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Abstract. A left R-module M is called two-degree Gorenstein flat if there exists
an exact sequence of Gorenstein flat left R-modules · · · → G2 → G1 → G0 → G−1 →
G−2 → · · · such that M ∼= Ker(G0 → G−1) and it remains exact after applying H ⊗R −
for any Gorenstein injective right R-module H. In this paper we first give some
characterisations of Gorenstein flat objects in the category of complexes of modules
and then use them to show that two notions of the two-degree Gorenstein flat and the
Gorenstein flat left R-modules coincide when R is right coherent.

2010 Mathematics Subject Classification. 16E10; 16E30; 55U15.

1. Introduction. Let R be an associative ring. By Enochs and Jenda [10], an R-
module M is called Gorenstein injective if there exists an exact sequence of injective
R-modules

I = · · · δI
2 �� I1

δI
1 �� I0

δI
0 �� I−1

δI
−1 �� · · ·

with M = Ker(δI
0) such that the complex HomR(J, I) is exact for any injective R-module

J. Dually, an R-module L is called Gorenstein projective if there exists an exact sequence
of projective R-modules

P = · · · δP
2 �� P1

δP
1 �� P0

δP
0 �� P−1

δP
−1 �� · · ·

with L = Ker(δP
0 ) such that the complex HomR(P, Q) is exact for any projective R-

module Q. Later, Enochs and co-authors [9] introduced the Gorenstein flat left R-
modules, which are the modules of the form Ker(δF

0 ) for some exact sequence of flat
left R-modules

F = · · · δF
2 �� F1

δF
1 �� F0

δF
0 �� F−1

δF
−1 �� · · ·
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such that the complex J ⊗R F is exact for any injective right R-module J, and so a
relative homological theory of Gorenstein modules was initiated (see [2–5, 12, 16–
18]). Recently, Sather-Wagstaff et al. [21] introduced modules that we call ‘two-degree
Gorenstein projective modules’: An R-module N is two-degree Gorenstein projective if
there exists an exact sequence of the Gorenstein projective R-modules

G = · · · δG
2 �� G1

δG
1 �� G0

δG
0 �� G−1

δG
−1 �� · · ·

with N ∼= Ker(δG
0 ) such that the two complexes HomR(H, G) and HomR(G, H) are

exact for any Gorenstein projective R-module H. They proved that any two-degree
Gorenstein projective module is nothing but a Gorenstein projective module when R is
commutative (Theorem A in [21]). Also, a similar notion was introduced and studied
by Sather-Wagstaff et al. in [22]. Inspired by their work, in this paper, we introduce
and investigate the notion of the so-called two-degree Gorenstein flat modules, which
is different from the one given in [22], defined as being the modules isomorphic to the
form Ker(δG

0 ) for some exact sequence of the Gorenstein flat R-modules

G = · · · δG
2 �� G1

δG
1 �� G0

δG
0 �� G−1

δG
−1 �� · · ·

such that the complex H ⊗R G is exact for any Gorenstein injective right R-module
H. We show that over a left GF-closed ring R (see Definition 3.7), any two-degree
Gorenstein flat left R-module is exactly a Gorenstein flat module. In fact the proof
of this result is based on the characterisations of Gorenstein flatness of objects in the
category of complexes of modules. The class of left GF-closed rings strictly contains
the class of all right coherent rings (see [2]).

The current paper is organised as follows:
Section 2 provides some relevant definitions and notations that will be used

throughout the paper. In Section 3 we give some characterisations of the Gorenstein
flat complexes of modules. We show that if R is a left GF-closed ring, then a complex
X is Gorenstein flat if and only if the modules Xi are Gorenstein flat for all i ∈ �.
Hence, the Gorenstein flatness of complexes of modules is completely determined by
the Gorenstein flatness of all its terms. As an immediate consequence of this result, we
see that the Gorenstein flat objects in the category complexes possess many properties
as the Gorenstein flat modules in the category of modules. In Section 4 we give an
application of the characterisations of Gorenstein flat complexes to show that over a
left GF-closed ring R (hence, over any right coherent ring), a two-degree Gorenstein
flat left R-module is exactly a Gorenstein flat module.

2. Preliminaries. Throughout, let R be an associative ring with 1, R-Mod
(respectively, Mod-R) be the category of left (respectively, right) R-modules and R-
Comp (respectively, Comp-R) be the category of complexes of left (respectively, right)
R-modules. Unless stated otherwise, an R-module (respectively, R-complex) will be
understood to be a left R-module (respectively, a complex of left R-modules). For two
R-modules M and N, we will let HomR(M, N) denote the group of morphisms from
M to N in the category R-Mod.

To every complex

C =: · · · �� Cm+1
δC

m+1 �� Cm
δC

m �� Cm−1
δC

m−1 �� Cm−2
δC

m−2 �� · · ·
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we associate the numbers

sup C = sup{ l | Cl �= 0} and inf C = inf{ l | Cl �= 0}.
The complex C is called bounded left when sup C < ∞, bounded right when inf C > −∞
and bounded when it is bounded left and right. The mth cycle module is defined as
Ker(∂C

m ) and is denoted ZmC. The mth cycle module of C is defined as Ker(δC
m) and is

denoted ZmC, the mth boundary module is defined as Im(δC
m+1) and is denoted BmC.

In this paper, we will use both subscripts and superscripts to distinguish complexes.
So if Cα and Cβ are two complexes, then Cα will be · · · → (Cα)m+1 → (Cα)m →
(Cα)m−1 → (Cα)m−2 → · · ·, and Cβ will be · · · → Cβ

m+1 → Cβ
m → Cβ

m−1 → Cβ

m−2 →
· · ·. If K is an R-module, then we will denote by Di(K) the complex

· · · �� 0 �� K
id �� K �� 0 �� · · ·

with K in the i and i-1st degrees and Si(K) the complex

· · · �� 0 �� K �� 0 �� 0 �� · · ·
with K in the ith degree. Given a complex C, for each i ∈ �, let �iC denote the complex
with (�iC)m = Cm−i and δ�iC

m = (−1)iδC
m−i.

Given two complexes M and N, a homomorphism ϕ : M −→ N of degree m
is a family (ϕi)i∈� of homomorphisms of R-modules ϕi : Mi −→ Ni+m. All such
homomorphisms form an abelian group, denoted as Hom(M, N)m; it is clearly
isomorphic to

∏
i∈� HomR(Mi, Ni+m). We will let Hom(M, N) denote the complex

of �-modules with mth entry Hom(M, N)m and boundary map

(δm(ϕ))i = δN
i+mϕi − (−1)mϕi−1δ

M
i .

A homomorphism ϕ ∈ Hom(M, N)m is called a chain map if δm(ϕ) = 0, i.e. if

δN
i+mϕi = (−1)mϕi−1δ

M
i for all i ∈ �.

A chain map of degree 0 is called a morphism. We would let Hom(M, N) denote
the set of all morphisms from M to N. Note that the category of complexes of
modules has enough projectives and injectives. This can be seen from the fact that
any complex of the form · · · → 0 → K → K → 0 → · · · with K projective (injective)
is projective (injective). This, in turn, follows from the fact that a complex C is projective
(respectively, injective) in the category of complexes of modules if and only if it is exact,
and the modules ZiC are projective (respectively, injective) for all i ∈ � (see [13]). We
will let the Exti(M, N) for all i ≥ 1 denote the groups we get from the right-derived
functors of Hom(−,−). Recall that a complex P is called semi-projective (i.e. dg-
projective) if the modules Pm are projective for all m ∈ �, and Hom(P, E) is exact for
any exact complex E (see [11]). In fact if P is a bounded right complex of projective
modules, then P is semi-projective. It is also shown in [13] that a complex P is semi-
projective if and only if Ext1(P, E) = 0 for any exact complex E.

If M is a complex of right R-modules and N is a complex of left R-modules, then
their tensor product M ⊗· N is defined by (M ⊗· N)n = ⊕

i+j=n Mi ⊗R Nj in degree n,
the boundary map δn is defined on the generators by δM(x) ⊗ y + (−1)|x|x ⊗ δN(y),
where |x| is the degree of the element x. One can easily check that δn−1δn = 0 for all
n ∈ � (and this would not be true if we did not introduce the sign (−1)|x|). Let M⊗N
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= (M⊗·N)
B(M⊗·N) , that is, M⊗N is the complex of abelian groups with nth entry (M⊗N)n =

(M⊗·N)n
Bn(M⊗·N) and boundary map

(M ⊗· N)n

Bn(M ⊗· N)
−→ (M ⊗· N)n−1

Bn−1(M ⊗· N)

given by x ⊗ y → δM(x) ⊗ y, where x ⊗ y is used to denote the coset in (M⊗·N)n
Bn(M⊗·N) . This

gives us a bifunctor

−⊗− : Comp-R × R-Comp −→ Comp-�,

where Comp-� denotes the category of complexes of abelian groups. For a complex M
(respectively, N) of right (respectively, left) R-modules, the functor M⊗− (respectively,
−⊗N) is right exact. We can construct left-derived functors, which are denoted by
Tori(M,−) (respectively, Tori(−, N)). These functors in the category of complexes of
modules possess many nice properties analogous to TorR

i (−,−) in the category of R-
modules, where TorR

i (−,−) denote left-derived functors of − ⊗R − in the category of
R-modules. Consult references [7, 14] for more details.

3. Gorenstein flat complexes. In this section we investigate the Gorenstein flatness
of complexes of left R-modules. The notion of the Gorenstein flat complex was
introduced and studied by Enochs and Garcı́a Rozas [7]. They proved that if R is
an n-Gorenstein ring (i.e. R is a two-side Noetherian ring with both left and right self-
injective dimensions at most n for some non-negative integer n), then any complex X
is Gorenstein flat in the category of complexes if and only if each component Xm is
Gorenstein flat in the category of modules (Theorem 4.3 in [7]).

Recall from Definition 4.1.2 in [14] that a complex F is called flat if F is exact and
each ZiF is flat for all i ∈ �. In fact, a complex F is flat if and only if Tor1(X, F) = 0
for any complex X (Lemma 5.4.1 in [14]).

We continue with the following definition from [7].

DEFINITION 3.1. We call a complex X Gorenstein flat if there exists an exact
sequence of flat complexes

F =: · · · �� F1
�� F0

�� F0 �� F1 �� · · ·

with X = Ker(F0 −→ F1) and which remains exact after applying I⊗− for any injective
complex I of right R-modules. In this case, F is said to be a complete flat resolution
of X .

REMARK 3.2. Let M be a right R-module, and N a left R-module. Then,
naturally, M and N can be taken as the complexes S0(M) and S0(N), respectively.
Clearly, S0(M)⊗S0(N) = S0(M) ⊗· S0(N) = S0(M ⊗R N), and thus if we substitute
the complexes in Definition 3.1 with corresponding modules, then we get the definition
of Gorenstein flat modules.

REMARK 3.3. (1) Note that if F is a flat complex, then the sequence, · · · →
0 → F → F → 0 → · · ·, is a complete flat resolution of F , and so F is Gorenstein
flat.
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(2) Since the class of flat complexes is closed under direct sums, and the functor
⊗ commutes with sums, we get that the class of Gorenstein flat complexes is closed
under direct sums.

(3) If F =: · · · → F1 → F0 → F0 → F1 → · · · is a complete flat resolution of a
complex X = Ker(F0 → F1), then by symmetry, all the images, the kernels and the
cokernels of F are Gorenstein flat in R-Comp.

(4) If X is a Gorenstein flat complex, then by definition, there is an exact sequence
of flat complexes · · · → F2 → F1 → F0 → X → 0, which remains exact after applying
I⊗− for any injective complex I of right R-modules, and so Torj(I, X) = 0 for all
injective complexes I of right R-modules and all j ≥ 1.

LEMMA 3.4. Let X be a complex. If Xm is Gorenstein flat for all m ∈ �, then
Tor1(I, X) = 0 for all injective complexes I of right R-modules.

Proof. Since a complex I of right R-modules is injective if and only if I is exact and
all ZmI , m ∈ � are injective right R-modules, we get that any injective complex has the
form

⊕
i∈� Di(Ji) with each Ji injective in Mod-R. On the other hand, for any injective

right R-module J, we get from Example 4.1 in [7] that Tor1(Di(J), X) = 0 for all i ∈ �,
since each Xm is Gorenstein flat for all m ∈ �. Thus, if I = ⊕

i∈� Di(Ji) is an injective
complex with each Ji injective in Mod-R, then Tor1(I, X) = Tor1(

⊕
i∈� Di(Ji), X) ∼=⊕

i∈� Tor1(Di(Ji), X) = 0, as desired. �
Recall that a complex X is called semi-flat if Xm is flat in R-Mod for all m ∈ �

and E ⊗· X is exact for any exact complex E of right modules. It is shown in Lemma
5.4.1(c) in [14] that a complex X is semi-flat if and only if Tori(E, X) = 0 for any exact
complex E of right modules and all i ≥ 1. A complex X is called graded flat if Xm is
flat in R-Mod for all m ∈ �. The semi-flat and graded flat objects are very important
in characterising homological dimensions of complexes and modules, see [1] and [20]
(the semi-flat and graded flat complexes, respectively, is called dg-flat and #-flat in
[1]). Since the class of flat modules is closed under extensions, every flat complex is
graded flat, but in general a graded flat complex may not be flat, for instance, the
complex, · · · → 0 → F → 0 → · · ·, is graded flat complex but not flat when F is some
flat module. The following proposition extends Proposition 3.10 in [15] and implies
that there are abundant Gorenstein flat objects that are not flat in the category of
complexes.

PROPOSITION 3.5. Every graded flat complex G is Gorenstein flat. In particular, every
semi-flat complex is Gorenstein flat.

Proof. If we define the morphism α : G −→ ⊕i∈�Di+1(Gi) = F0 of complexes as
the following:

G =: · · · �� Gi+2

(1Gi+2 ,δG
i+2)

��

δG
i+2 �� Gi+1

(1Gi+1 ,δG
i+1)

��

δG
i+1 �� Gi

(1Gi ,δ
G
i )

��

δG
i �� Gi−1

(1Gi−1 ,δG
i−1)

��

�� · · ·

F0 =: · · · �� Gi+2 ⊕ Gi+1 �� Gi+1 ⊕ Gi �� Gi ⊕ Gi−1 �� Gi−1 ⊕ Gi−2 �� · · ·

that is, αi = (1Gi , δ
G
i ) for each i ∈ �, then we get a short exact sequence of complexes

0 �� G
α �� F0 �� K1 �� 0
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with F0 flat. In fact, K1 = Coker(α) is graded flat. To see this, for any i ∈ �, consider
the following diagram with exact rows:

0 �� Gi �� Gi ⊕ Gi−1

πi

��

�� (K1)i

��

�� 0

0 �� Gi Gi �� 0 �� 0

where πi : Gi ⊕ Gi−1 −→ Gi is the canonical projection. By the snake lemma, we get
that (K1)i ∼= Gi−1 is flat. Note that the short exact sequence

0 �� G
α �� F0 �� K1 �� 0

is still exact after applying I⊗− for any injective complex I of right R-modules, since
Tor1(I, K1) = 0 by Lemma 3.4, and K1 has the same properties as G. Then, we can use
the same procedure to construct an exact sequence of flat complexes

0 �� G �� F0 �� F1 �� · · · , (†)

which remains exact when the functor I⊗− is applied for it for any injective complex
I of right R-modules. Again take

· · · �� F1
�� F0

�� G �� 0 (‡)

as a flat resolution of G, which is still exact when I⊗− is applied for it for any injective
complex I of right R-modules, since it is easy to check that each Ker(Fi −→ Fi−1) is
again graded flat for all i ≥ 0, where F−1 = G. Assembling the sequences (†) and (‡),
we get a complete flat resolution of G, and so G is Gorenstein flat.

Clearly, every semi-flat complex is graded flat, and so it is Gorenstein flat. �
The following result provides the characterisation of Gorenstein flat complexes by

using graded flat complexes.

THEOREM 3.6. Let X be a complex. Then X is Gorenstein flat if and only if there
exists an exact sequence of graded flat complexes

H =: · · · �� H1
�� H0

�� H0 �� H1 �� · · ·

with X = Ker(H0 −→ H1) and which remains exact after applying I⊗− for any injective
complex I of right R-modules.

Proof. The necessity follows from the fact that every flat complex is graded flat.
For sufficiency, split the sequence H as follows:

0 �� X �� H0 �� X1 �� 0 (†1)

0 �� X1 �� H1 �� X2 �� 0 (†2)

· · · · · ·

0 �� Xi �� Hi �� Xi+1 �� 0 (†i+1)
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· · · · · ·

and

0 �� X1
�� H0

�� X �� 0 (†1)

0 �� X2
�� H1

�� X1
�� 0 (†2)

· · · · · ·

0 �� Xi+1 �� Hi �� Xi �� 0 (†i+1)

· · · · · ·

Since H0 is graded flat, by the proof of Proposition 3.5, there is an exact sequence

0 �� H0 �� F0 �� G1 �� 0

with F0 flat and G1 graded flat. Consider the following push-out diagram:

0

��

0

��
0 �� X �� H0

��

�� X1

��

�� 0

0 �� X �� F0

��

�� U1

��

�� 0

G1

��

G1

��
0 0

By assumption, the sequence (†1) remains exact after applying I⊗− for any injective
complex I of right R-modules. Hence, it is easily seen that Tor1(I, X1) = 0 for any
injective complex I of right R-modules, and so the long exact sequence lemma yields
that Tor1(I, U1) = 0 for such I . Thus, the sequence

0 �� X �� F0 �� U1 �� 0
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is still exact when I⊗− is applied for it for any injective complex I of right R-modules.
Now consider the following push-out diagram:

0

��

0

��
0 �� X1

��

�� H1

��

�� X2 �� 0

0 �� U1

��

�� V1

��

�� X2 �� 0

G1

��

G1

��
0 0

Visibly, V1 is graded flat since G1 and H1 are so. Thus, by the proof of Proposition 3.5
there is an exact sequence

0 �� V1 �� F1 �� G2 �� 0

with F1 flat and G2 graded flat. Again, consider the following push-out diagram:

0

��

0

��
0 �� U1 �� V1

��

�� X2

��

�� 0

0 �� U1 �� F1

��

�� U2

��

�� 0

G2

��

G2

��
0 0

It is easy to see that the sequence

0 �� U1 �� F1 �� U2 �� 0

is still exact when I⊗− is applied for it for any injective complex I of right R-modules.
Assemble the sequences 0 �� X �� F0 �� U1 �� 0 and

0 �� U1 �� F1 �� U2 �� 0 .
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Then we have an exact sequence

0 �� X �� F0 �� F1 �� U1 �� 0,

which remains exact when I⊗− is applied for it for any injective complex I of right
R-modules. Inductively, we can get an exact sequence

0 �� X �� F0 �� F1 �� · · · , (∗)

which remains exact when I⊗− is applied for it for any injective complex I of right
R-modules.

Using the method dual to the above, we can get an exact sequence

· · · �� F1
�� F0

�� X �� 0 , (∗∗)

which remains exact when I⊗− is applied for it for any injective complex I of right
R-modules. Assembling the sequences (∗) and (∗∗), we get a complete flat resolution
of X , this proves that X is Gorenstein flat. Thus, the result follows. �

In [2], Bennis introduced the notion of a left GF-closed ring and studied Gorenstein
flat modules over such rings.

DEFINITION 3.7. ([2]) A ring R is called left GF-closed if the class of the Gorenstein
flat left R-modules is closed under extensions, i.e. if 0 → X → Y → Z → 0 is an exact
sequence with X and Z Gorenstein flat modules, then Y is also Gorenstein flat. A right
GF-closed ring can be defined similarly.

Bennis showed in [2] that all right coherent rings and all rings with finite weak
dimension are left GF-closed. Also, the class of left GF-closed rings includes strictly
the one of the right coherent rings and the one of the rings with finite weak dimension.

Let X be a class of modules. Following [17], the class X is called projectively
resolving if all projective modules are contained in X , and for every short exact
sequence 0 → X ′ → X → X ′′ → 0 with X ′′ ∈ X the conditions X ∈ X and X ′ ∈ X
are equivalent. Bennis proved (Theorem 2.3 in [2]) that a ring R is left GF-closed if
and only if the class of the Gorenstein flat left R-modules is projectively resolving.

LEMMA 3.8. Let R be a left GF-closed ring, 0 �� M
f �� F

g �� N �� 0
be a short exact sequence of R-modules. If N is Gorenstein flat and F is flat, then
Coker(α) is Gorenstein flat for any homomorphism f ′ : M −→ F ′ with F ′ flat, where
α = (f, f ′) : M −→ F ⊕ F ′.

Proof. Suppose f ′ : M −→ F ′ is any homomorphism with F ′ flat. Then the

sequence 0 �� M
α �� F ⊕ F ′ �� Coker(α) �� 0 is exact. By the factor

lemma, there is a homomorphism μ : Coker(α) −→ N such that the following diagram
commutes:

0 �� M
α �� F ⊕ F ′

π

��

�� Coker(α)

μ

��

�� 0

0 �� M
f �� F

g �� N �� 0
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where π : F ⊕ F ′ −→ F is the canonical projection. By the five lemma,
we get that μ is an epimorphism, and Ker(μ) ∼= Ker(π ) = F ′ is flat by
the snake lemma. Since R is left GF-closed, the short exact sequence

0 �� Ker(μ) �� Coker(α)
μ �� N �� 0 yields that Coker(α) is Gorenstein

flat. �
LEMMA 3.9. Let R be a left GF-closed ring, and X be a complex. If Xi is Gorenstein

flat in R-Mod for all i ∈ �, then X is Gorenstein flat.

Proof. Since each Xi is Gorenstein flat, there exists a short exact sequence

of modules 0 �� Xi
fi �� Hi �� Yi �� 0 such that Hi is flat and Yi is

Gorenstein flat for each i ∈ �. If we define the morphism α : X −→ ⊕i∈�Di+1(Hi) = F0

of complexes as the following:

X =: · · · �� Xi+2

(fi+2,fi+1δ
X
i+2)

��

δX
i+2 �� Xi+1

(fi+1,fiδ
X
i+1)

��

δX
i+1 �� Xi

(fi,fi−1δ
X
i )

��

δX
i �� Xi−1

(fi−1,fi−2δ
X
i−1)

��

�� · · ·

F0 =: · · · �� Hi+2 ⊕ Hi+1 �� Hi+1 ⊕ Hi �� Hi ⊕ Hi−1 �� Hi−1 ⊕ Hi−2 �� · · ·

that is, αi = (fi, fi−1δ
X
i ) for each i ∈ �, then we get that an exact sequence

0 �� X
α �� F0 �� K1 �� 0

with F0 flat and K1 = Coker(α). It follows from Lemma 3.8 that each (K1)i = Coker(αi)
is Gorenstein flat. Thus, the above short exact sequence is still exact after applying I⊗−
for any injective complex I of right R-modules since Tor1(I, K1) = 0 by Lemma 3.4.
Note that K1 has the same properties as X . Then, we can use the same procedure to
construct an exact sequence of flat complexes

0 �� X �� F0 �� F1 �� · · · , (	)

which remains exact when the functor I⊗− is applied for it for any injective complex
I of right R-modules.

Suppose that the sequence

· · · �� F1
�� F0

�� X �� 0 (		)

is a flat resolution of X . Since R is left GF-closed, the class of all Gorenstein flat modules
is projectively resolving. Then it is easy to see that each Ki = Ker(Fi −→ Fi−1) has the
same properties as X for all i ≥ 0, where F−1 = X . Thus, we get from Lemma 3.4 that
the sequence (		) is still exact when I⊗− is applied for it for any injective complex
I of right R-modules. Assembling the sequences (	) and (		), we get a complete flat
resolution of X , so X is Gorenstein flat. �

LEMMA 3.10. If X is a Gorenstein flat complex, then each Xm is a Gorenstein flat
module for m ∈ �.

Proof. See the proof of Theorem 4.3 in [7]. �
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The following result generalises Theorem 4.3 in [7], which was proved for
Gorenstein rings.

THEOREM 3.11. Let R be a left GF-closed ring, and X be a complex. Then X is
Gorenstein flat if and only if Xi is Gorenstein flat for all i ∈ �.

Proof. Use Lemma 3.9 and Lemma 3.10. �
COROLLARY 3.12. Let R be a right coherent ring, and X be a complex. Then X is

Gorenstein flat if and only if Xi is Gorenstein flat for all i ∈ �.

Proof. Use Theorem 3.11 and Proposition 2.2 in [2]. �
It is easily seen in Theorem 3.11 that when R is left GF-closed then the Gorenstein

flat objects in the category complexes possess many properties as the Gorenstein flat
modules in the category of modules. For example, the class of all Gorenstein flat
complexes of modules is closed under direct limits by Lemma 3.1 in [23] and under
extensions, any direct summand of a Gorenstein flat complex is Gorenstein flat by
Corollary 2.6 in [2].

Let C be a complex. We define the Gorenstein flat dimension, Gfd(C) of
C as Gfd(C) = inf{n| there exists an exact sequence 0 → Xn → Xn−1 → · · · → X0 →
C → 0 with each Xi Gorenstein flat}. If no such n exists, set Gfd(C) = ∞. Details
and results on Gorenstein flat dimension of modules or of complexes appeared in [2,
5, 6, 11, 17–19].

THEOREM 3.13. Let R be a left GF-closed ring and C be a complex. Then Gfd(C) =
sup{Gfd(Ci)|i ∈ �}.

Proof. We begin by showing that Gfd(C) ≤ sup{Gfd(Ci)|i ∈ �}. If sup{Gfd(Ci)|i ∈
�} = ∞, then Gfd(C) ≤ sup{Gfd(Ci)|i ∈ �}. So naturally we may assume that
sup{Gfd(Ci)|i ∈ �} = n is finite. Consider a partial flat resolution

0 �� Kn �� Fn−1 �� · · · �� F1
�� F0

�� C �� 0

of C, where each Fj is flat. Then (Kn)i is Gorenstein flat for all i ∈ � by Theorem
2.8 in [2]. Now, by Theorem 3.11, Kn is a Gorenstein flat complex. This shows that
Gfd(C) ≤ sup{Gfd(Ci)|i ∈ �}.

Next, we will show that sup{Gfd(Ci)|i ∈ �} ≤ Gfd(C). Naturally, we may assume
that Gfd(C) = n is finite. Then there exists an exact sequence of complexes

0 �� Xn �� Xn−1 �� · · · �� X1
�� X0

�� C �� 0

with each Xj Gorenstein flat. By Theorem 3.11, we get that (Xj)i is Gorenstein flat for
all i ∈ � and all j = 0, 1, · · · , n. Thus, Gfd(Ci) ≤ n for all i ∈ �, and so sup{Gfd(Ci)|i ∈
�} ≤ n = Gfd(C). �

4. Stability of Gorenstein flat categories of modules. In this section, we give an
application of the characterisations of Gorenstein flat complexes in the former section
and show that an iteration of the procedure used to define the Gorenstein flat modules
over a left GF-closed ring R yields exactly the Gorenstein flat modules. We are inspired
by Sather-Wagstaff et al. [21, 22] to introduce the following definition.
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DEFINITION 4.1. An R-module M is said to be two-degree Gorenstein flat if there
exists an exact sequence of Gorenstein flat R-modules

G = · · · δG
2 �� G1

δG
1 �� G0

δG
0 �� G−1

δG
−1 �� · · ·

such that the complex H ⊗R G is exact for each Gorenstein injective right R-module
H and M ∼= Ker(δG

0 ).

We denote the class of all two-degree Gorenstein flat R-modules by G2(F(R)),
and denote the class of all Gorenstein flat R-modules by G(F(R)). Let X ∈ G(F(R)).
Then using a resolution of the form · · · → 0 → X → X → 0 → · · ·, one sees that
G(F(R)) ⊆ G2(F(R)). Our aim is to prove that the containment G(F(R)) ⊆ G2(F(R))
is always an equality when R is a left GF-closed ring. To achieve this, we need the
following lemma.

LEMMA 4.2. Let X be an exact Gorenstein flat complex. If J ⊗R X is exact for any
injective right R-module J, then ZmX are Gorenstein flat modules for all m ∈ �.

Proof. Since X is Gorenstein flat, there exists an exact sequence of flat complexes

· · · �� F1
u1 �� F0

u0 �� F0 u0
�� F1 u1

�� · · · (
)

with X = Ker(u0) = Im(u0) and remains exact when I⊗− is applied to it for any
injective complex I of right R-modules. Split this sequence as follows:

0 �� Im(u1) �� F0
�� X �� 0 (
1)

0 �� Im(u2) �� F1
�� Im(u1) �� 0 (
2)

· · · · · ·

0 �� Im(ui+1) �� Fi �� Im(ui) �� 0 (
i+1)

· · · · · ·
and

0 �� X �� F0 �� Ker(u1) �� 0 (
1)

0 �� Ker(u1) �� F1 �� Ker(u2) �� 0 (
2)

· · · · · ·

0 �� Ker(ui) �� Fi �� Ker(ui+1) �� 0 (
i+1)

· · · · · ·
Then, it is easy to see that all complexes Im(ui) and Ker(ui) are exact Gorenstein flat
for i ≥ 1. An argument using Lemma 3.10 yields that sequences Im(ui) and Ker(ui)
remain exact when J ⊗R − is applied to them for any injective right R-module J and
for any i ≥ 1. Hence, each Im(ui) and Ker(ui) have the same properties as X .
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Notice that Hom(Sm(R), C) ∼= Ker(δC
m) = ZmC for any complex C and for any

m ∈ �, thus if F is a flat complex, then Hom(Sm(R), F) = ZmF is a flat R-module. On
the other hand, since Sm(R) is semi-projective, we get that Ext1(Sm(R), E) = 0 for any
exact complex E ([13]). Then, we apply the functor Hom(Sm(R),−) to (
i) and (
i) and
get exact sequences:

0 �� Zm(Im(u1)) �� ZmF0
�� ZmX �� 0 (z
1)

0 �� Zm(Im(u2)) �� ZmF1
�� Zm(Im(u1)) �� 0 (z
2)

· · · · · ·

0 �� Zm(Im(ui+1)) �� ZmFi �� Zm(Im(ui)) �� 0 (z
i+1)

· · · · · ·

and

0 �� ZmX �� ZmF0 �� Zm(Ker(u1)) �� 0 (z
1)

0 �� Zm(Ker(u1)) �� ZmF1 �� Zm(Ker(u2)) �� 0 (z
2)

· · · · · ·

0 �� Zm(Ker(ui)) �� ZmFi �� Zm(Ker(ui+1)) �� 0 (z
i+1)

· · · · · ·

Thus, we assemble these sequences (z
i) and (z
i) and get an exact sequence of flat
modules

· · · �� ZmF1
�� ZmF0

�� ZmF0 �� ZmF1 �� · · · (�)

with ZmX ∼= Im(ZmF0 → ZmF0) ∼= Ker(ZmF0 → ZmF1). Now we claim that the
sequence (�) remains exact when the functor J ⊗R − is applied to it for any injective
right R-module J.

Let J be an injective right R-module. By assumption, the sequence J ⊗R X is exact,
so we get an exact sequence

0 �� Zm+1(J ⊗R X) �� J ⊗R Xm+1 �� Zm(J ⊗R X) �� 0 .

On the other hand, by Lemma 3.10, Xm+1 is Gorenstein flat in R-Mod, and
so TorR

1 (J, Xm+1) = 0. Hence, applying the functor J ⊗R − to the exact sequence
0 → Zm+1X → Xm+1 → ZmX → 0 yields that the sequence

0 �� TorR
1 (J, ZmX) �� J ⊗R Zm+1X �� J ⊗R Xm+1 �� J ⊗R ZmX �� 0
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is exact. Thus, we have the following commutative diagram with exact rows:

0 �� 0

��

�� Zm+1(J ⊗R X)

�
��

�� J ⊗R Xm+1 �� Zm(J ⊗R X)

�
��

�� 0

0 �� TorR
1 (J, ZmX) �� J ⊗R Zm+1X �� J ⊗R Xm+1 �� J ⊗R ZmX �� 0

Now it follows by the five lemma that TorR
1 (J, ZmX) = 0. Since each Im(ui) and

Ker(ui) have the same properties as X , we can use the same way to show that
TorR

1 (J, Zm(Im(ui))) = TorR
1 (J, Zm(Ker(ui))) = 0 for all i ≥ 1. Then, it is easily seen

that the sequence (�) remains exact when the functor J ⊗R − is applied to it, this
proves that ZmX is a Gorenstein flat module, as desired. �

We are now in the position to give the main result in this section.

THEOREM 4.3. If R is a left GF-closed ring, then G(F(R)) = G2(F(R)).

Proof. We need only to show any R-module M ∈ G2(F(R)) is contained inG(F(R)).
Let M ∈ G2(F(R)). Then there is an exact sequence of the Gorenstein flat R-modules

G = · · · δG
2 �� G1

δG
1 �� G0

δG
0 �� G−1

δG
−1 �� · · ·

such that the complex H ⊗R G is exact for each Gorenstein injective right R-module
H and M ∼= Ker(δG

0 ). By Theorem 3.11, G is Gorenstein flat in R-Comp. On the other
hand, the exact complex G remains exact after applying I ⊗R − for any injective right
R-module, since it is so after applying H ⊗R − for any Gorenstein injective right
R-module. Thus, it follows from Lemma 4.3 that M is Gorenstein flat. �

Since right coherent rings are left GF-closed (Proposition 2.2 in [2], the following
result is easily seen by Theorem 4.3.

COROLLARY 4.4. If R is a right coherent ring, then G(F(R)) = G2(F(R)).
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