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Abstract
An associative ring R is called potent provided that for every x ∈ R, there is an integer n(x) > 1 such that xn(x) = x.
A celebrated result of N. Jacobson is that every potent ring is commutative. In this note, we show that a ring R
is potent if and only if every nonzero subring S of R contains a nonzero idempotent. We use this result to give a
generalization of a recent result of Anderson and Danchev for reduced rings, which in turn generalizes Jacobson’s
theorem.

1. Introduction

Boolean algebras play a significant role not only in mathematics but are also important tools in logic and
computer science. Moreover, there is a natural correspondence between Boolean algebras and so-called
Boolean rings: from a Boolean algebra, one may canonically construct a Boolean ring and vice versa
(for details and an introduction to the subject, see [4]). We recall that an associative ring R is Boolean
provided every member of R is idempotent, that is, x2 = x for every x ∈ R. It is well-known (and an exer-
cise in many undergraduate algebra texts) that every Boolean ring is commutative (see [5], for example).
In fact, if one replaces the exponent 2 in the previous equation with 3, R is still commutative. Indeed,
one can replace 2 with any integer greater than 1, and commutativity is guaranteed. Continuing to gen-
eralize, if one assumes only the existence of some such n > 1 for every x ∈ R (which may depend on x),
R must be commutative. This beautiful result is due to Nathan Jacobson and generalizes Wedderburn’s
theorem that every finite division ring is a field ([13]).

Proposition 1 (Jacobson’s theorem [8]). Let R be an associative ring and suppose that for every x ∈ R,
there is an integer n(x) > 1 such that xn(x) = x (that is, R is a potent ring). Then, R is commutative.

We refer the reader to [2, 3], and [6] for further reading, and to [1] for a recent generalization of
Jacobson’s theorem.

Changing gears temporarily, the theory of idempotents contributes significantly to the theory of both
commutative and non-commutative rings. Indeed, the number of different kinds of idempotents defined
in the literature (orthogonal, central, primitive, local, irreducible, etc.) as well as rings defined in terms
of idempotents (Baer, semisimple, von Neumann regular, Zorn, Rickart, etc.) indicates the utility of
this notion in the structure theory of rings (see [11] for details). The purpose of this short note is to
identify potency with a natural condition on the existence of idempotents. Specifically, we prove that an
associative ring R is potent if and only if every nonzero subring of R contains a nonzero idempotent.
We mention the classic texts [5] and [7] as references for some standard algebraic results utilized in the
paper such as the Chinese remainder theorem, the division algorithm for polynomials over a field, and
Lagrange’s theorem.
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Throughout, a ring is assumed only to be associative and not to be commutative nor to contain an
identity unless specified; subrings are also not assumed unital, even in rings with identity.

2. Main result

Before presenting the main result of this paper, we prove the following lemma. For brevity, let us agree to
call a ring with the property that every nonzero subring contains a nonzero idempotent idempotent-rich.1

Lemma 1. The following hold:

(1) Every subring of an idempotent-rich ring is idempotent-rich.
(2) Every idempotent-rich ring is reduced.
(3) If R is a nonzero reduced ring, then the polynomomial ring XR[X] := {Xf (X) : f (X) ∈ R[X]} in

the (commuting) variable X is not idempotent-rich.
(4) If R is idempotent-rich and e ∈ R is idempotent, then the additive order of e is a square-free

integer.

Proof. We establish each in succession.

(1) Trivial.
(2) Suppose by way of contradiction that R is idempotent-rich but not reduced. Then, there is

some nonzero α ∈ R such that α2 = 0. But now Zα is a nonzero subring of R with no nonzero
idempotent, a contradiction.

(3) Let R be a nonzero reduced ring. We claim XR[X] has no nonzero idempotents. Indeed, consider
an arbitrary f := a1X + · · · + anXn ∈ XR[X], where an �= 0. Then because R is reduced, it is easy
to see that f 2 has degree 2n and thus f 2 �= f .

(4) Let R be idempotent-rich and let e ∈ R be an idempotent. Then Ze is a subring of R and,
moreover, Ze ∼=Z/〈n〉 for some non-negative integer n. If n = 0, then by (1), we see that Z
is idempotent-rich, but this is absurd as the subring 2Z of Z has no nonzero idempotent. Thus,
n > 0 (and hence n = ord(e)). Suppose that n is not square-free, and write n = m2q, where
m,q are integers and m > 1. Then, mq (mod n) is a nonzero nilpotent element of Z/〈n〉, a
contradiction to (1) and (2) above.

We are now ready to prove the main result of this note.

Theorem 1. Let R be a ring. Then, R is potent if and only if every nonzero subring of R contains a
nonzero idempotent.

Proof. Let R be a ring. Suppose first that R is potent. We will show that R is idempotent-rich. Indeed,
suppose that S is a nonzero subring of R, and let s ∈ S be nonzero. By our assumption, there is an integer
n > 1 such that sn = s. Then, sn(sn−2) = s(sn−2), that is, (sn−1)2 = s2n−2 = sn−1. As sn = s and s �= 0, clearly
sn−1 �= 0; since n > 1, sn−1 ∈ S. Hence, S contains a nonzero idempotent.

Conversely, suppose that every nonzero subring of R contains a nonzero idempotent. We shall prove
that R is potent. Suppose that α ∈ R is nonzero. We will show that

the ring αZ[α] := {αf (α) : f (X) ∈Z[X]} is a finite product of finite fields. (2.1)

We first verify that the ring XZ[X] is Noetherian (that is, every ascending chain of ideals stabilizes).
Indeed, notice that every ideal of XZ[X] is also an ideal ofZ[X]. AsZ[X] is Noetherian, XZ[X] is as well.
Next, since αZ[α] is a homomorphic image of XZ[X], we conclude that αZ[α] is a Noetherian ring. It

1 This definition can be seen as a strengthening of the definition of a so-called Zorn ring (due to Kaplansky; see [10]), which is a
ring for which every nonzero non-nil ideal contains a nonzero idempotent. Zorn rings need not be commutative.
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now follows immediately that αZ[α] does not contain an infinite internal direct sum of nonzero ideals.
Therefore (see Lemma 4 of [12]),

αZ[α] = I1 ⊕ I2 · · · ⊕ In for some nonzero indecomposable ideals I1, . . . , In of αZ[α]. (2.2)

Next, fix k with 1 ≤ k ≤ n, and set I := Ik. Then, I is a nonzero subring of αZ[α] and thus contains
a nonzero idempotent e. Let J := {ie − i : i ∈ I}. Observe that J is a subideal of I and that Ie + J = I.
We claim that the sum is direct: suppose that xe = ye − y for some x, y ∈ I. Multiplying through by e
and using the fact that e is idempotent, we see that xe = ye − ye = 0, proving the directness of the sum.
Because e is a nonzero element of Ie, and since I is indecomposable, we have Ie = I. By (4) of Lemma 1,
the additive order of e is a square-free integer. As αZ[α] is commutative, this clearly implies that the
additive order of every member of Ie = I is also a square-free integer. Since k was arbitrary, it follows
easily from (2.2) above that the order of every member of αZ[α] is a square-free integer; in particular,
the order of α is a square-free integer m. From this fact, we deduce that2

the additive order of every element of αZ[α] is a factor of m. (2.3)

The map a1X + · · · + anXn → a1α + · · · + anα
n is now a well-defined ring surjection of XZ/〈m〉[X]

onto αZ[α]. Thus,

αZ[α] ∼= XZ/〈m〉[X]/K for some ideal K of XZ/〈m〉[X]. (2.4)

Write m = p1p2 · · · pn, where the pi are distinct primes (recall above that α �= 0, and hence m > 1).
As is well-known, a simple application of The Chinese Remainder Theorem yields that, as rings,
Z/〈m〉 ∼=Z/〈p1〉 ⊕ · · · ⊕Z/〈pn〉. We conclude that XZ/〈m〉[X] ∼= XZ/〈p1〉[X] ⊕ · · · ⊕ XZ/〈pn〉[X]. We
may now view K as an ideal of XZ/〈p1〉[X] ⊕ · · · ⊕ XZ/〈pn〉[X]. Via this identification,

αZ[α] ∼= (XZ/〈p1〉[X] ⊕ · · · ⊕ XZ/〈pn〉[X])/K. (2.5)

Next, for 1 ≤ i ≤ n, let Ii := K ∩ XZ/〈pi〉[X]. We claim that Ii is nontrivial. If Ii is trivial, then the
mapping y �→ K + y is a ring isomorphism of XiZ/〈pi〉[X] into (XZ/〈p1〉[X] ⊕ · · · ⊕ XZ/〈pn〉[X])/K ∼=
αZ[α]. But then by (1) of Lemma 1, XZ/〈pi〉[X] is idempotent-rich, contradicting (3) of Lemma 1. So
we see that each Ii is a nonzero ideal of XZ/〈pi〉[X]. But it is easy to see that Ii is also a nonzero ideal
of the PID Z/〈pi〉[X]. The Division Algorithm for polynomials over a field shows that Z/〈pi〉[X]/Ii is
finite and thus also

each XZ/〈pi〉[X]/Ii is finite. (2.6)

Now observe that

(XZ/〈p1〉[X] ⊕ · · · ⊕ XZ/〈pn〉[X])/(I1 ⊕ · · · ⊕ In) ∼= XZ/〈p1〉[X]/I1 ⊕ · · · ⊕ XZ/〈pn〉[X]/In. (2.7)

Invoking (2.6), it follows that (XZ/〈p1〉[X] ⊕ · · · ⊕ XZ/〈pn〉[X])/(I1 ⊕ · · · ⊕ In) is finite. Since
I1 ⊕ · · · ⊕ In ⊆ K,3 it is immediate that

αZ[α] ∼= (XZ/〈p1〉[X] ⊕ · · · ⊕ XZ/〈pn〉[X])/K is finite. (2.8)

Thus, finally, we see that αZ[α] is a finite, reduced commutative ring. As is well-known (see
p. 22 of [9], for example), this implies that αZ[α] has an identity. By the Chinese Remainder Theorem,
αZ[α] = F1 ⊕ · · · ⊕ Fk for some finite fields F1, . . . , Fk, establishing (2.1). We claim that

α(|F1|−1)(|F2|−1)···(|Fk |−1)+1 = α, (2.9)

showing that R is potent. To see this, fix i with 1 ≤ i ≤ k, and let πi : αZ[α] → Fi be projection onto the
ith coordinate. It clearly suffices to establish that (πi(α))(|F1|−1)(|F2|−1)···(|Fk |−1)+1 = πi(α). If πi(α) = 0i, this
is patent, so assume that πi(α) �= 0. Lagrange’s Theorem implies that πi(α)|Fi|−1 = 1i. Raising both sides

2 Recall that an ideal I of a ring S is indecomposable provided I �= J ⊕ K for any nonzero ideals J and K of S.
3 Observe that since none of the rings XZ/〈pi〉[X] has an identity, we cannot necessarily decompose K into a direct sum of ideals
of the form J1 ⊕ · · · ⊕ Jn, where each Ji is an ideal of XZ/〈pi〉[X].
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to the power
∏

j �=i |Fj| − 1 and then multiplying through by πi(α) yields the desired equation, and (2.9)
is established. The proof is now complete.

The following equivalent formulation of Jacobson’s theorem is immediate.

Corollary 1 (Jacobson’s Theorem, Alternative Form). Let R be a ring. If every nonzero subring of R
contains a nonzero idempotent of R, then R is commutative.

In [1], the authors show that if R is a ring with identity such that for every x ∈ R, there are positive
integers m(x) and n(x) of different parity such that xm(x) = xn(x), then R potent, and hence commutative.
Note that the assumption that R is unital cannot be dropped completely, since every nil ring trivially has
this property, and there are noncommutative nil rings. However, if R has no nonzero nilpotent elements,
then we have the following stronger result.

Corollary 2. Let R be a reduced ring. Suppose that for every nonzero subring S of R, there exists a
nonzero x ∈ S and distinct positive integers m(x) and n(x) such that xm(x) = xn(x). Then, R is commutative.

Proof. Suppose that R is reduced with the above property. It suffices to prove that every nonzero
subring of R contains a nonzero idempotent. Thus, let S be a nonzero subring and let x ∈ S be nonzero
and such that xm = xn for some distinct positive integers m and n. Without loss of generality, we may
assume that m > n. Let l := m − n. Then, it follows easily by induction that for every positive integer r,
we have xm+rl = xn. Thus, we may assume without loss of generality that m > 2n. Now set k := m − 2n.
Then, observe that (xn+k)2 = x2(n+k) = xm+k = xn+k. As R is reduced, xn+k is a nonzero idempotent of S, and
the conclusion follows.
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