. Journal of Sedimentary Research 66, 1050–64.CrossRefGoogle Scholar
Kennedy, M., Mrofka, D. & von der Borch, C. 2008. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature 453, 642–5.CrossRefGoogle ScholarPubMed
Kirschvink, J. 1992. Late Proterozoic low-latitude global glaciation; The Snowball Earth. In The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. & Klein, C.), pp. 51–2. Cambridge: Cambridge University Press.Google Scholar
Kowallis, B. & Craddock, C. 1984. Stratigraphy and structure of the Kapp Lyell diamictites (upper Proterozoic), Spitsbergen. Geological Society of America Bulletin 95, 12931302.2.0.CO;2>CrossRefGoogle Scholar
Majka, J., Czerny, J., Manecki, M. & Mazur, S. 2007. New evidence for a late Neoproterozoic (ca. 650 Ma) metamorphic event in the Caledonian basement of Wedel Jarlsberg Land, West Spitsbergen. EGU Geophysical Research Abstracts 9, 923.Google Scholar
Manecki, A., Czerny, J., Kieres, A., Manecki, M. & Rajchel, J. 1993. Geological Map of the SW part of Wedel Jarlsberg Land, Spitsbergen. Krakow: Institute of Geology and Mineral Deposits, University of Mining and Metallurgy.Google Scholar
Morikiyo, T. 1984. Carbon isotope study on coexisting calcite and graphite in the Ryoke metamorphic rocks, northern Kiso district, central Japan. Contributions to Mineralogy and Petrology 87, 251–9.CrossRefGoogle Scholar
Orvin, A. 1940. Outline of the geological history of Spitsbergen. Norsk Polarinstitutt Skrifter om Svalbard og Ishavet 78, 57 pp.Google Scholar
Peltier, W., Lu, Y. & Crowley, T. 2007. Snowball Earth prevention by dissolved organic carbon remineralization. Nature 450, 813–16.CrossRefGoogle ScholarPubMed
Pollard, D. & Kasting, J. 2004. Climate-ice sheet simulations of Neoproterozoic glaciation before and after collapse to Snowball Earth. In The Extreme Proterozoic: Geology, Geochemistry, and Climate (eds Jenkins, G., McMenamin, M., McKay, C., & Sohl, L.), pp. 91105. Washington, DC: American Geophysical Union, 229 pp.Google Scholar
Poulton, S. & Canfield, D. 2005. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chemical Geology 214, 209–21.CrossRefGoogle Scholar
Poulton, S., Fralick, P. & Canfield, D. 2004. The transition to a sulphidic ocean ~1. 84 billion years ago. Nature 431, 173–6.CrossRefGoogle ScholarPubMed
Poulton, S. & Raiswell, R. 2002. The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. American Journal of Science 302, 774805.CrossRefGoogle Scholar
Powell, R. 1981. A model for sedimentation by tidewater glaciers. Annals of Glaciology 2, 129–34.CrossRefGoogle Scholar
Raiswell, R. & Canfield, D. E. 1998. Sources of iron for pyrite formation in marine sediments. American Journal of Science 298, 219–45.CrossRefGoogle Scholar
Rieu, R., Allen, P., Plötze, M. & Pettke, T. 2007. Climatic cycles during a Neoproterozoic “snowball” glacial epoch. Geology 35, 299302.CrossRefGoogle Scholar
Scheele, N. & Hoefs, J. 1992. Carbon isotope fractionation between calcite, graphite and CO2: an experimental study. Contributions to Mineralogy and Petrology 112, 3545.CrossRefGoogle Scholar
Stookey, L. 1970. Ferrozine—a new spectrophotometric reagent for iron. Analytical Chemistry 42, 779–81.CrossRefGoogle Scholar
Valley, J. & O'Neil, J. 1986. 13C/12C exchange between calcite and graphite: a possible geothermometer in grenville marbles. Geochimica et Cosmochimica Acta 45, 411–19.CrossRefGoogle Scholar
Waddams, P. 1983 a. Late Precambrian resedimented conglomerates from Bellsund, Spitbergen. Geological Magazine 120, 153–64.CrossRefGoogle Scholar
Waddams, P. 1983 b. The late Precambrian succession in northwest Oscar II Land, Spitsbergen. Geological Magazine 120, 233–52.CrossRefGoogle Scholar
Wilson, C. & Harland, W. B. 1964. The Polarisbreen Series and other evidences of Late Pre-Cambrian ice ages in Spitsbergen. Geological Magazine 101, 198219.CrossRefGoogle Scholar