Hostname: page-component-6d856f89d9-5pczc Total loading time: 0 Render date: 2024-07-16T04:47:02.542Z Has data issue: false hasContentIssue false

Eustatic and local tectonic impact on the Late Ordovician – early Silurian facies evolution on the SW margin of peri-Baltica (the southern Holy Cross Mountains, Poland)

Published online by Cambridge University Press:  22 March 2021

Wiesław Trela*
Affiliation:
Polish Geological Institute – National Research Institute, Zgoda 21, 25-953Kielce, Poland
*
Author for correspondence: Wiesław Trela, Email: wieslaw.trela@pgi.gov.pl

Abstract

This paper provides insight into the Late Ordovician to earliest Silurian evolution of sedimentary environments in the southern Holy Cross Mountains (SE Poland), which at that time were a part of the SW periphery of Baltica. The facies layout in this area was influenced by the basement block faulting, which differentiated the basin bathymetry into submarine horst and grabens, controlling facies distribution. However, the local tectonism was insufficient to fully mask the global eustatic events. Therefore, it is possible to correlate some facies changes in the Upper Ordovician and lower Llandovery sedimentary record of the southern Holy Cross Mountains with eustatic and palaeoceanographic changes reported worldwide. The most noticeable influence of eustasy on the sedimentary record in the studied area occurs at the Ordovician/Silurian boundary. It is manifested by Hirnantian regressive coarse-grained clastic sediments overlain by a post-glacial anoxic/dysoxic interval represented by the Rhuddanian transgressive black cherts and shales. It is noteworthy that the pre- and post-Hirnantian sedimentary environments in the southern Holy Cross Mountains were affected by upwelling induced by the SE trade winds.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Algeo, TJ, Pedro, J, Marenco, PJ and Saltzman, MR (2016) Co-evolution of oceans, climate, and the biosphere during the ‘Ordovician Revolution’: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 458, 111.CrossRefGoogle Scholar
Bauersachs, T, Kremer, B, Schouten, S and Sinninghe Damsté, JS (2009) A biomarker and δ15N study of thermally altered Silurian cyanobacterial mats. Organic Geochemistry 40, 149–57.CrossRefGoogle Scholar
Bednarczyk, W (1971) Stratigraphy and paleogeography of the Ordovician in the Holy Cross Mountains. Acta Geologica Polonica 21, 574616.Google Scholar
Bednarczyk, W (1981) Stratygrafia ordowiku Gór Świętokrzyskich. In Przewodnik 53 Zjazdu Polskiego Towarzystwa Geologicznego, Kielce (ed. Źakowa, H), pp. 3541.Google Scholar
Bednarczyk, W and Tomczyk, H (1981) Wybrane problemy stratygrafii, litologii i tektoniki wendu i starszego paleozoiku Gór Świętokrzyskich oraz niecki miechowskiej. Punkt 4: Bardo Stawy. Przewodnik 53 Zjazdu Polskiego Towarzystwa Geologicznego, Kielce (ed. Źakowa, H), pp. 139–43.Google Scholar
Belka, Z, Valverde-Vaquero, P, Dörr, W, Ahrendt, H, Wemmer, K, Franke, W and Schäfer, J (2002) Accretion of first Gondwana derived terranes at the margin of Baltica. In Palaeozoic Amalgamation of Central Europe (eds Winchester, JA, Pharaoh, TC and Verniers, J), pp. 1936. Geological Society of London, Special Publication no. 201.Google Scholar
Brett, CE, Mclaughlin, PI, Cornell, SR and Baird, GC (2004) Comparative sequence stratigraphy of two classic Upper Ordovician successions, Trenton Shelf (New York–Ontario) and Lexington Platform (Kentucky–Ohio): implications for eustasy and local tectonism in eastern Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 295329.CrossRefGoogle Scholar
Challands, TJ, Armstrong, HA, Maloney, DP, Davies, JR, Wilson, D and Owen, AW (2009) Organic-carbon deposition and coastal upwelling at mid-latitude during the Upper Ordovician (Late Katian): a case study from the Welsh Basin, UK. Palaeogeography, Palaeoclimatology, Palaeoecology 273, 395410.CrossRefGoogle Scholar
Chatalov, A (2017) Sedimentology of Hirnantian glaciomarine deposits in the Balkan Terrane, western Bulgaria: fixing a piece of the north peri-Gondwana jigsaw puzzle. Sedimentary Geology 350, 122.CrossRefGoogle Scholar
Cocks, LR (2002) Key Lower Palaeozoic faunas from near the Trans-European Suture Zone. In Palaeozoic Amalgamation of Central Europe (eds Winchester, JA, Pharaoh, TC and Verniers, J), pp. 3746. Geological Society of London, Special Publication no. 201.Google Scholar
Cocks, RM and Torsvik, TH (2005) Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane’s identity. Earth-Science Reviews 27, 3966.CrossRefGoogle Scholar
Dadlez, R, Kowalczewski, Z and Znosko, J (1994) Niektóre kluczowe problemy przedpermskiej tektoniki Polski. Geological Quarterly 38, 169–90.Google Scholar
Deczkowski, Z and Tomczyk, H (1969) Budowa geologiczna antykliny zbrzańskiej w południowo-zachodniej części Gór Świętokrzyskich. Biuletyn Instytutu Geologicznego 236, 143–75.Google Scholar
Dronov, AV, Ainsaar, L, Kaljo, D, Meidla, T, Saadre, T and Einasto, R (2011) Ordovician of Baltoscandia: facies, sequences and sea-level changes. In Ordovician of the World (eds Gutiérrez-Marco, JC, Rábano, I and Garcia-Bellido, D), pp. 143–50. Cuadernos del Museo Geominero, 14. Madrid: Instituto Geológico y Minero de España.Google Scholar
Dronov, A and Holmer, E (1999) Depositional sequences in the Ordovician of Baltoscandia. Acta Universitatis Carolinae – Geologia 43, 133–6.Google Scholar
Dzik, J (1999) Stop 2: Zalesie Nowe. In International Symposium on the Ordovician System, Prague 1999. Pre-Conference Fieldtrip, Excursion Guide Poland and Germany (eds Dzik, J, Linnemann, U and Heuse, T), pp. 1113.Google Scholar
Dzik, J (2020) Ordovician conodonts and the Tornquist Lineament. Palaeogeography, Palaeoclimatology, Palaeoecology 549, 109157. doi: 10.1016/j.palaeo.2019.04.013.CrossRefGoogle Scholar
Dzik, J, Olempska, E and Pisera, A (1994) Ordovician carbonate platform ecosystem of the Holy Cross Mountains. Paleontologia Polonica 53, 1317.Google Scholar
Finney, SC, Berry, WBN and Cooper, JD (2007) The influence of denitrifying seawater on graptolite extinction and diversification during the Hirnantian (Latest Ordovician) mass extinction event. Lethaia 40, 281–91.CrossRefGoogle Scholar
Harris, MT, Sheehan, PM, Ainsaar, L, Hints, L, Männik, P, Nõlvak, J and Rubel, M (2004) Upper Ordovician sequences of western Estonia. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 135–48CrossRefGoogle Scholar
James, DMD (2013) Assessment of Hirnantian synglacial eustacy and palaeogeography in a tectonically active setting: the Welsh Basin (UK). Geological Magazine 151, 447–71.CrossRefGoogle Scholar
Kielan, Z (1959) Upper Ordovician trilobites from Poland and some related forms from Bohemia and Scandinavia. Paleontologia Polonica 11, 1198.Google Scholar
Kozłowski, W, Domańska-Siuda, J and Nawrocki, J (2014) Geochemistry and petrology of the Upper Silurian greywackes from the Holy Cross Mountains (central Poland): implications for the Caledonian history of the southern part of the Trans-European Suture Zone (TESZ). Geological Quarterly 58, 311–36.CrossRefGoogle Scholar
Kremer, B (2005) Mazuelloids: product of post-mortem phosphatization of acanthomorphic acritarchs. Palaios 20, 2736.CrossRefGoogle Scholar
Kremer, B and Kaźmierczak, J (2005) Cyanobacterial mats from Silurian black radiolarian cherts: phototrophic life at the edge of darkness? Journal of Sedimentary Research 75, 897906.CrossRefGoogle Scholar
Kremer, B, Kaźmierczak, J and Bąbel, M (2014) Authigenic silicates associated with microbial organic matter in early Silurian siliceous rocks from Poland. In GeoShale 2014: Recent Advances in Geology of Fine-grained Sediments, 24–26 September 2014, Warsaw, Poland. Book of Abstracts, p. 62.Google Scholar
Lewandowski, M (1993) Paleomagnetism of the Paleozoic rocks of the Holy Cross Mts (central Poland) and the origin of the Variscan Orogen. Publications of the Institute of Geophysics of the Polish Academy, Sciences A 23, 384.Google Scholar
Malinowski, M, Żelaźniewicz, A, Grad, M, Guterch, A and Janik, T (2005) Seismic and geological structure of the crust in the transition from Baltica to Palaeozoic Europe in SE Poland – CELEBRATION 2000 experiment, profile CEL02. Tectonophysics 401, 5577.CrossRefGoogle Scholar
Masiak, M, Podhalańska, T and Stempień-Sałek, M (2003) Ordovician–Silurian boundary in the Bardo Syncline (Holy Cross Mountains) – new data on fossil assemblages and sedimentary succession. Geological Quarterly 47, 311–29.Google Scholar
Melchin, MJ, Mitchell, CE, Holmden, C and Štorch, P (2013) Environmental changes in the Late Ordovician – early Silurian: review and new insights from black shales and nitrogen isotopes. Geological Society of America Bulletin 125, 1635–70.CrossRefGoogle Scholar
Munnecke, A, Calner, M, Harper, DA and Servais, T (2010) Ordovician and Silurian sea-water chemistry, sea level, and climate: a synopsis. Palaeogeography, Palaeoclimatology, Palaeoecology 296, 389413.CrossRefGoogle Scholar
Murray, RW, Jones, DL and Buchholtz Ten Brink, MR (1992) Diagenetic formation of bedded chert: evidence from chemistry of the chert-shale couplet. Geology 20, 271–4.2.3.CO;2>CrossRefGoogle Scholar
Mustafa, KA, Sephton, MA, Watson, JS, Spathopoulos, F and Krzywiec, P (2015) Organic geochemical characteristics of black shales across the Ordovician–Silurian boundary in the Holy Cross Mountains, central Poland. Marine and Petroleum Geology 66, 1042–55.CrossRefGoogle Scholar
Narkiewicz, M and Petecki, Z (2017) Basement structure of the Paleozoic platform in Poland. Geological Quarterly 61, 502–20.CrossRefGoogle Scholar
Nawrocki, J, Dunlap, J, Pecskay, Z, Krzemiński, L, Żylińska, A, Fanning, M, Kozłowski, W, Salwa, S, Szczepanik, Z and Trela, W (2007) Late Neoproterozoic to Early Palaeozoic palaeogeography of the Holy Cross Mountains (Central Poland): an integrated approach. Journal of the Geological Society, London 164, 405–23.CrossRefGoogle Scholar
Nielsen, AT (2004) Ordovician sea level changes: a Baltoscandian perspective. In The Great Ordovician Biodiversification Event (eds Webby, BD, Paris, F, Drosser, ML and Persival, IG), pp. 8493. New York: Columbia University Press.CrossRefGoogle Scholar
Page, AA, Zalasiewicz, JA, Williams, M and Popov, LE (2007) Were transgressive black shales a negative feedback modulating glacioeustasy in the Early Palaeozoic icehouse? In Deep-Time Perspective on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M, Haywood, AM, Gregory, FJ and Schmidt, DN), pp. 123–56. The Micropalaeontological Society, Special Publications no. 2.CrossRefGoogle Scholar
Parrish, JT (1982) Upwelling and petroleum source beds, with reference to Paleozoic. American Association of Petroleum Geologists Bulletin 66, 750–74.Google Scholar
Piper, DZ and Calvert, SE (2009) A marine biogeochemical perspective on black shale deposition. Earth-Science Reviews 95, 6396.CrossRefGoogle Scholar
Podhalańska, T and Trela, W (2007) Stratigraphy and sedimentary record of the Lower Silurian succession in the southern Holy Cross Mountains, Poland. Acta Palaeontologica Sinica 46 (Suppl.), 397401.Google Scholar
Pohl, A, Nardin, E, Vandenbroucke, TRA and Donnadieu, Y (2016) High dependence of Ordovician ocean surface circulation on atmospheric CO2 levels. Palaeogeography, Palaeoclimatology, Palaeoecology 458, 3951.CrossRefGoogle Scholar
Porębski, SJ, Anczkiewicz, R, Paszkowski, M, Skompski, S, Kędzior, A, Mazur, S, Szczepański, J, Buniak, A and Mikołajewski, Z (2019) Hirnantian icebergs in the subtropical shelf of Baltica: evidence from sedimentology and detrital zircon provenance. Geology 47, 284–8.CrossRefGoogle Scholar
Ross, JRP and Ross, CA (1992) Ordovician sea-level fluctuations. In Global Perspectives on Ordovician Geology (eds Webby, BD and Laurie, JR), pp. 327–35. Rotterdam: Balkema.Google Scholar
Schätz, M, Zwing, A, Tait, J, Belka, Z, Soffel, HC and Bachtadse, V (2006) Paleomagnetism of Ordovician carbonate rocks from Małopolska Massif, Holy Cross Mountains, SE Poland – magnetostratigraphic and geotectonic implications. Earth and Planetary Science Letters 244, 349–60.CrossRefGoogle Scholar
Schieber, J, Krinsley, D and Riciputi, L (2000) Diagenetic origin of quartz silt in mudstones and implications for silica cycling. Nature 406, 981–5.CrossRefGoogle ScholarPubMed
Schieber, J, Southard, JB and Schimmelmann, A (2010) Lenticular shale fabrics resulting from intermittent erosion of water-rich muds – interpreting the rock record in the light of recent flume experiments. Journal of Sedimentary Research 80, 119–28.CrossRefGoogle Scholar
Sheehan, PM (2001) The Late Ordovician mass extinction. Annual Review of Earth and Planetary Sciences 29, 331–64.CrossRefGoogle Scholar
Smolarek, J, Marynowski, L, Trela, W, Kujawski, P and Simoneit, BRT (2017) Redox conditions and marine microbial community changes during the end-Ordovician mass extinction event. Global and Planetary Change 149, 105–22.CrossRefGoogle Scholar
Temple, JT (1965) Upper Ordovician brachiopods from Poland and Britain. Acta Paleontologica Polonica 10, 379450.Google Scholar
Tomczyk, H (1954) Stratygrafia gotlandu niecki międzygórskiej w Górach Świętokrzyskich na podstawie fauny z łupków graptolitowych. Biuletyn Instytutu Geologicznego 93, 166.Google Scholar
Tomczyk, H (1962) Problem stratygrafii ordowiku i syluru w Polsce w świetle ostatnich badań. Prace Instytutu Geologicznego 35, 1134.Google Scholar
Tomczyk, H and Turnau-Morawska, M (1964) Stratygrafia i petrografia ordowiku Brzezin koło Morawicy w Górach Świętokrzyskich. Acta Geologica Polonica 14, 501–46.Google Scholar
Tomczykowa, E and Tomczyk, H (1981) Rozwój badań syluru i najniższego dewonu w Górach Świętokrzyskich. In Przewodnik 53 Zjazdu Polskiego Towarzystwa Geologicznego, Kielce (ed. Źakowa, H), pp. 4257.Google Scholar
Trela, W (2005) Condensation and phosphatization of the Middle and Upper Ordovician limestones on the Małopolska Block (Poland): response to palaeoceanographic conditions. Sedimentary Geology 178, 219–36.CrossRefGoogle Scholar
Trela, W (2006) Litostratygrafia ordowiku w Górach Świętokrzyskich. Przegląd Geologiczny 54, 622–31.Google Scholar
Trela, W (2007) Upper Ordovician mudrock facies and trace fossils in the northern Holy Cross Mountains, Poland, and their relation to oxygen- and sea-level dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology 246, 488501.CrossRefGoogle Scholar
Trela, W (2015) Ordowik. In Wilków 1, Daromin IG 1 (ed. Trela, W), pp. 53–9. Profile Głębokich Otworów Wiertniczych PIG, 147.Google Scholar
Trela, W (2016) Agglutinated benthic foraminifera in Ordovician and Silurian black mudrock facies of the Holy Cross Mountains (Poland) and their significance in recognition of oxygen content. Palaeogeography, Palaeoclimatology, Palaeoecology 457, 242–6.CrossRefGoogle Scholar
Trela, W, Bąk, E and Pańczyk, M (2018) Upper Ordovician and Silurian ash beds in the Holy Cross Mountains, Poland: preservation in mudrock facies and relation to atmospheric circulation in the Southern Hemisphere. Journal of the Geological Society, London 175, 352–60.CrossRefGoogle Scholar
Trela, W, Podhalańska, T, Smolarek, J and Marynowski, L (2016) Llandovery green/grey and black mudrock facies of the northern Holy Cross Mountains (Poland) and their relation to early Silurian sea-level changes and benthic oxygen level. Sedimentary Geology 342, 6677.CrossRefGoogle Scholar
Trela, W and Salwa, S (2007) Litostratygrafia dolnego syluru w odsłonięciu Bardo Stawy (południowa część Gór Świętokrzyskich): związek ze zmianami poziomu morza i cyrkulacją oceaniczną. Przegląd Geologiczny 55, 971–8.Google Scholar
Trela, W and Szczepanik, Z (2009) Litologia i zespół akritarchowy formacji z Zalesia w Górach Świętokrzyskich na tle zmian poziomu morza i paleogeografii późnego ordowiku. Przegląd Geologiczny 57, 147–57.Google Scholar
Van Cappellen, P and Ingall, ED (1994) Benthic phosphorous regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorous. Paleoceanography 9, 677–92.CrossRefGoogle Scholar
Żelaźniewicz, A, Aleksandrowski, P, Buła, Z, Karnkowski, PH, Konon, A, Oszczypko, N, Ślączka, A, Żaba, J and Żytko, K (2011) Regionalizacja Tektoniczna Polski. Wrocław: Komitet Nauk Geologicznych PAN, 60 pp.Google Scholar
Żelaźniewicz, A, Oberc-Dziedzic, T and Slama, J (2020) Baltica and the Cadomian orogen in the Ediacaran–Cambrian: a perspective from SE Poland. International Journal of Earth Sciences 109, 1503–28.CrossRefGoogle Scholar
Zhang, T, Trela, W, Jiang, S-Y, Nielsen, JK and Shen, Y (2011) Major oceanic redox condition change correlated with the rebound of marine animal diversity during the Late Ordovician. Geology 39, 675–8.CrossRefGoogle Scholar