Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-07T12:34:02.179Z Has data issue: false hasContentIssue false

A revised palynozonation for the Middle–Upper Triassic (Anisian–Rhaetian) Series of the Norwegian Arctic

Published online by Cambridge University Press:  14 November 2019

Niall William Paterson*
Affiliation:
Department of Earth Science, University of Bergen, Post box 7803, N-5020 Bergen, Norway CASP, West Building, Madingley Rise, Cambridge, CB3 0UD, United Kingdom
Gunn Mangerud
Affiliation:
Department of Earth Science, University of Bergen, Post box 7803, N-5020 Bergen, Norway
*
Author for correspondence: Niall William Paterson, Email: niall.paterson@casp.org.uk

Abstract

The Barents Sea region of Arctic Norway preserves a thick succession of marine and deltaic Triassic strata that yield an abundant and diverse association of terrestrial and marine palynomorphs. Despite being the principal means for dating and correlation across this vast region, the Upper Triassic palynozonal resolution has remained relatively low. This is problematic due to the thickness of the Upper Triassic Series and since this corresponds to the longest of the three Triassic epochs. This paper presents a refined Middle–Upper Triassic palynozonation for the region, based on a detailed investigation of multiple localities ranging from the Svalbard Archipelago to the southern Barents Sea. The zonation comprises eleven spore-pollen zones: the Carnisporites spiniger, Triadispora obscura and Protodiploxypinus decus zones (Anisian), the Echinitosporites iliacoides Zone (Ladinian), the Semiretisporis hochulii, Podosporites vigraniae, Leschikisporis aduncus, and Protodiploxypinus spp. zones (Carnian), the Classopollis torosus, and Quadraeculina anellaeformis zones (Norian), and the Ricciisporites spp. Zone (Rhaetian). Additionally, two new dinoflagellate cyst zones are defined: the Rhaetogonyaulax arctica (upper Carnian – lower Norian) and Rhaetogonyaulax rhaetica (lower Norian) zones. Three new age-significant palynomorph taxa are described: Kyrtomisporis moerki sp. nov., Podosporites vigraniae sp. nov. and Semiretisporis hochulii sp. nov. The revised palynozonation is compared with previous palynozonal schemes for the Greater Barents Sea region, and its relationship to Triassic palaeoclimate, palaeoenvironments and sequence stratigraphy is discussed.

Type
Original Article
Copyright
© Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbink, OA, Van Konijnenburg-Van Cittert, JHA and Visscher, H (2004) A sporomorph ecogroup model for the Northwest European Jurassic – Lower Cretaceousi [sic]: concepts and framework. Netherlands Journal of Geosciences 83 (1), 1738.CrossRefGoogle Scholar
Alvin, KL (1982) Cheirolepidiaceae: biology, structure and paleoecology. Review of Palaeobotany and Palynology 37, 7198.CrossRefGoogle Scholar
Balme, B (1995) Fossil in-situ spores and pollen grains: an annotated catalogue. Review of Palaeobotany and Palynology 87, 81323.CrossRefGoogle Scholar
Benton, MJ, Bernardi, M and Kinsella, C (2018) The Carnian Pluvial Episode and the origin of dinosaurs. Journal of the Geological Society 175(6), 1019, https://doi.org/10.1144/jgs2018-049CrossRefGoogle Scholar
Bernardi, M, Gianolla, P, Petti, FM, Mietto, P and Benton, MJ (2018) Dinosaur diversification linked with the Carnian Pluvial Episode. Nature Communications 9, 1499, doi: 10.1038/s41467-018-03996-1.CrossRefGoogle Scholar
Bhardwaj, DC and Singh, HP (1957) Asterotheca meriani (Brongn.) Stur and its spores from the Upper Triassic of Lunz (Austria). The Palaeobotanist 5, 51–5.Google Scholar
Bjærke, T (1977) Mesozoic palynology of Svalbard – II. Palynomorphs from the Mesozoic sequence of Kong Karls Land. Norsk Polarinstitutt Årbok 1976, 83120.Google Scholar
Bjærke, T and Dypvik, H (1977) Sedimentological and palynological studies of Upper Triassic – Lower Jurassic sediments in Sassenfjorden, Spitsbergen. Norsk Polarinstitutt Skrifter 165, 148.Google Scholar
Bjærke, T and Manum, SB (1977) Mesozoic palynology of Svalbard – I. The Rhaetian of Hopen, with a preliminary report on the Rhaetian and Jurassic of Kong Karls Land. Norsk Polarinstitutt Skrifter 165, 148.Google Scholar
Boucot, AJ, Xu, C, Scotese, CR and Morley RJ (2013) Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. Society for Sedimentary Geology, Tulsa, OK, SEPM Concepts in Sedimentology and Paleontology, No. 11, 478 pp.Google Scholar
Brenner, W (1992) First results of Late Triassic palynology of the Wombat Plateau, Northwestern Australia. Proceedings of the ODP, Scientific Results 122, 413–26.Google Scholar
Brenner, W and Foster, CB (1994) Chlorophycean algae from the Triassic of Australia. Review of Palaeobotany and Palynology 80 (3–4), 209–34.CrossRefGoogle Scholar
Brugman, WA, Van Bergen, PR and Kerp, JHF (1994) A quantitative approach to Triassic palynology: the Lettenkeuper of the Germanic Basin as an example. In Sedimentation of Organic Particles (ed Traverse, A.), pp. 409–29. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Cameron, DK (1974) New Triassic palynomorphs from the Arabian Peninsula. Grana 14, 410.CrossRefGoogle Scholar
Chaloner, WG and Muir, M (1968) Spores and floras. In Coal and Coal-Bearing Strata (eds Murchison, DS and Westoll, TS), pp. 127–46. Oliver and Boyd, Edinburgh.Google Scholar
Cirilli, S (2010) Upper Triassic–lowermost Jurassic palynology and palynostratigraphy: a review. In The Triassic Timescale (ed. SG Lucas), pp. 285314. Geological Society of London, Special Publication no. 334.CrossRefGoogle Scholar
Dallmann, WK (1999) Lithostratigraphic lexicon of Svalbard: review and recommendations for nomenclature use. Committee on the Stratigraphy of Svalbard, Norwegian Polar Institute, Tromsø, 318 pp.Google Scholar
Eide, CH, Klausen, TG, Katkov, D, Suslova, AA and Helland-Hansen, W (2018) Linking an Early Triassic delta to antecedent topography: Source-to-sink study of the southwestern Barents Sea margin. GSA Bulletin 130 (1/2), 263–83.CrossRefGoogle Scholar
Fefilova, LA (1988) Palinologicheskiye kompleksy triasovikh otlozheniy Barentseva shelfa (The palynological complexes of Triassic rocks of the Barents Shelf Plate). In Barentsevomorskaja shelfovaya plita (Barents Shelf Plate) (ed. Gramberg, IS), pp. 149–51. Sb. Nauchn. Tr., PGO Sevmorgeologiya Vserossijskij Naučno-Issledovatel’skij Institut Geologii I Mineral’nyh Resursov Mirovogo Okeana (VNIIOkeanologiya), Leningrad [in Russian].Google Scholar
Fefilova, LA (2001) Miospory iz triasovykh otlozheniy tsentral’noy chasti o. Zapadnyy Shpitsbergen (Sassen-f’ord, yuzhnoye poberezh’ye) (Triassic miospores from the central part of West Svalbard (Sassenfjord, south coast)). In Biostratigrafiya mezozoya i kaynozoya nekotorykh regionov Arktiki i Mirovogo okeana (Biostratigraphy of the Mesozoic and Cenozoic of some regions of the Arctic and the World Ocean) (ed. VA Basov), pp. 519. Vserossijskij Naučno-Issledovatel’skij Institut Geologii I Mineral’nyh Resursov Mirovogo Okeana (VNIIOkeanologiya), St Petersburg [in Russian].Google Scholar
Fefilova, LA (2013) Biostratigrafiya, miospory i makroflora triasovykh otlozheniy yugo-vostochnoy chasti shel’fa Barentseva morya na primere Krestovoy ploshchadi i sopredel’nykh rayonov (Biostratigraphy, miospores and macroflora of Triassic sediments of the southeastern part of the Barents Sea shelf with the example of Krestovaya Field and adjacent areas). In Materialy po biostratigrafii, faune i flore fanerozoya Rossii, Atlantiki i Antraktidy (Materials on the biotostratigraphy, fauna and flora of the Phanerozoic of Russia, the Atlantic and the Antractic) (ed. Nekhorosheva, LV), pp. 4283. Naučno-Issledovatel’skij Institut Geologii Arktiki-Vserossijskij Naučno-Issledovatel’skij Institut Geologii I Mineral’nyh Resursov Mirovogo Okeana (NIIGA-VNIIOkeangeologiya), St Petersburg [in Russian].Google Scholar
Fijałkowska-Mader, A, Heunisch, C and Szulc, J (2015) Palynostratigraphy and palynofacies of the Upper Silesian Keuper (Southern Poland). Annales Societatis Geologorum Poloniae 85, 637661.Google Scholar
Furin, S, Preto, N, Rigo, M, Roghi, G, Gianolla, P, Crowley, JL and Bowring, SA (2006) High-precision U-Pb zircon age from the Triassic of Italy: implications for the Triassic time scale and the Carnian origin of calcareous nannoplankton and dinosaurs. Geology 34 (12), 1009–12.CrossRefGoogle Scholar
Glørstad-Clark, E, Birkeland, EP, Nystuen, JP, Faleide, JI and Midtkandal, I (2011) Triassic platform-margin deltas in the western Barents Sea area. Marine and Petroleum Geology 28, 1294–314.CrossRefGoogle Scholar
Glørstad-Clark, E, Faleide, JI, Lundschien, BA and Nystuen, JP (2010) Triassic sequence stratigraphy and paleogeography of the western Barents Sea area. Marine and Petroleum Geology 27, 1448–75.CrossRefGoogle Scholar
Henricksen, E, Ryseth, AE, Larssen, GB, Heide, T, Rønning, K and Stoupakova, AV (2011) Tectonostratigraphy of the greater Barents Sea: implications for petroleum systems. In Arctic Petroleum Geology (eds AM Spencer, AF Embry, DL Gautier, AV Stoupakova and K Sørensen), pp. 163–95. Geological Society of London, Memoir no. 35,CrossRefGoogle Scholar
Hochuli, PA, Colin, PA and Vigran, JO (1989) Triassic biostratigraphy of the Barents Sea area. In Correlation in Hydrocarbon Exploration (ed. Collinson, J), pp. 131–53. Graham and Trotman, London.CrossRefGoogle Scholar
Hochuli, PA and Frank, SM (2000) Palynology (dinoflagellate cysts, spore-pollen) and stratigraphy of the Lower Carnian Raibl Group in the Eastern Swiss Alps. Eclogae Geologicae Helvetiae 93, 429–43.Google Scholar
Hochuli, PA and Vigran, JO (2010) Climate variations in the Boreal Triassic – Inferred from palynological records from the Barents Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 290, 2042.CrossRefGoogle Scholar
Hounslow, MW, Yu, M, Mørk, A, Weitschat, W, Vigran, JO, Karloukovski, V and Orchard, MJ (2008) Intercalibration of Boreal and Tethyan time scales: the magnetobiostratigraphy of the Middle Triassic and the latest Early Triassic from Spitsbergen, Arctic Norway. Polar Research 27 (3), 469–90.CrossRefGoogle Scholar
Høy, T and Lundschien, BA (2011) Triassic deltaic sequences in the northern Barents Sea. In Arctic Petroleum Geology (eds Spencer, AM, Embry, AF, Gautier, DL, Stoupakova, AV and Sørensen, K), pp. 249–60. Geological Society of London, Memoir no. 35.Google Scholar
Klaus, W (1960) Sporen der karnischen Stufe der ostalpinen Trias. Jahrbuch der Geologischen Bundesanstalt 5, 107182, plates 28–38.Google Scholar
Klausen, TG, Nyberg, B and Helland-Hansen, W (2019) The largest delta plain in Earth’s history. Geology 47 (5), 470–74.CrossRefGoogle Scholar
Klausen, TG, Ryseth, AE, Helland-Hansen, W, Gawthorpe, R and Laursen, I (2015) Regional development and sequence stratigraphy of the Middle to Late Triassic Snadd Formation, Norwegian Barents Sea. Marine and Petroleum Geology 62, 102–22.CrossRefGoogle Scholar
Korčinskaya, MV (1980) Rannenorijskaja fauna arhipelaga Sval’bard [Early Norian fauna of the archipelago of Svalbard]. In Geologija osadočnogo cěhla arhipelaga Sval’bard [Geology of the Sedimentary Platform Cover of the Archipelago of Svalbard] (ed. Semevskij, DV), pp. 3043. Naučno-Issledovatel’skij Institut Geologii Arktiki (NIIGA), Leningrad [in Russian].Google Scholar
Kürschner, WM and Herngreen, GFW (2010) Triassic palynology of central and northwestern Europe: a review of palynofloral diversity patterns and biostratigraphic subdivisions. In The Triassic Timescale (ed. SG Lucas), pp. 263–83. Geological Society of London, Special Publication no. 334.CrossRefGoogle Scholar
Kustatscher, E and Van Konijnenburg-Van Cittert, JHA (2011) The ferns of the Middle Triassic flora from Thale (Germany). Neues Jahrbuch für Geologie and Paläontologie, Abhandlungen 261, 209–48.CrossRefGoogle Scholar
Li, W-B and Shang, Y-K (1980) Sporo-pollen assemblages from the Mesozoic Coal Series of western Hubei Province, China. Acta Palaeontologica Sinica 19 (3), 201–19, 4 plates [in Chinese with English summary].Google Scholar
Lord, GS, Solvi, KH, Ask, M, Mørk, A, Hounslow, MW and Paterson, NW (2014) The Hopen Member: A new lithostratigraphic unit on Hopen and equivalent to the Isfjorden Member of Spitsbergen. Norwegian Petroleum Directorate Bulletin 11, 8196.Google Scholar
Lu, M-N and Wang, R-S (1980) The discovery of microflora from the Maantang Formation in the North-West Sichuan Basin and its significance. Journal of Integrative Plant Biology 22 (4), 370–78, 3 plates.Google Scholar
Lund, JJ (1977) Rhaetic to Lower Liassic palynology of the onshore southeastern North Sea Basin. Danmarks Geologiske Undersøgelse 109, 1129.Google Scholar
Lundschien, BA, Høy, T and Mørk, A (2014) Triassic hydrocarbon potential in the Northern Barents Sea; integrating Svalbard and stratigraphic core data. Norwegian Petroleum Directorate Bulletin 11, 320.Google Scholar
Mädler, K (1964) Bemerkenswerte Sporenformen aus dem Keuper und unteren Lias. Fortschritte in der Geologie von Rheinland und Westfalen, 12, 169200.Google Scholar
Mangerud, G, Paterson, NW and Riding, JB (2018) The temporal and spatial distribution of Triassic dinoflagellate cysts. Review of Palaeobotany and Palynology 261, 5366, doi: 10.1016/j.revpalbo.2018.11.010CrossRefGoogle Scholar
Morbey, SJ (1975) The palynostratigraphy of the Rhaetian stage, Upper Triassic in the Kendelbachgraben, Austria. Palaeontographica B 152, 175.Google Scholar
Mørk, A, Dallman, WK, Dypvik, H, Johannessen, EP, Larssen, GB, Nagy, J, Nøttvedt, A, Olaussen, S, Pčhelina, TM and Worsley, D (1999) Mesozoic lithostratigraphy. In Lithostratigraphic Lexicon of Svalbard, Upper Palaeozoic to Quaternary Bedrock: Review and Recommendations for Nomenclature Use (ed. Dallman, WK), pp. 127241. Committee on the Stratigraphy of Svalbard, Norwegian Polar Institute, Tromsø.Google Scholar
Mørk, A, Vigran, JO and Hochuli, PA (1990) Geology and palynology of the Triassic succession of Bjørnøya. Polar Research 8, 141–63.Google Scholar
Mørk, A, Vigran, JO, Korchinskaya, MV, Pchelina, TM, Fefilova, LA, Vavilov, MN and Weitschat, W (1993) Triassic rocks in Svalbard, the Arctic Soviet islands and the Barents Shelf: bearing on their correlations. In: Arctic Geology and Petroleum Potential (eds TO Vorren, E Bergsager, ØA Dahl-Stamnes, E Holter, B Johansen, E Lie and TB Lund), pp. 457–79. Norwegian Petroleum Society, Special Publication no. 2.CrossRefGoogle Scholar
Mueller, S, Hounslow, MW and Kürschner, WM (2016) Integrated stratigraphy and palaeoclimate history of the Carnian Pluvial Event in the Boreal realm; new data from the Upper Triassic Kapp Toscana Group in central Spitsbergen (Norway). Journal of the Geological Society 173 (1), 186202.CrossRefGoogle Scholar
NPD (2017) Geological assessment of petroleum resources in eastern parts of Barents Sea North 2017. Norwegian Petroleum Directorate, 1–39, https://www.npd.no/globalassets/1-npd/publikasjoner/rapporter-en/geologivurderingbhn-engelsk-lavoppl.pdf.Google Scholar
Ogg, JG, Ogg, GM and Gradstein, FM (2016) A Concise Geologic Time Scale. Elsevier, Amsterdam, 234 pp.Google Scholar
Orłowska-Zwolińska, T (1985) Palynological zones of the Polish epicontinental Triassic. Bulletin of the Academy of Sciences, Earth Sciences 33, 107–19.Google Scholar
Paterson, NW and Mangerud, G (2015) Late Triassic (Carnian – Rhaetian) palynology of Hopen, Svalbard. Review of Palaeobotany and Palynology 220, 98119.CrossRefGoogle Scholar
Paterson, NW and Mangerud, G (2017) Palynology and depositional environments of the Middle – Late Triassic (Anisian – Rhaetian) Kobbe, Snadd and Fruholmen formations, southern Barents Sea, Arctic Norway. Marine and Petroleum Geology 86, 304–24.CrossRefGoogle Scholar
Paterson, NW, Mangerud, G, Cetean, CG, Mørk, A, Lord, GS, Klausen, TG and Mørkved, PT (2016) A multidisciplinary biofacies characterisation of the Late Triassic (late Carnian–Rhaetian) Kapp Toscana Group on Hopen, Arctic Norway. Palaeogeography, Palaeoclimatology, Palaeoecology 464, 1642 (special issue: Mesozoic Ecosystems – Climate and Biota).CrossRefGoogle Scholar
Paterson, NW, Mangerud, G, Holen, LH, Landa, J, Lundschien, BA and Eide, F (2019a) Late Triassic (early Carnian–Norian) palynology of the Sentralbanken High, Norwegian Barents Sea. Palynology 43 (1), 53–75, https://doi.org/10.1080/01916122.2017.1413018CrossRefGoogle Scholar
Paterson, NW, Mangerud, G and Mørk, A (2017) Late Triassic (early Carnian) palynology of shallow stratigraphical core 7830/5-U-1, offshore Kong Karls Land, Norwegian Arctic. Palynology 41 (2), 230–54.CrossRefGoogle Scholar
Paterson, NW, Morris, PH and Mangerud, G (2019b) Lycopsid megaspores from the Upper Triassic of Svalbard and their relationship to the floras and palaeoenvironments of Northern Pangaea. Papers in Palaeontology, published online 14 February 2019, https://doi.org/10.1002/spp2.1251CrossRefGoogle Scholar
Pavlov, VV, Fefilova, LA and Lodkina, LB (1985) Palinologischeskaya kharakteristika mezozoyskikh otlozheniy yozhnoy chasti shelfa Barentseva morya (Palynological characterisation of the Mesozoic deposits of the southern Barents Sea Shelf). In Stratigrafiya i paleontologiya Mesozoyskikh osadochnykh basseynov severa SSSR (Stratigraphy and Palaeontology of Mesozoic Sedimentary Basins of Northern USSR) (ed. ND Vasilevskaya), pp. 88103. PGO Sevmorgeologiya, Leningrad [in Russian].Google Scholar
Pott, C (2014) The Upper Triassic flora of Svalbard. Acta Palaeontologica Polonica 59 (3), 709–40.Google Scholar
Rao, AR (1943) Jurassic spores and sporangia from Rajmahal Hills, Bihar. Proceedings of the National Academy of Sciences, India 13B, 181–97.Google Scholar
Reinhardt, P (1962) Sporae dispersae aus dem Rhät Thüringens. Monatsberichte der Deutschen Akademie der Wissenschaften zu Berlin 3 (11/12), 704–11 [in German].Google Scholar
Retallack, GJ (1975) The life and times of a Triassic lycopods. Alcheringa 1, 329.CrossRefGoogle Scholar
Retallack, GJ (1997) Earliest Triassic origin of Isoetes and quillwort evolutionary radiation. Journal of Paleontology 71 (3), 500–21.CrossRefGoogle Scholar
Riis, F, Lundschien, BA, Høy, T, Mørk, A and Mørk, MBE (2008) Evolution of the Triassic shelf in the northern Barents Sea region. Polar Research 27, 298317.CrossRefGoogle Scholar
Rismyhr, B, Bjærke, T, Olaussen, S, Mulrooney, MJ and Senger, K (2018) Facies, palynostratigraphy and sequence stratigraphy of the Wilhelmøya Subgroup (Upper Triassic–Middle Jurassic) in western central Spitsbergen, Svalbard. Norwegian Journal of Geology 99, 3564. https://doi.org/10.17850/njg001Google Scholar
Roghi, G, Gianolla, P, Minarelli, L, Pilati, C and Preto, N (2010) Palynological correlation of Carnian humid pulses throughout western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology 290, 89106.CrossRefGoogle Scholar
Rossi, VM, Paterson, NW, Helland-Hansen, W, Klausen, TG and Eide, CH (2019) Mud-rich delta-scale compound clinoforms in the Triassic shelf of northern Pangea (Havert Formation, south-western Barents Sea). Sedimentology 66 (6), 22342267. published online 9 March 2019, https://doi.org/10.1111/sed.12598CrossRefGoogle Scholar
Ruffell, AH, Simms, MJ and Wignall, PB (2015) The Carnian Humid Episode of the late Triassic: a review. Geological Magazine 153, 271–84.CrossRefGoogle Scholar
Ryseth, A (2014) Sedimentation at the Triassic–Jurassic boundary, south-west Barents Sea: indication of climatic change. In From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin (eds Martinius, AW, Ravnås, R, Howell, JA, Steel, RJ and JWonham, P), pp. 187214, Wiley-Blackwell: Oxford. International Association of Sedimentary Sedimentologists, Special Publication no. 46.Google Scholar
Scheuring, BW (1970) Palynologische und palynostratigraphische Untersuchungen des Keupers im Bölchentunnel (Solothurner Jura). Schweizerische Paläontologische Abhandlungen Mémoires suisses de Paléontologie 88, 1119, 43 plates [in German].Google Scholar
Schulz, E (1967) Sporenpaläontologische Untersuchungen rätoliassischer Schichten im Zentralteil des Germanischen Beckens. Paläontologische Abhandlungen Abteilung B 2 (3), 543633.Google Scholar
Schuurman, WML (1977) Aspects of late Triassic palynology: 2. Palynology of the “Grès et Schiste à Avicula contorta” and “Argiles de Levallois” (Rhaetian) of north-eastern France and southern Luxemburg. Review of Palaeobotany and Palynology 23, 159253.CrossRefGoogle Scholar
Schuurman, WML (1979) Aspects of Late Triassic palynology. 3. Palynology of latest Triassic and earliest Jurassic deposits of the northern Limestone Alps in Austria and southern Germany, with special reference to a palynological characterization of the Rhaetian Stage in Europe. Review of Palaeobotany and Palynology 2, 5375.CrossRefGoogle Scholar
Simms, MJ and Ruffell, AH (1989) Synchroneity of climatic change and extinctions in the late Triassic. Geology 17, 265–68.2.3.CO;2>CrossRefGoogle Scholar
Simms, MJ and Ruffell, AH (2018) The Carnian Pluvial Episode: from discovery, through obscurity, to acceptance. Journal of the Geological Society 175 (6), 989–92.CrossRefGoogle Scholar
Simms, MJ, Ruffell, AH & Johnson, ALA (1994) Biotic and climatic changes in the Carnian (Triassic) of Europe and adjacent areas. In In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods (eds NC Fraser and H-D Sues), pp. 352–65, Cambridge University Press, Cambridge.Google Scholar
Sivak, J and Shang, YK (1989) Discovery of new species of Kyrtomisporis in the Upper Trias (Norian and Rhaetian) of the Huobachong Formation in China. Acta Palynologica 1, 4990.Google Scholar
Smelror, MLarssen, GB, Olaussen, S, Rømuld, A and Williams, R (2019) Late Triassic to Early Cretaceous palynostratigraphy of Kong Karls Land, Svalbard, Arctic Norway, with correlations to Franz Josef Land, Arctic Russia. Norwegian Journal of Geology 98 (4), 131.Google Scholar
Smith, DG (1974) Late Triassic pollen and spores from the Kapp Toscana Formation, Hopen, Svalbard – a preliminary account. Review of Palaeobotany and Palynology 17, 175–78.CrossRefGoogle Scholar
Smith, DG (1982) Stratigraphic significance of a palynoflora from ammonoid-bearing Early Norian strata in Svalbard. Newsletters on Stratigraphy 11 (3), 154–61.CrossRefGoogle Scholar
Smith, DG, Harland, WB and Hughes, NF (1975) Geology of Hopen, Svalbard. Geological Magazine 112 (1), 123.CrossRefGoogle Scholar
Sømme, TO, Doré, AG, Lundin, ER and Tørudbakken, BO (2018) Triassic–Paleogene paleogeography of the Arctic: Implications for sediment routing and basin fill. AAPG Bulletin 102 (12), 2481–517.CrossRefGoogle Scholar
Taylor, TN, Taylor, EL and Krings, M (2009) Paleobotany: The Biology and Evolution of Fossil Plants, 2nd edn. Academic Press, Burlington, MA, 1230 pp.Google Scholar
Turland, NJ, Wiersema, JH, Barrie, FR, Greuter, W, Hawksworth, DL, Herendeen, PS, Knapp, S, Kusber, W-H, Li, D-Z, Marhold, K, May, TW, McNeill, J, Monro, AM, Prado, J, Price, MJ and Smith, GF (eds) (2018) International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code) Adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile, 159. Glashütten: Koeltz Botanical Books.Google Scholar
Van der Eem, JGLA (1983) Aspects of Middle and Late Triassic palynology. 6. Palynological investigations in the Ladinian and lower Carnian of the Western Dolomites, Italy. Review of Palaeobotany and Palynology 39, 189300.CrossRefGoogle Scholar
van Veen, PM (1985) Stratigraphy of the Triassic in the Troms Area. Rapport, Oljedirektoratet, OD-85-36, 1125.Google Scholar
Vasilevskaya, ND (1972) The Late Triassic flora of Svalbard [in Russian]. In Mezozojskie otloženiâ Sval’barda (eds Sokolova, VN and Vasilevskaya, ND), 2763. Naučno-Issledovatel’skij Institut Geologii Arktiki (NIIGA), Leningrad [in Russian].Google Scholar
Vigran, JO, Mangerud, G, Mørk, A, Bugge, T and Weitschat, W (1998) Biostratigraphy and sequence stratigraphy of the Lower and Middle Triassic deposits from the Svalis Dome, Central Barents Sea, Norway. Palynology 22, 89141.CrossRefGoogle Scholar
Vigran, JO, Mangerud, G, Mørk, A, Worsley, D and Hochuli, PA (2014) Palynology and geology of the Triassic succession of Svalbard and the Barents Sea. Geological Survey of Norway, Special Publication no. 14, 247 pp.Google Scholar
Weitschat, W and Dagys, A (1989) Triassic biostratigraphy of Svalbard and comparison of northeast Siberia. Mitteilungen, Geologisch-Paläontologisches Institut der Universität Hamburg 68, 179213.Google Scholar
Wood, GD and Benson, DG Jr (2000) The North American occurrence of the algal coenobium Plaesiodictyon: paleogeographic, paleoecologic, and biostratigraphic importance in the Triassic. Palynology 24, 920.Google Scholar
Wood, GD and Miller, MA (1998) Stratigraphic, paleoecologic and petroleum generating significance of Chlorophyta (chlorococcalean algae) in the Cretaceous of Western Africa and South America. African Geoscience Review 4, 499510.Google Scholar
Xu, G, Hannah, JL, Stein, HJ, Bingen, B, Yang, G, Zimmermann, A, Weitschat, W, Mørk, A and Weiss, HM (2009) Re-Os geochronology of Arctic black shales to evaluate the Anisian – Ladinian boundary and global fauna correlations. Earth and Planetary Science Letters 288, 581–87.CrossRefGoogle Scholar
Xu, G, Hannah, JL, Stein, HJ, Mørk, A, Vigran, JO, Bingen, B, Schutt, DL and Lundschien, A (2014) Cause of Upper Triassic climate crisis revealed by Re-Os geochemistry of Boreal black shales. Palaeogeography, Palaeoclimatology, Palaeoecology 395, 222–32.CrossRefGoogle Scholar