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The incompressible μ(I)-rheology has been used to study subaerial granular flows with
remarkable success. For subaquatic granular flows, drag between grains and the pore
fluid is substantially higher and the physical behaviour is more complex. High drag
forces constrain the rearrangement of grains and dilatancy, leading to a considerable
buildup of pore pressure. Its transient and dynamic description is the key to modelling
subaquatic granular flows but out of the scope of incompressible models. In this work, we
advance from the incompressible μ(I)-rheology to the compressible μ(J), φ(J)-rheology
to account for pore pressure, dilatancy and the scaling laws under subaquatic conditions.
The model is supplemented with critical state theory to yield the correct properties in the
quasi-static limit. The pore fluid is described by an additional set of conservation equations
and the interaction with grains is described by a drag model. This new implementation
enables us to include most of the physical processes relevant for submerged granular flows
in a highly transparent manner. Both the incompressible and compressible rheologies
are implemented into OpenFOAM, and various simulations at low and high Stokes
numbers are conducted with both frameworks. We found a good agreement of the μ(J),
φ(J)-rheology with low-Stokes-number experiments, which incompressible models fail to
describe. The combination of granular rheology, pore pressure and drag model leads to
complex phenomena such as apparent cohesion, remoulding, hydroplaning and turbidity
currents. The simulations give remarkable insights into these phenomena and increase our
understanding of subaquatic mass transports.
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M. Rauter

1. Introduction

Avalanches and landslides, as well as many industrial processes, can be classified
as granular flows. Substantially improved rheological formulations have given rise to
numerous attempts to simulate these phenomena with models of Navier–Stokes type.
The vast number of studies rely on the μ(I)-rheology and its derivatives. The core of
the μ(I)-rheology is the Drucker–Prager yield criterion (Drucker & Prager 1952; Rauter,
Barker & Fellin 2020) and the recognition that the friction coefficient μ is solely a function
of the inertial number I (GDR MiDi 2004; Jop, Forterre & Pouliquen 2006). Further
studies found a similar correlation between the inertial number and the packing density
φ (Forterre & Pouliquen 2008).

A similar scaling was found in granular flows with low Stokes numbers St (see (2.31)).
The Stokes number is related to the ratio between inertia and drag force on a particle
and thus describes the influence of ambient fluid on the granular flow dynamics (e.g.
Finlay 2001). Small Stokes numbers indicate a strong influence of the pore fluid on the
particles, and hence also on the landslide dynamics. In this regime, the viscous number
J replaces the inertial number I as a control parameter for the friction coefficient μ and
the packing density φ, forming the so-called μ(J), φ(J)-rheology (Boyer, Guazzelli &
Pouliquen 2011). Furthermore, excess pore pressure can be remarkably high under these
conditions and it is imperative to explicitly consider it in numerical simulations. High drag
forces and respectively small Stokes numbers are usually related to small particles. They
are virtually omnipresent in geophysical flows: submarine landslides (Kim et al. 2019),
turbidity currents (Heerema et al. 2020), powder snow avalanches (Sovilla, McElwaine
& Louge 2015) and pyroclastic flows (Druitt 1998) can be dominated by fine-grained
components. It follows that a large proportion of gravitational mass flows occur at low
Stokes numbers, and a deeper understanding of the respective processes is relevant for
research in many areas.

Incompressible granular flow models have been applied in different forms to various
problems in the past decade. Lagrée, Staron & Popinet (2011) were the first to conduct
numerical simulations of subaerial granular collapses with the μ(I)-rheology and the
finite-volume method. Staron, Lagrée & Popinet (2012) used the same method to simulate
silo outflows, and Domnik et al. (2013) used a constant friction coefficient to simulate
granular flows on inclined planes. Von Boetticher et al. (2016, 2017) applied a similar
model, based on OpenFOAM, to debris flows, and many more examples can be found in
the literature. More recently, compressible flow models have been introduced to simulate
subaquatic granular flows at low Stokes numbers. The applied methods include, for
example, smoothed particle hydrodynamics (Wang et al. 2017), coupled lattice Boltzmann
and discrete-element method (Yang, Kwok & Sobral 2017), the material point method
(Baumgarten & Kamrin 2019) or the finite-volume multiphase framework of OpenFOAM
(Si, Shi & Yu 2018a). Results have often been compared to the experiments of Balmforth
& Kerswell (2005) (subaerial) and Rondon, Pouliquen & Aussillous (2011) (subaquatic),
two works that have gained benchmark character in the granular flow community.

Most of the mentioned applications rely on standard methods from computational
fluid dynamics. This is reasonable, considering the similarity between the hydrodynamic
(Navier–Stokes) equations and the granular flow equations. However, the pressure-
dependent and shear-thinning viscosity associated with granular flows introduces
considerable conceptual and numerical problems. The unconditional ill-posedness of an
incompressible granular flow model with constant friction coefficient was described by
Schaeffer (1987), and the partial ill-posedness of the μ(I)-rheology by Barker et al. (2015).

915 A87-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.107


Compressible granular collapse in a fluid as a continuum

φg ≈ 0.6

φc ≈ 0.4
φg = 0

φc = 1

uc

uc

ug

Grain–fluid mixture
Fluid

Figure 1. Definition of phase fractions φi and phase velocities ui inside and outside a dense granular avalanche
for the two-phase model. Phase velocities can differ, allowing phase fractions to change, giving the avalanche
compressible properties.

By carefully tuning the respective relations, Barker & Gray (2017) were able to regularize
the μ(I)-rheology for all but very high inertial numbers. Barker et al. (2017) described a
well-posed compressible rheology, incorporating the μ(I)-rheology as a special case.

Another pitfall of granular rheologies is the concept of effective pressure. When pore
pressure is considerably high (i.e. at low Stokes numbers), it is imperative to distinguish
between effective pressure and total pressure (first described by Terzaghi (1925)). Effective
pressure represents normal forces in the grain skeleton, which have a stabilizing effect, in
contrast to pore pressure, which has no stabilizing effect. This has been shown to be a major
issue, as pore pressure, and consequently the effective pressure, reacts very sensitively to
the packing density and dilatancy (Rondon et al. 2011).

Besides the rheology, tracking of the slide geometry poses a major challenge. Surface
tracking is usually implemented in terms of the algebraic volume-of-fluid method (e.g.
Lagrée et al. 2011; Si et al. 2018a), the level-set method (e.g. Savage, Babaei & Dabros
2014), geometric surface tracking methods (e.g. Roenby, Bredmose & Jasak 2016; Marić,
Marschall & Bothe 2018) or particle-based methods (e.g. Wang et al. 2017; Baumgarten
& Kamrin 2019).

The volume-of-fluid method, which is also used in this work, allows one to track the
slide as a single component but also as a mixture of multiple phases (grains and pore
fluid). Components are defined therein as objects (e.g. the landslide) that completely cover
a bounded region in space without mixing with other components (e.g. the ambient fluid);
see figure 3. The tracking becomes a purely geometric problem (see e.g. Roenby et al.
(2016) for a geometric interpretation). In contrast, phases (e.g. grains) are dispersed and
mixed with other phases (e.g. pore fluid) to represent the dynamic bulk of the landslide;
see figure 1.

Componentwise tracking is used in various landslide models (e.g. Lagrée et al.
2011; Domnik et al. 2013; Barker & Gray 2017). Components, i.e. the slide and the
surrounding fluid, are immiscible and separated by a sharp interface. Usually, this also
implies that the model is incompressible. Phase-wise tracking is commonly applied in
chemical engineering (Gidaspow 1994; van Wachem 2000; Passalacqua & Fox 2011) and
has recently been introduced to environmental engineering (e.g. Chauchat et al. 2017;
Cheng, Hsu & Calantoni 2017; Si et al. 2018a). This approach allows one to describe a
variable mixture of grains and pore fluid that merges smoothly into the ambient fluid.
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M. Rauter

The description of the pore fluid as an individual phase enables the model to decouple
effective pressure from pore pressure, which is imperative in many flow configurations,
e.g. for low Stokes numbers.

In this work, a two-component Navier–Stokes type model and a two-phase
Navier–Stokes type model are applied to granular flows. Both models are implemented
into the open-source toolkit OpenFOAM (Weller et al. 1998; Rusche 2002; OpenCFD Ltd
2004), using the volume-of-fluid method for component- and phase-wise tracking (see
§ 2). Subaerial (Balmforth & Kerswell 2005) and subaquatic granular collapses (Rondon
et al. 2011) are simulated with both models and results are compared with the respective
experiments and with each other.

We apply the μ(I), φ(I)-rheology to subaerial cases (St � 1) and the μ(J),
φ(J)-rheology to subaquatic cases (St � 1). The two-component model applies simplified
rheologies in the form of the incompressible μ(I) and μ(J)-rheologies. The φ(I) and
φ(J) curves are merged into the particle pressure relation of Johnson & Jackson (1987)
to achieve the correct quasi-static limits (Vescovi, di Prisco & Berzi 2013). This yields
reasonable values for the packing density at rest, which is imperative for granular collapses
with static regions. In contrast to many previous works (e.g. Savage et al. 2014; von
Boetticher et al. 2017; Si et al. 2018a), we renounce additional contributions to shear
strength (e.g. cohesion) because we do not see any physical justification (e.g. electrostatic
forces, capillary forces, cementing) in the investigated cases. We apply a very transparent
and simple model, focusing on the relevant physical processes, and achieve a remarkable
accuracy, especially in comparison to more complex models (e.g. Si et al. 2018a;
Baumgarten & Kamrin 2019). Further, it is shown that various experimental set-ups with
different initial packing densities can be simulated with the same constitutive parameters,
whereas many previous attempts required individual parameters for different cases (e.g.
Savage et al. 2014; Wang et al. 2017; Si et al. 2018a).

The paper is organized as follows. The multiphase (§ 2.1) and multicomponent (§ 2.2)
models are introduced in § 2, including models for granular viscosity (§ 2.3), granular
particle pressure (§§ 2.4 and 2.5) and drag (§ 2.6). Results are shown and discussed in § 3
for a subaerial case and in § 4 for two subaquatic cases. A conclusion is drawn in § 5 and
a summary is given in § 6. Furthermore, a thorough sensitivity analysis is provided in the
Appendix.

2. Methods

2.1. Two-phase landslide model
The two-phase model is based on the phase momentum and mass conservation equations
(see e.g. Rusche 2002). The governing equations for the continuous fluid phase are given
as

∂φc

∂t
+ ∇ · (φcuc) = 0, (2.1)

∂φcρcuc

∂t
+ ∇ · (φcρcuc ⊗ uc) = ∇ · (φcT c) − φc∇p + φcρcg + kgc(ug − uc), (2.2)

and for the grains as

∂φg

∂t
+ ∇ · (φgug) = 0, (2.3)
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Compressible granular collapse in a fluid as a continuum

p

ps
ptot

Figure 2. Representative volume element of a grain–fluid mixture. The effective pressure ps (red arrows)
represents normal forces in the grain skeleton (black arrows). The pore pressure (blue arrows) represents
pressure that is equally shared by pore fluid and grains.

∂φgρgug

∂t
+ ∇ · (φgρgug ⊗ ug) = ∇ · (φgT g) − ∇ ps − φg∇p + φgρgg + kgc(uc − ug).

(2.4)

Here the phase-fraction fields φg and φc, i.e. the phase volume over the total volume (the
index i indicates either c or g),

φi = Vi

V
, (2.5)

describe the composition of the grain–fluid mixture; see figure 1. The granular phase
fraction is identical to the packing density φ = φg. Phase fractions take values between
zero and one and the sum of all phase fractions yields one. The pore fluid is assumed to
match the surrounding fluid, and the respective phase fraction φc is therefore one outside
the slide. This way, phase-fraction fields provide a mechanism to track not only the packing
density of the slide, but also its geometry. Every phase moves with a unique velocity field
ui, which is not divergence-free. This allows the mixture to change, yielding a variable
packing density and thus bulk compressibility, although the phase densities ρg and ρc are
constant. The volume-weighted average velocity is divergence free,

∇ · ū = ∇ · (φgug + φcuc) = 0, (2.6)

which allows one to use numerical methods for incompressible flow.
The pore pressure (or shared pressure) p acts on all phases equally, while the grain

phase experiences additional pressure due to force chains between particles, the so-called
effective pressure (or particle pressure) ps; see figure 2. The effective pressure is a function
of the packing density in this model, and the balance between effective pressure and
external pressure (e.g. overburden pressure) ensures realistic packing densities. The total
pressure can be assembled as

ptot = p + ps. (2.7)
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M. Rauter

The deviatoric phase stress tensors are expressed as

T i = 2ρiνiSi, (2.8)

with phase viscosity νi, phase density ρi and deviatoric phase strain-rate tensor

Si = 1
2(∇ui + (∇ui)

T) − 1
3∇ · uiI. (2.9)

The viscosity of the pore fluid νc is usually constant and the granular viscosity νg follows
from constitutive models like the μ(I)-rheology (see § 2.3). The total deviatoric stress
tensor can be calculated as

T = φcT c + φgT g. (2.10)

The last terms in (2.2) and (2.4) represent drag forces between phases and kgc is the drag
coefficient of the grains in the pore fluid. Lift and virtual mass forces are neglected in this
work, because they play a minor role (Si et al. 2018a).

The granular viscosity νg, the effective pressure ps and the drag coefficient kgc represent
interfaces to exchangeable submodels, presented in §§ 2.3–2.6.

2.2. Two-component landslide model
Many two-phase systems can be substantially simplified by assuming that phases move
together, i.e. that phase velocities are equal,

ui ≈ ū = φgug + φcuc. (2.11)

This fits very well to completely separated phases that are divided by a sharp interface (e.g.
surface waves in water Rauter et al. (2021)), but also systems of mixed phases (e.g. grains
and fluid) can be handled to some extent (e.g. Lagrée et al. 2011). The phase momentum
conservation equations (2.2) and (2.4) can be combined into a single momentum
conservation equation and the system takes the form of the ordinary Navier–Stokes
equations with variable fluid properties (see e.g. Rusche 2002),

∂ρū
∂t

+ ∇ · (ρū ⊗ ū) = ∇ · T − ∇ ptot + ρg, (2.12)

∇ · ū = 0. (2.13)

A detailed derivation can be found in Appendix A. The pressure is denoted as ptot,
indicating that it contains contributions from hydrodynamic and effective pressure.

The phase-fraction fields φi cannot be recovered after this simplification and the method
switches to the tracking of components instead of phases; see figure 3. Components
are tracked with so-called component indicator functions αi (sometimes called phase
indicator functions but herein we distinguish phases from components), being either one
if component i is present at the respective location or zero otherwise,

αi =
{

1 if component i is present,
0 otherwise.

(2.14)

Values between zero and one are not intended by this method and only appear due to
numerical reasons, i.e. the discretization of the discontinuous field (see § 2.7). Herein, two
component indicator functions are used, one for the ambient fluid component, αc, and one
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Compressible granular collapse in a fluid as a continuum

αs = 1

αc = 0

ρ = ρs

ν = νs

αs = 0

αc = 1

ρ = ρc

ν = νc

ū

ū

Slide component
Ambient component

Sharp interface

(αs = αc = 0.5)

Figure 3. Definition of component indicator functions αi and the velocity ū inside and outside a dense
granular avalanche for the two-component model.

for the slide component, αs (see figure 3). Evolution equations for component indicator
functions can be derived from mass conservation equations as

∂αi

∂t
+ ∇ · (αiū) = 0. (2.15)

The definition of components is straightforward for completely separated phases, where
components can be matched with phases, e.g. water and air. The definition of the slide
component, on the other hand, is not unambiguous, as it consists of a variable mixture of
grains and pore fluid. A boundary of the slide component can, for example, be found by
defining a limit for the packing density (e.g. 50 % of the average packing density). Further,
a constant reference packing density φ̄ has to be determined, which is assigned to the
whole slide component. The density of the slide component follows as

ρs = φ̄ρg + (1 − φ̄)ρc, (2.16)

and a similar relation can be established for the deviatoric stress tensor (see § 2.3.1).
The local density ρ and the local deviatoric stress tensor T can be calculated as

ρ =
∑

i

αiρi = αsρs + αcρc, (2.17)

T =
∑

i

αiT i = αsT s + αcT c, (2.18)

using component densities ρi, as well as component deviatoric stress tensors T i.
Component deviatoric stress tensors are calculated as

T i = 2ρiνiS, (2.19)

with the component viscosity νi and the deviatoric shear-rate tensor S. Note that
the deviatoric shear-rate tensor S matches the shear-rate tensor D, because the
volume-weighted averaged velocity field is divergence-free,

S = D = 1
2 (∇ū + (∇ū)T). (2.20)

The viscosity of the ambient fluid νc is usually constant and the viscosity of the slide
region νs follows from granular rheology; see § 2.3.
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M. Rauter

2.3. Rheology

2.3.1. Unifying rheologies
Most granular rheologies (e.g. the μ(I)-rheology) are defined in terms of the total
deviatoric stress tensor in the slide component T s. This has to be accounted for and
corrected in the two-phase model if the same viscosity model is used in both models.
Similar to (2.16), component viscosities can be related to phase viscosities as

T s = φ̄T g + (1 − φ̄)T c, (2.21)

2ρsνsSs = 2φ̄ρgνgSg + 2(1 − φ̄)ρcνcSc. (2.22)

The contribution of the granular phase to stresses is assumed to be much higher than the
contribution of the pore fluid, φ̄ρgνgSg � (1 − φ̄)ρcνcSc. Further, by neglecting the mass
of the pore fluid, ρs ≈ φ̄ρg, it follows that kinematic viscosities have to be similar in both
models,

νs ≈ νg. (2.23)

Alternatively, one can match the dynamic viscosities νsρs and νgρg if the factor φg is
removed from the viscous term in (2.4). Note that these assumptions are fairly accurate
for subaerial granular flows but questionable for subaquatic granular flows. However,
multiphase and multicomponent models differ substantially under subaquatic conditions
and a unification is not possible.

2.3.2. Drucker–Prager plasticity model
An important characteristic of granular materials is the pressure-dependent shear stress,
described by the Drucker–Prager yield criterion (Drucker & Prager 1952). Schaeffer (1987)
was the first to include granular friction in the Navier–Stokes equations by expressing the
Drucker–Prager yield criterion in terms of the shear-rate tensor and the pressure,

T s = μps
S

‖S‖ , (2.24)

where the norm of a tensor ‖A‖ is defined as

‖A‖ =
√

1
2 tr(A2). (2.25)

The friction coefficient μ is constant and a material parameter in the first model by
Schaeffer (1987). The slide component viscosity follows as

νs = |Ts|/(2ρs|S|) = μps/(2ρs|S|). (2.26)

This relation has been applied with slight modifications by, for example, Domnik et al.
(2013), Savage et al. (2014) and Rauter et al. (2020). Following the findings in § 2.3.1, the
kinematic viscosity of slide and grains have to be similar and the granular phase viscosity
follows as

νs = |Tg|/(2ρs|Sg|) = μps/(2ρgφ|Sg|). (2.27)

The viscosity reaches very high values for ‖S‖ → 0 and very small values for ps → 0,
and both limits can lead to numerical problems.

To overcome numerically unstable behaviour, the viscosity is truncated to an interval
[νmin, νmax]. A thoughtful choice of νmax is crucial for the presented method. Small values
tend towards unphysical results, because solid-like behaviour can only be simulated by
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Compressible granular collapse in a fluid as a continuum

very high viscosities. Large values, on the other hand, tend towards numerical instabilities
(see § 2.7.3). The ideal value for the maximum viscosity depends on the respective case and
can be estimated with a scaling and sensitivity analysis (see Appendix B.1). The relation

νmax = 1
10

√
|g|H3, (2.28)

where H is the characteristic height of the investigated case, was found to give a good
estimate for a reasonable viscosity cutoff. Notably, the Drucker–Prager yield surface leads
to an ill-posed model (Schaeffer 1987) and the truncation of the viscosity is not sufficient
for a regularization. Schaeffer (1987) did not distinguish between effective pressure and
total pressure in (2.26), limiting the applications of his model substantially. We will
explicitly consider effective pressure in (2.26) and (2.27) using (2.34) or (2.36) in the
two-component model and (2.37), (2.40) or (2.43) in the two-phase model to avoid such
limitations.

2.3.3. The μ(I)-rheology
The μ(I)-rheology (GDR MiDi 2004; Jop et al. 2006; Forterre & Pouliquen 2008)
states that the friction coefficient μ is not constant in dense, dry, granular flows but
rather a function of the inertial number I. The inertial number I is defined as the
ratio between the typical time scale for microscopic rearrangements of grains with
diameter d, i.e. tmicro = d

√
ρg/ps, and the macroscopic time scale of the deformation,

i.e. tmacro = 1
2‖S‖−1, thus

I = 2d‖S‖
√

ρg

ps
. (2.29)

In the two-phase model, the shear rate S is replaced by the deviatoric shear rate of grains
Sg. Various approaches have been proposed for the μ(I) curve. Herein we apply the classic
relation, given as

μ(I) = μ1 + (μ2 − μ1)
I

I0 + I
, (2.30)

where μ1, μ2 and I0 are material parameters (Jop et al. 2006). The dynamic friction
coefficient μ(I) is introduced into the Drucker–Prager yield criterion, (2.26) or (2.27),
to get the respective granular viscosity.

2.3.4. The μ(J)-rheology
At small Stokes numbers, defined as

St = 2d2‖S‖ ρg

νcρc
, (2.31)

the pore fluid has substantial influence on the rheology and the microscopic time scale is
defined by the viscous scaling tmicro = νcρc/ps (Boyer et al. 2011). The friction coefficient
is thus no longer a function of the inertial number I but rather one of the viscous number J,
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defined as

J = 2‖S‖νcρc

ps
. (2.32)

The functional relation of the friction coefficient on the viscous number was described by
Boyer et al. (2011) as

μ(J) = μ1 + (μ2 − μ1)
J

J0 + J
+ J + 5

2
φm

√
J, (2.33)

where μ1, μ2, J0 and φm are material parameters (Boyer et al. 2011). The μ(J)-rheology
takes advantage of the Drucker–Prager yield criterion, similar to the μ(I)-rheology.

Notably, the μ(I) and μ(J)-rheology can be combined by forming a new dimensionless
number K = J + αI2 with a constitutive parameter α (Trulsson, Andreotti & Claudin
2012; Baumgarten & Kamrin 2019). However, this was not required for the cases presented
in this work.

2.4. Effective pressure in the two-component model

2.4.1. Total pressure assumption
The two-component model is limited in considering pore pressure and dilatancy effects
because the packing density is not described by this model. The effective pressure can
only be reconstructed from total pressure ptot and various assumptions. The simplest model
assumes that the pore pressure is negligibly small, leading to

ps ≈ ptot. (2.34)

This assumption is reasonable for subaerial granular flows and has been applied to such by
Lagrée et al. (2011) and Savage et al. (2014), for example.

2.4.2. Hydrostatic pressure assumption
In subaquatic granular flows, the surrounding high-density fluid increases the total
pressure substantially and it cannot be neglected. Following Savage et al. (2014),
improvement can be achieved by calculating the hydrostatic pore pressure as

phs =
{

ρcg · (x − x0) for g · (x − x0) > 0,

0 otherwise,
(2.35)

and subtracting it from the total pressure,

ps ≈ ptot − phs. (2.36)

Here, x0 is the position of the free water surface, where the total pressure is assumed
to be zero. For a variable and non-horizontal free water surface, common in landslide
tsunamis, for example, this concept is complicated substantially, and, to the author’s
knowledge, has not been applied. Furthermore, excess pore pressure, which is common
in low-Stokes-number flows, is out of the scope for this model.
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2.5. Effective pressure in the two-phase model

2.5.1. Critical state theory
The structure of the two-phase model allows us to include the packing density in the
effective pressure equation. Critical state theory (Roscoe, Schofield & Wroth 1958;
Schofield & Wroth 1968; Roscoe 1970) was the first model to describe the relationship
between the effective pressure and the packing density. The critical state is defined as a
state of constant packing density and constant shear stress, which is reached after a certain
amount of shearing of an initially dense or loose sample. The packing density in this state,
called the critical packing density φcrit, is a function of the effective pressure ps. This
function can be inverted to get the effective pressure as a function of the critical packing
density. It is further assumed that the flow is in its critical state φg = φcrit to obtain a
model that is compatible with the governing equations. This assumption is reasonable
for avalanches, slides and other granular flows but questionable for the initial release and
deposition. At small deformations, the packing density might be lower (underconsolidated)
or higher (overconsolidated) than the critical packing density, and the effective pressure
model will over- or underestimate the effective pressure.

A popular relation for the effective pressure (the so-called critical state line) has been
described by Johnson & Jackson (1987) and Johnson, Nott & Jackson (1990) as

ps = a
φg − φrlp

φrcp − φg
, (2.37)

where φrlp is the random loose packing density in the critical state, φrcp is the random close
packing density in the critical state and a is a scaling parameter. The scaling parameter a
can be interpreted as the effective pressure at the packing density 1

2 (φrcp + φrlp). Note
that we apply a simplified version of the original relation, similar to Vescovi et al. (2013).
Packing densities above φrcp are not valid and avoided by the asymptote of the effective
pressure at φrcp. If packing densities higher than or equal to φrcp appear in simulations,
they should be terminated and restarted with refined numerical parameters (e.g. time-step
duration).

2.5.2. The φ(I) relation
Equation (2.37) is known to hold for slow deformations in the critical state (see
e.g. Vescovi et al. 2013). However, this relation is not consistent with granular flow
experiments. Granular flows show dilatancy with increasing shear rate, expressed by
Forterre & Pouliquen (2008), for example, as a function of the inertial number I,

φg(I) = φmax − ΔφI, (2.38)

where φmax and Δφ are material parameters. This relation can be transformed into a model
for the effective pressure by introducing the inertial number I,

ps = ρs

(
2‖Sg‖d

Δφ

φmax − φg

)2

. (2.39)

This relation has two substantial problems: (i) for ‖Sg‖ = 0 it yields ps = 0, and (ii) for
φg = 0 it yields ps /= 0, which causes numerical problems and unrealistic results. The
first problem is addressed by superposing (2.39) with the quasi-static relation (2.37),
similar to Vescovi et al. (2013). The second problem is solved by multiplying (2.39)
with the normalized packing density φg/φ̄, which ensures that the pressure vanishes for
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Figure 4. (a) Effective pressure ps following the φ(I) relation as a function of packing density φg and
deviatoric shear rate ‖Sg‖. The dashed lines show the original relation of Forterre & Pouliquen (2008), the
continuous coloured lines show the modified relation and the black line shows the quasi-static limit following
Johnson & Jackson (1987). (b) The critical packing density as a function of particle pressure ps and deviatoric
shear rate ‖Sg‖. The dashed lines follow the original φ(I) relation, and the continuous lines show the modified
version. The critical state theory would result in horizontal lines in this plot.

φg = 0. The normalization with the reference packing density φ̄ ensures that parameters
(φmax, Δφ) will be similar to the original equation.

Further, to reduce the number of material parameters, we set the maximum packing
density in the φ(I) relation equal to the random close packing density φrcp. The final
relation reads

ps = a
φg − φrlp

φrcp − φg
+ ρg

φg

φ̄

(
2‖Sg‖d

Δφ

φrcp − φg

)2

, (2.40)

and is shown in figure 4 alongside the original relations of Johnson & Jackson (1987)
and Forterre & Pouliquen (2008). Interestingly, this relation contains many features of
the extended kinetic theory of Vescovi et al. (2013); compare figure 4(b) herein with
figure 6(b) in Vescovi et al. (2013). Notably, the inertial number is a function of only
the packing density and the shear rate, I = f (φg, ‖Sg‖), because the effective pressure
is calculated as a function of the packing density. The same follows for the friction
coefficient, μ = f (φg, ‖Sg‖), and the deviatoric stress tensor, ‖T g‖ = f (φg, ‖Sg‖). This
highlights that the two-phase model implements a density-dependent rheology, rather than
a pressure-dependent rheology.

It should be noted that there are various possibilities to combine critical state theory and
the μ(I), φ(I)-rheology. An alternative approach including bulk viscosity is provided, for
example, by Schaeffer et al. (2019).

2.5.3. The φ(J) relation
The low-Stokes-number regime requires the replacement of the inertial number I with the
viscous number J. The dependence of the packing density on the viscous number was
described by Boyer et al. (2011) as

φg = φm

1 + √
J
, (2.41)
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Figure 5. (a) Particle pressure ps following the φ(J) relation as a function of packing density φg and deviatoric
shear rate ‖Sg‖. The dashed lines show the original relation of Boyer et al. (2011), the continuous coloured lines
show the modified relation and the black line shows the static limit expressed following Johnson & Jackson
(1987). (b) The critical packing density as a function of particle pressure ps and deviatoric shear rate ‖Sg‖. The
dashed lines follow the original φ(J) relation, and the continuous lines show the modified version. The grey
area shows the region where only creeping shear rates below S0 are allowed.

and we can derive the effective pressure by inserting the viscous number as

ps = 2νcρc‖Sg‖(
φm

φg
− 1

)2 . (2.42)

Notably, Boyer et al. (2011) emphasized that φm does not match the random close packing
density φrcp ≈ 0.63 but rather is a value close to 0.585. This leads to substantial problems
for large values of φg, as the relation is only valid for φg < φm = 0.585 or ‖Sg‖ = 0. In
other words, shearing is only possible for φg < φm.

We solve this issue by allowing a creeping shear rate of S0 at packing densities above φm.
Further, and as before, we superpose the relation with the quasi-static relation of Johnson
& Jackson (1987) to yield the correct asymptotic values for ‖Sg‖ → 0 known from critical
state theory. The final relation reads

ps = a
φg − φrlp

φrcp − φg
+ 2νcρc‖Sg‖(

φ̂m

φg
− 1

)2 , (2.43)

with

φ̂m =
{

φm + (φrcp − φm)(S0 − ‖S‖) for S0 > ‖S‖,
φm otherwise.

(2.44)

The respective relation is shown in figure 5 alongside the original relations of Johnson &
Jackson (1987) and Boyer et al. (2011). States with ‖S‖ ≥ S0 and φg ≥ φm or φg ≥ φrcp
are not intended by this model, and simulations should be terminated if such states appear.

2.6. Drag and permeability model
The drag model describes the momentum exchange between grains and pore fluid in the
two-phase model and widely controls permeability, excess pore pressure relaxation and the
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Figure 6. Drag coefficient kgc (a) and permeability κ (b) following the Kozeny–Carman relation (Pailha &
Pouliquen 2009) for various grain diameters (colour) and packing densities (x-axis).

settling velocity of grains. A wide range of drag models for various situations can be found
in the literature. Herein we stick to the Kozeny–Carman relation as applied by Pailha &
Pouliquen (2009),

kgc = 150
φ2

gνcρc

φcd2 , (2.45)

with the grain diameter d as the only parameter. This relation is assumed to be valid for
small relative velocities and densely packed granular material. It has been modified to
account for higher relative velocities (Ergun 1952) and lower packing densities (Gidaspow
1994); however, these are not relevant for the investigated configurations (see Si et al.
(2018a) for an application of the extended relation). This relation is visualized in
figure 6(a) for various diameters and packing densities.

The drag coefficient can be reformulated into a permeability coefficient as known in soil
mechanics and porous media. Comparing Darcy’s law (e.g. Bear 1972) with the equations
of motion for the fluid phase, we can calculate the hydraulic conductivity as

K = ρc|g|
kgc

, (2.46)

and furthermore the intrinsic permeability (e.g. Bear 1972) as

κ = K
νc

|g| = νcρc

kgc
= φcd2

150φ2
g
. (2.47)

The permeability is visualized in figure 6(b). In a similar manner, the drag coefficient can
be calculated as

kgc = ρcνc

κ
, (2.48)

if the intrinsic permeability of the granular material is known.

2.7. Numerical solution and exception handling
All models are implemented into OpenFOAM v1812 (Weller et al. 1998; OpenCFD Ltd
2004) and solved with the finite-volume method (Jasak 1996; Rusche 2002; Moukalled,
Mangani & Darwish 2016).

915 A87-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.107


Compressible granular collapse in a fluid as a continuum

2.7.1. Two-component landslide model
The two-component model is based on the solver ‘multiphaseInterFoam’, using the PISO
(pressure-implicit with splitting of operators) algorithm (Issa 1986) and interpolations
following Rhie & Chow (1983) to solve the coupled system of pressure and velocity. First,
an updated velocity field is calculated without the contribution of pressure. The predicted
velocity field is later corrected to be divergence-free and the pressure follows from the
required correction. Finally, all other fields, e.g. the phase indicator functions, are updated.
This procedure is repeated in each time step.

Components (slide and ambient air or water) are divided by an interface, which is
assumed to be sharp. However, the interface is often smeared by numerical diffusion.
To keep the interface between components sharp, the relative velocity between phases uij,
which was previously eliminated from the system, is reintroduced in (2.15),

∂αi

∂t
+ ∇ · (αiū) + ∇ · (αiαjuij) = 0. (2.49)

Equation (2.49) is finally solved using the MULES (multidimensional universal limiter
with explicit solution) algorithm (Weller 2008). This scheme limits the interface
compression term (i.e. the term containing uij) to avoid overshoots (αi > 1) and
undershoots (αi < 0) of the component indicator fields.

There is no conservation equation for the relative velocity in the two-component model
and it has to be reconstructed from assumptions. Two methods are known to construct the
relative velocity for granular flows. Barker et al. (2021) suggest constructing the relative
velocity for granular flows from physical effects such as segregation and settling. The
relative velocity follows as the terminal velocity of spheres in the surrounding fluid under
the influence of gravity. Alternatively, one can construct a velocity field that is normal to
the interface and of the same magnitude as the average velocity ū,

uij = |ū| αj∇αi − αi∇αj

|αj∇αi − αi∇αj| . (2.50)

This method has a maximum sharpening effect (Weller 2008) and is thus also applied in
this work.

2.7.2. Two-phase landslide model
The two-phase model is based on the solver ‘multiphaseEulerFoam’. The system of
pressure and average velocity is solved with the same concept as in the two-component
solver. The velocity fields for all phases are first predicted without contributions from
pore pressure p, but including effective pressure ps. The average velocity is then corrected
to be divergence-free and the pore pressure follows from the required correction. In a
further step, the velocity correction is applied to phase velocities. The solution procedure is
described in depth by Rusche (2002). The interface compression term is not required in this
model because settling and segregation are directly simulated and counteract numerical
diffusion. The implementation of the effective pressure term is taken from SedFoam 2.0
(Chauchat et al. 2017).

2.7.3. Time stepping
The numerical solution of the transport equations is subject to limitations that
pose restrictions on the solution method. One of these limitations is known as the
Courant–Friedrichs–Lewy (CFL) condition and enforced by limiting the CFL number.
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In convection-dominated problems, the CFL number is defined as the ratio of the time-step
duration Δt to the cell convection time Δx/ux, i.e. the time required for a particle to pass
a cell with size Δx,

CFLconv = uxΔt
Δx

. (2.51)

For the stability of the forward Euler method, for example, it is required that the convection
time is smaller than the time-step duration,

CFLconv ≤ 1, (2.52)

and similar limits exist for other explicit methods. This limitation has to be enforced by
choosing the time-step duration Δt according to mesh size and flow velocity.

However, (2.51) is only valid for convection-dominated problems. In the case of granular
flows, the viscosity term is dominant over all other terms. Therefore, the viscosity has to be
considered in the calculation of the CFL number and the time-step duration. The respective
definition, ignoring the contribution of convection, follows as

CFLdiff = νΔt
(Δx)2 . (2.53)

This relation is imperative for the stability of explicit and semi-implicit Navier–Stokes
solvers when viscous forces are dominant. The squared cell size in the denominator and the
high viscosity introduce very strict limitations on the time step, making computations very
expensive. Note that simplified relations for the one-dimensional case are given here. The
full multidimensional conditions for arbitrary finite-volume cells can be found in Rauter
et al. (2021).

3. Subaerial granular collapse (Balmforth & Kerswell 2005)

As a first test of the numerical models, we simulate the granular collapse experiments of
Balmforth & Kerswell (2005) under subaerial conditions. A sketch of the experiment is
shown in figure 7. The experiment was conducted between two parallel smooth walls and
the set-up is approximated as a two-dimensional granular collapse. Balmforth & Kerswell
(2005) conducted multiple experiments with different geometries. Herein, we focus on the
experiments with an aspect ratio of H/L = 1/2, but similar results have been obtained
for other aspect ratios. In theory, both the two-component model and the two-phase model
should be equally capable of simulating this case, because pore pressure plays a minor role.
Most parameters, such as density, quasi-static friction coefficient and particle diameter,
are reported by Balmforth & Kerswell (2005). The missing parameters are completed with
data from the literature. Notably, the experiments are conducted on a smooth surface,
which was incorporated in simulations by switching to a constant friction coefficient
μwall at smooth surfaces. This modification is simple in the finite-volume method because
stresses are calculated on cell faces before their divergence is calculated as a sum over
faces.

The Stokes number is estimated to be of the order of 103 (with ‖S‖ = 10 s−1) for these
experiments, and the μ(I), φ(I)-rheology is chosen to describe friction and effective
pressure. The parameters for the μ(I) and φ(I) curves are chosen in the physically
reasonable range (μ2 − μ1 ≈ 0.3, I0 ≈ 0.25, Δφ = 0.1) following various references
(e.g. Forterre & Pouliquen 2008) in combination with values reported by Balmforth &
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Swinging gate
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L

Figure 7. Experimental column collapse set-up of Balmforth & Kerswell (2005). The aspect ration H/L has
been varied throughout the experiments. We will focus on the experiment with L = 0.2 m and H = 0.1 m,
similar to Savage et al. (2014).

Phase/component Parameter Value Description

Air ρc 1 kg m−3 Air density
νc 1.48 × 10−5 m2 s−1 Air viscosity

Slide/grains d 10−3 m Particle diameter
μwall 0.317 Wall friction coefficient
μ1 0.595 Quasi-static friction coefficient
μ2 0.895 Dynamic friction coefficient
I0 0.25 Reference inertial number

νmin 10−4 m2 s−1 Lower viscosity threshold
νmax 1 m2 s−1 Upper viscosity threshold
φ̄ 0.60 Assumed mean packing densityc

ρs 1430 kg m−3 Slide densitya

ρg 2600 kg m−3 Particle densityb

φrlp 0.53 Random loose packing densityb

φrcp 0.63 Random close packing densityb

a 130 Pa Critical state line parameterb

Δφ 0.1 Dynamic loosening factorb

Table 1. Material parameters for the subaerial granular collapse simulations. Note that not all material
parameters are required by all models.

aOnly two-component model.
bOnly two-phase model.

cUsed to match kinematic viscosity in the two-phase model following (2.22).

Kerswell (2005). A wide range of limiting packing densities can be found in the literature:
φrlp varying between 0.5 (Si et al. 2018a) and 0.598 (Vescovi et al. 2013), and φrcp varying
between 0.619 (Vescovi et al. 2013) and 0.64 (Savage et al. 2014). These parameters
are therefore optimized to the subaquatic case (§ 4), where extended measurements are
available, and applied to this case without further modification. The average packing
density is assumed to be φ̄ = 0.6 following the critical state line at this pressure level.
The applied pressure equation is visualized in figure 4. From the height H = 0.1 m, the
required viscosity threshold νmax can be estimated following (2.28) to be of the order of
1 m2 s−1. This estimation was validated with a sensitivity analysis (see Appendix B.1).
The final set of parameters is given in table 1.

Regular meshes of square cells are used to cover a simulation domain of 0.5 m × 0.2 m,
which was sufficient to have no artificial influences from boundaries. Standard boundary
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conditions are applied at walls (zero velocity, zero pressure gradient) and the permeable
top (zero velocity gradient, zero pressure). Multiple mesh resolutions were applied to
investigate the influence of the grid resolution on the results (see Appendix B.2). The
time stepping was investigated with a similar approach, modifying the limit for CFLdiff

max
between 1 and 1000 (depending on model and solver mode; see Appendix B.3). In the
following, the CFL number is limited to 1 and the cell size set to 0.0017 m, which has
been shown to be sufficient to achieve converged and mesh-independent results.

3.1. Two-component model
The component indicator for the slide component αs is initialized to 1 within the square
that forms the initial granular column. We assume that hydrostatic pore pressure is
negligible (<2 Pa) and therefore apply (2.34) to calculate the effective pressure.

The simulation covering a simulation duration of 0.8 s took 6.9 h on eight cores of
LEO4 (High Performance Cluster from the University of Innsbruck, consisting of Intel
Xeon (Broadwell) compute cores). The total pressure, which is assumed to match the
effective pressure, is shown for three time steps in figure 8, alongside the final pile in the
experiment. The continuous black line shows the sharp free surface, assumed to be located
at αs = 0.5. Furthermore, the velocity field ū is shown as arrows. The collapse takes
approximately 0.4 s and the pile remains in its final shape for the rest of the simulation.
The two-component model matches the experiment well; however, the volume of the final
pile is slightly underestimated. Results are very robust in terms of mesh refinement or
coarsening (see Appendix B.2), and mesh-dependent instabilities (as e.g. Martin et al.
2017; Gesenhues et al. 2019) have not been observed.

3.2. Two-phase model
The two-phase model uses the same parameters as the two-component model, including
numerical parameters, such as viscosity threshold and CFL limit. The phase fraction
φg was initialized such that the effective pressure is in balance with lithostatic vertical
stresses, yielding an initial mean phase fraction of 
φg = 0.608. This procedure ensures
that there will be no dilatancy or compaction in stable regions of the pile.

The simulation took 9.1 h under the same conditions as the two-component simulation.
A stronger mesh dependence is observed for this model; however, the runout converges for
fine meshes (see Appendix B.2). The pore pressure and the effective pressure following
the extended φ(I)-theory are shown for three time steps in figure 9, alongside the final
pile shape in the experiment. The continuous black line indicates the position of the free
surface, assumed to be located at φs = 0.25. The average velocity is shown as arrows in
figure 9(a–c), and the relative velocity of air with respect to grains in figure 9(d–f ). The
relative velocity in the initial phase is considerably high, indicating an inflow of air into
the bulk and thus dilatancy. The two-phase model matches the experiment exceptionally
well and the dilatancy in the experiment is matched by the simulation to a high degree.
Note that the effective pressure at rest is directly linked to the packing density, which can
be qualitatively estimated from figure 9( f ).

3.3. Discussion and comparison
Both models performed well at simulating the subaerial granular collapse. This is in line
with the previous results of Lagrée et al. (2011) and Savage et al. (2014), for example.
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Figure 8. Total pressure, assumed to match the effective pressure in the two-component model (subaerial
case). The black arrows represent the velocity. The continuous black line shows the free surface of the slide
(αs = 0.5); the dashed black line in panel (c) shows the final experimental pile shape of Balmforth & Kerswell
(2005).

The effective pressure and the total pressure are fairly similar, because excess pore pressure
dissipates quickly through dilatancy or compaction. The magnitude of the pore pressure in
the two-phase model is smaller than 8 Pa and thus less than 1 % of the effective pressure,
validating the assumption of negligible pore pressure.

The runout is similar in both models, whereas the front is slightly elongated in the
two-phase model. Further, the two-phase model shows a better match with the experiment
at the upper end of the final slope. Both of these minor differences can be attributed
to dilatancy effects. The two-component model is intrinsically not able to capture this
process. Two mechanisms for dilatancy can be observed in the two-phase model. First, the
average effective pressure in the slide reduces as it spreads out and the packing density
decreases proportionally to the effective pressure, as prescribed by the critical state line.
Second, shearing can reduce the packing density well below its critical packing density due
to the dynamic contribution of the φ(I) theory to the effective pressure. The loosely packed
slide will not return to the critical packing density after shearing but remain in a loose state,
thus showing hysteresis. The granular material is able to remain in a loose state because
the deviatoric stress tensor counteracts one-dimensional settling deformations (known as
oedometric compression in soil mechanics). Furthermore, the granular column may have
been overconsolidated in the experiment; however, this was not incorporated in the model
due to the initialization in the critical state.
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Figure 9. Pore pressure (a–c) and effective pressure (d–f ) in the two-phase model (subaerial case). The arrows
show the average velocity (a–c) and the relative velocity (d–f ). The continuous black line shows the free surface
of the slide (φg = 0.25); the dashed black line in panels (c) and ( f ) shows the final experimental pile shape of
Balmforth & Kerswell (2005).

Dilatancy is rather unimportant under subaerial conditions, as it does not imply changes
in rheology or flow dynamics. Therefore, the two-component model is well suited for
subaerial granular collapses, where the pore pressure is negligibly small and the Stokes
number is well above one.

The reduced friction at the smooth basal surface has a small but noticeable effect on the
final pile shape. The runout is longer when incorporating the smooth surface and matches
the experiment better. Previous works (e.g. Savage et al. 2014) ignored the smooth bottom
of the experiment and still obtained accurate final pile shapes by using a constant friction
coefficient. The increased friction of the μ(I)-rheology (in comparison to a constant
quasi-static friction coefficient) compensates for the reduced basal friction quite exactly
(see Appendix B.4).

The two-component model is less sensitive to grid resolution than the two-phase model
(see Appendix B.2) but more sensitive to the time-step duration (see Appendix B.3). At
the same resolution, both models require roughly the same computational resources, and
neither model shows a substantial advantage in this regard.

It is important to carefully choose the time-step duration, as it can have drastic influences
on simulation results. Generally, CFLdiff has to be limited to one to guarantee satisfactory
results, while some cases and solver settings allow higher CFLdiff numbers. This limitation
is much stronger than the traditional CFL criterion and CFLconv is roughly 0.001. Notably,
the time-step duration is constant in simulations, Δt ≈ 3 × 10−6 s, because the constant
maximum viscosity νmax in stable regions and the constant cell size Δx controlled the time
stepping.
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Lifting gate

Glass beads

Ucon liquid

Pressure sensor

Figure 10. Experimental column collapse set-up of Rondon et al. (2011). The packing density and the aspect
ratio have been varied in the experiment. We will focus on a densely and a loosely packed case, similar to
Savage et al. (2014).

4. Subaqueous granular collapse (Rondon et al. 2011)

The granular collapse experiments of Rondon et al. (2011) are conducted under subaquatic
conditions and the Stokes number was estimated to be of the order of 10−1 (at
‖S‖ = 10 s−1). The pore pressure, packing density and permeability play important
roles under these conditions and the complexity increases substantially. Experiments
accounted for the increased complexity by varying the average initial packing density in
the experiments between 0.55 and 0.61. The pore pressure was recorded by a sensor in the
bottom plate, approximately below the centre of the column at x = 0.02 m (see figure 10).
This sensor showed strong variations of the pore pressure in dense and loose experiments,
indicating its important role for subaquatic slides.

A loose or underconsolidated (φ̄g = 0.55, L = 0.06 m, H = 0.048 m) and a dense or
overconsolidated (φ̄g = 0.6, L = 0.06 m, H = 0.042 m) simulation are conducted in this
work to investigate the sensitivity of the model. As before, the experiments were conducted
between two parallel, smooth walls and the set-up is approximated with two-dimensional
simulations. Most material parameters are reported by Rondon et al. (2011), parameters
for the μ(J) and φ(J)-curves are supplemented with data from Boyer et al. (2011). The
quasi-static friction coefficient μ1 is taken from Si et al. (2018a). The particles have a
diameter of d = 0.225 mm and are immersed into a Ucon solution (Ucon oil and water; for
details, see Rondon et al. 2011) with a viscosity of νc = 1.2 × 10−5 m2 s−1 (approximately
10 times higher than that of water), leading to a very low permeability of κ ≈ 10−10 m2

following (2.47). Early tests revealed that the two-phase model reacts very sensitively to the
critical state line parameters φrlp, φrcp and a. Parameters from the literature (e.g. the critical
state line applied by Si et al. (2018a)) lead to unrealistic granular pressures at φg = 0.60
and thus could not be applied. We set the limiting packing densities to φrlp = 0.53 and
φrcp = 0.63 to allow initial average packing densities between 0.55 and 0.61. The scaling
variable a was found by matching the peak pore pressure in the dense simulation with the
respective measurement (see figure 14). The total set of parameters used for both cases is
shown in table 2.

Regular meshes of square cells with size 0.0005 m are applied, covering a simulation
domain of 0.15 m × 0.105 m (dense case) and 0.25 m × 0.105 m (loose case). The CFL
number CFLdiff is limited to 10 in order to keep computation times to a reasonable
level. A sensitivity study was conducted to prove convergence at this grid size (see
Appendix B.2) and CFLdiff number (see Appendix B.3).
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Phase Parameter Value Description

Ucon mix ρc 1000 kg m−3 Ucon mix density
νc 1.2 × 10−5 m2 s−1 Ucon mix viscosity

Slide d 2.25 × 10−4 m Particle diameter
μ1 0.340 Quasi-static friction coefficient
μ2 0.740 Dynamic friction coefficient
J0 0.005 Reference viscous number

νmin 10−4 m2 s−1 Lower viscosity threshold
νmax 1 m2 s−1 Upper viscosity threshold
φ̄ 0.60 Assumed mean packing densityc

ρs 1900 kg m−3 Slide densitya

ρg 2500 kg m−3 Particle densityb

φrlp 0.53 Random loose packing densityb

φrcp 0.63 Random close packing densityb

a 130 Pa Critical state line parameterb

φm 0.585 Dynamic reference packing densityb

S0 5 s−1 Maximum creep shearingb

Table 2. Material parameters for the subaquatic granular collapse simulations. Note that not all material
parameters are required by all models.

aOnly two-component model.
bOnly two-phase model.

cUsed to match kinematic viscosity in the two-phase model following (2.22).

4.1. Two-component model: dense case
The hydrostatic pore pressure is high under subaquatic conditions and the two-component
model applies (2.36) to consider its influence on the effective pressure. All parameters
are taken from table 2. The evolution of the slide geometry, the effective pressure and
the velocity ū are shown in figure 11, alongside the final experimental pile shape. The
final pile shape of the model corresponds roughly to the experiment. The velocity, on the
other hand, roughly corresponds to the loose case, and the collapse is completed after
1 s, whereas the dense experiment took more than 30 s. The simulation and its failure
mechanism are similar to the subaerial case, where the free unsupported side of the pile
collapses until reaching a stable slope inclination. Notably, neither the dense nor the loose
experiment showed such a failure mechanism (see figure 15). No excess pore pressure is
included in this model, and a hypothetical pressure sensor at the bottom of the column
would constantly measure 0 Pa, as indicated in figure 14.

4.2. Two-component model: loose case
The two-component model provides only a few and ineffective possibilities to consider
variations of the packing density. To simulate the loose granular collapse with this model,
the average packing density is changed to φ̄ = 0.55 and the bulk density correspondingly
to ρs = 1825 kg m3. Further, the initial column geometry is changed as reported by
Rondon et al. (2011). All other parameters match the dense case. Changing rheology
parameters, e.g. μ1 or μ2 (as e.g. Wang et al. 2017), is technically possible but does not
help in understanding the physical process or the influence of packing density.

The difference from the dense simulation is very small and thus not shown herein
(see e.g. Bouchut et al. (2017) for similar results). As before, the final pile shape is
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Figure 11. Effective pressure at t = 0.2 s (a), t = 0.4 s (b) and t = 1.0 s (c) in the two-component model
(subaquatic dense case). The black arrows represent the velocity. The continuous black line shows the free
surface of the slide (αs = 0.5); the dashed black line in panel (c) shows the final experimental pile shape of
Rondon et al. (2011).

close to that of the dense experiment while the simulated velocity is close to that of the
loose experiment. The runout is slightly longer as in the dense simulation because the
loose column is slightly taller.

4.3. Two-phase model: dense case
The two-phase model allows us to explicitly consider variations in the initial packing
density. The dense case is initialized with a homogeneous packing density of 0.60.
The evolution of the dense granular column as simulated with the two-phase model is
shown in figure 12, alongside three states of the experiment at t = 3 s, 6 s and 30 s. The
simulation, covering a duration of 10 s, took 240 h on eight cores of LEO4. The dense
case is dominated by negative excess pore pressure (figure 12a–e), meaning that the pore
pressure within the slide is lower than that outside. The effective pressure (figure 12f –j) is
respectively higher, which increases the shear strength of the column. Initially, the shear
strength is high enough to delay the collapse and to keep the column mostly stable. The
pore pressure gradient leads to the suction of fluid into the column (figure 12g–h) and the
granular material dilates. Dilation reduces the effective pressure and allows the column to
collapse. This happens first near the free surface on the unsupported side of the column,
leading to a breaching-like flow of grains (figure 12g–h). Grains mix with fluid at the
breaching edge, reducing the packing density, effective pressure and thus friction to very

915 A87-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.107


M. Rauter

t = 0.05 s

t = 0.5 s

t = 1.0 s

t = 3.0 s

t = 6.0 s

t = tend

t = 0.05 s

t = 0.5 s

t = 1.0 s

t = 3.0 s

t = 6.0 s

t = tend

500

0

0

0.02

0.04

0

0.02

0.04

0

0.02

0.04

0

0.02

0.04

0

0.02

0.04

0

0.02

0.04

0.025 0.050 0.075 0.100 0.125 0 0.025 0.050 0.075 0.100 0.125 0.150

600 700 800 900

p (Pa)

x (m)

z 
(m

)
z 

(m
)

z 
(m

)
z 

(m
)

z 
(m

)
z 

(m
)

x (m)

1000 1100 0 50 100 150 200

ps (Pa)
250 300 350 400

φc uc + φg ug = 0.05 m s–1 uc – ug = 0.0005 m s–1

(e)

(b) (h)

(a)

(c)

(d )

( f )

(k)

(g)

(i)

( j)

(l)

Figure 12. Pore pressure (a–f ) and effective pressure (g–l) at t = 0.05 s (a,g), t = 0.5 s (b,h), t = 1 s (c,i),
t = 3 s (d,j), t = 6 s (e,k) and the final state ( f,l) using the two-phase model (subaquatic dense case). The black
arrows represent the average velocity (a–f ) and the relative velocity (g–l). The final state (tend) is reached at
t = 10 s in the simulation (small velocities remain) but at t = 30 s in the experiment. The black line shows the
free surface of the slide, assumed at φs = 0.25. The free surface of the experiment is shown for comparison as
a black dashed line in the six lowest panels.

low values. The resulting mixture behaves like a small turbidity current and reaches long
runouts with shallow slopes, as visible in figure 12(i,j).

The zone of low particle pressure extends towards the centre of the column with time and
further mobilization occurs. At t = 0.5 s, we can see the formation of a shear band. The
grains above the shear band slide off, first as a triangular cohesive block (note the uniform
velocity field in figure 12b), which disintegrates between t = 1 s and t = 3 s (figure 12i).
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The overall process is finished (i.e. tend) in the simulation after roughly 10 s, while the
experiment took approximately 30 s. The final pile form and the failure mechanism match
the experiment very well, which can be seen best in a comparison with the videos provided
by Rondon et al. (2011); see figure 15. Further, a good match with the measured excess pore
pressure is achieved, as shown in figure 14. The time scale and velocity of the collapse,
on the other hand, differ substantially between simulation and experiment. Notably, the
pore pressure p and effective pressure ps do not sum up to the total vertical load, as a
considerable fraction of the vertical load is transferred to the ground by viscous stresses.

4.4. Two-phase model: loose case
The simulation of the loose granular column uses the same parameters as the dense
simulation. The packing density in the column is initialized homogeneously to φ = 0.55
and its height is increased as reported by Rondon et al. (2011). The simulation covering a
duration of 6 s took 213 h on eight cores of LEO4. As a result of the very loose packing,
the effective shear strength is low and the column collapses rapidly and entirely, without
any static regions. The pore pressure has to support the majority of the weight and is
respectively high (figure 13a). The effective pressure increases at the rapidly flowing front,
at t = 0.25 s (figure 13g) due to the dynamic increase of effective pressure following the
φ(J)-theory. The increase in effective pressure leads to a proportional increase in friction
and the front is slowed down, figure 13(h–i). Although the effective pressure is low in
comparison to the dense case (four times lower), the friction is sufficient to bring the slide
to a stop. The final slope inclination is shallow and the low quasi-static particle pressure is
sufficient to support the slope, figure 13( j).

The packing density increases slightly during the collapse but the stability is mostly
gained by reducing the slope inclination. The final pile shape matches the experiment very
well; only a small amount of granular material forms a turbidity current that exceeds the
runout of the experiment. The simulated velocity is higher than in the experiment but the
difference is less severe than in the dense case. The simulated excess pore pressure differs
remarkably from the measured excess pore pressure, as shown in figure 14. Two stages can
be observed in the simulated excess pore pressure history. First, the simulation shows a
high peak of excess pore pressure, exceeding the highest experimental pore pressure by a
factor of two. The peak dissipates quickly, as the slide and thus overburden pressure leave
the region where the pore pressure sensor is installed. This first peak does not appear in
the experiment, where the highest pore pressure is reached in a flatter peak at a later point
in time. In a second phase, starting at t = 1 s, the pore pressure dissipates much more
slowly. In this phase, the pore pressure dissipation is driven by compaction of the granular
material and slightly underestimated by the model.

4.5. Discussion and comparison
The subaqueous granular collapse clearly exceeds the capabilities of the two-component
model. The high sensitivity to the initial packing density cannot be explained with
this model, and the loose and dense simulations are virtually the same. Results of
the two-component model lie between the two extreme cases of the loose and dense
experiments, matching the velocity of the loose experiment and the runout of the dense
experiment. This is reasonable, considering that the missing excess pore pressure stabilizes
the dense column and destabilizes the loose column. This model is not sufficient for
a practical application, as the runout is substantially underestimated in the loose case.
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Figure 13. Pore pressure (a–e) and effective pressure ( f –j) at t = 0.05 s (a, f ), t = 0.25 s (b,g), t = 0.65 s
(c,h), t = 1.30 s (d,i) and the final state (tend = 6.0 s) (e,j) using the two-phase model (subaquatic loose case).
The black arrows represent the average velocity (a–e) and the relative velocity ( f –j). The black line shows the
free surface of the slide, assumed at φs = 0.25. The free surface of the experiment is shown for comparison as
a black dashed line in the six lowest panels.

Extremely long runouts on slopes with 2 ◦ inclination have been observed in nature (e.g.
Bryn et al. 2005) and they cannot be explained with a granular two-component model.

The two-phase model can take advantage of its ability to capture excess pore pressure. It
outperforms the two-component model by showing the correct final pile shapes (figures 12f
and 13e) and a consistent sensitivity to pore pressure and initial packing density (figure 14).
The failure mechanisms of both the dense and the loose experiments are successfully
simulated (see figure 15), indicating that the two-phase model captures the most important
physical phenomena. The model fails in two aspects, as the pore pressure peak in the loose
case and the time scale in the dense case differ by a factor of 2 and 3, respectively.

It should be noted that no exhaustive parameter fitting was required for these results.
Solely the critical state line is optimized to yield the correct pore pressure; all other
parameters were selected a priori following Boyer et al. (2011), Rondon et al. (2011)
and Savage et al. (2014). Notably, some of the issues, e.g. the overestimated velocity of
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Figure 14. The excess pore pressure as a function of time for the subaquatic granular collapses. The loose
simulation (red) shows a strong peak of excess pore pressure that exceeds the experimental measurement (upper
black dashed line). The dense simulation (blue) fits the experimental measurement (lower black dashed line)
well. The two-component simulation forms a horizontal line at p = 0 Pa, as it neglects excess pore pressure.
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Figure 15. Selected snapshots of the experiments from Rondon et al. (2011) (a,d,g), the simulations (b,e,h)
and corresponding sketches (c, f,i). The distance between marks on the axes is 0.02 m. The snapshots highlight
the gliding of a cohesive block and breaching (a,b,c), the remoulding of the block due to shearing (d,e, f ) and
the formation of hydroplaning and turbidity currents (g,h,i) at the loose front.

the loose collapse, might be resolvable with fitting parameters. Furthermore, the model
allows us to simulate both cases with the same set of parameters with good accuracy. This
distinguishes this work from earlier attempts (e.g. Savage et al. 2014; Wang et al. 2017; Si
et al. 2018a), where some parameters were fitted individually to the dense and loose cases.

Excess pore pressure plays an important role in subaquatic experiments because it
controls shear strength and friction. Dilatancy, compaction and the dynamic particle
pressure further influence friction and thus the kinematics of the slide. The dense column
is only able to collapse after decreasing its packing density and thus its effective shear
strength. The column dilates until it reaches the limiting packing density φm. Before this
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packing density is reached, the shear rate is limited to the creeping shear rate S0. A
relatively high value was used for this parameter, and a lower creeping limit would be
desirable, especially considering the error of the time scale in the dense simulation (see
Appendix B.5). However, strong oscillations were observed when choosing lower values
for S0 because the shear rate often exceeded S0 before dilating sufficiently.

The bottom of the dense column compacts further in the simulation, up to a packing
density of 0.604. This is reasonable, as the initial particle pressure of 303.3 Pa at φ = 0.60
is below the overburden pressure of 370.8 Pa of the pile. At the same time, negative excess
pore pressure can be observed at the bottom of the column. Compaction and negative
excess pore pressure seem to contradict each other at first glance. However, the negative
excess pore pressure in the upper parts of the column is so strong that fluid is flowing
upwards from the bottom of the column. This can be seen in the relative velocity field
(figure 12h), but also the gradient of pore pressure (figure 12b) indicates that pore liquid
will flow upwards.

The front speed of the loose collapse is entirely controlled by the dynamic contribution
of the μ(J), φ(J)-rheology to effective pressure and friction. Simulations with critical
state theory (constant friction coefficient μ and the quasi-static effective pressure model
of Johnson & Jackson (1987)) exceed the experimental runout by far (see Appendix B.4).
This is in strong contrast to the subaerial case, where acceptable results could be achieved
with critical state theory.

The dynamic contribution to particle pressure and friction also plays an important role
in the dense case, although this pile collapses very slowly. The thin layers of grains
that are breaching from the unsupported column flank reach packing densities far below
φrlp = 0.53 due to mixing with the ambient fluid. At this packing density, the quasi-static
contribution to effective pressure vanishes, and the runout of these particles is entirely
controlled by dynamic particle pressure and friction. The runout of the breaching flank
could not be controlled in simulations with critical state theory (see Appendix B.4).

The pore pressure in the loose case differs qualitatively and quantitatively from the
measurement. Within the applied model, it seems reasonable that a high initial peak
decreases quickly, as substantial amounts of grains and thus overburden pressure leave
the region of the pressure sensor. Similar results with an early, short and strong peak
and a slow further dissipation, close to the measurement, have been obtained with other
frameworks, e.g. by Bouchut et al. (2017) or Baumgarten & Kamrin (2019).

The dilatancy of the dense column is substantially faster in the numerical model than in
the experiment, although the permeability is underestimated following the comparison
of the pore pressure. Therefore, it is unlikely that permeability is the cause for this
discrepancy, and we assume that inaccuracies in the rheology are responsible. The μ(J),
φ(J)-rheology describes the steady shearing of a grain–fluid mixture very well (Boyer
et al. 2011). However, the transient transition towards the steady packing density at
a certain effective pressure is not described. This transition depends not only on the
permeability of the granular material but also on its viscosity (shear and bulk viscosity).
As mentioned before, the high value for the creeping shear rate S0 could be responsible
for this issue, but it might also be related to the missing bulk viscosity or a mismatch of
constitutive parameters. The bulk viscosity could delay the dilatancy in the early stage of
the dense collapse, bringing the time scale of the collapse in the simulation closer to that
in the experiment. The bulk viscosity could further help to decrease the pore pressure peak
in the loose case, as some of the pore pressure could be transformed into viscous pressure.
Schaeffer et al. (2019) suggests a form for the bulk viscosity that has the potential to
improve these aspects.
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Savage et al. (2014) and Si et al. (2018a) include a cohesive shear strength into their
model to correct some of these problems and to fit results to the experiment. However,
there is no evidence for cohesive forces in a fully submerged granular flow. Neither
electrostatic forces nor cementing have been reported by Rondon et al. (2011). Apparent
cohesion can be traced back to negative excess pore pressure, which is directly simulated
by the numerical model. Notably, Si et al. (2018a) are able to control the slide velocity very
well. However, this is achieved by fitting the cohesion to the respective case and by a strong
overestimation of the negative excess pore pressure, reaching values of approximately
500 Pa at the pressure sensor at t = 3 s (see figure 5 in Si et al. (2018a)). Baumgarten
& Kamrin (2019) applied a similar model (elasto-plastic multiphase model with μ(K),
φ(K) scaling) to the same cases. The results show similar problems, i.e. an overestimation
of the pore pressure in the loose case and an overestimation of the collapse velocity in
the dense case. Notably, we achieve similar results in these test cases with a substantially
simpler model.

5. Conclusions

The Navier–Stokes equations can be an adequate tool for accurate simulations of granular
flows when they are complemented with the correct rheologies. Substantial progress has
been made in recent years with the μ(I)-rheology and its extensions to compressible
flows and low-Stokes-number flows. The incompressible μ(I)-rheology fits well into the
multicomponent framework of OpenFOAM, and the compressible μ(I), φ(I)-rheology
fits well into the multiphase framework, as previously shown by Chauchat et al. (2017), for
example. We apply, for the first time, the compressible μ(I), φ(I)-rheology to granular
collapses and avalanching flows. The superposition with the critical state theory is
imperative to get realistic packing densities at rest and a stable solver. For subaerial, i.e.
high-Stokes-number, flows, dilatancy plays a minor role and the results of the compressible
model are similar to those of the incompressible model. However, the dilatancy predicted
by the compressible model is able to close the gap between the experiments and the
incompressible model. Further, the compressible model should be well-posed (Barker
et al. 2017; Heyman et al. 2017; Schaeffer et al. 2019), in contrast to many incompressible
granular flow models (Barker et al. 2015). Note that the bulk viscosity, which is imperative
for a well-posed rheology (e.g. Schaeffer et al. 2019), was not considered in this study.
However, the coupling of the granular phase to the pore fluid has a similar effect as the bulk
viscosity and might be able to restore a well-posed system. For a guaranteed well-posed
compressible rheology that collapses to the μ(I), φ(I)-rheology in steady state, the reader
is referred to Schaeffer et al. (2019).

The upsides of the compressible two-phase model come at the cost of more parameters
and a stronger mesh dependence. Furthermore, code and case set-up are more complicated
with the two-phase model, and simulations are more prone to failure if the initial
conditions or parameters are not well suited for the case. Therefore, the incompressible
model might be better suited for some flows at high Stokes numbers, especially considering
regularized rheologies that are well posed for a wide range of flow regimes (e.g. Barker
& Gray 2017). Notably, we did not encounter any problems with the partial ill-posedness
of the μ(I)-rheology, which could be related to relatively coarse grids, high numerical
diffusion, the short simulation duration or the truncation of the viscosity.

The extension to low-Stokes-number flows is made possible by the μ(J), φ(J)-rheology.
At low Stokes numbers, it is imperative to consider excess pore pressure and a two-phase
model is required. Therefore, the incompressible μ(J)-rheology is rather impracticable and
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only becomes applicable after supplementing it with the φ(J) curve to the compressible
μ(J), φ(J)-rheology. The dynamic growth of pressure and friction is substantial for
accurate results, highlighting the value of the μ(J), φ(J)-rheology. The fitting of
parameters was reduced to a minimum and only the critical state line had to be optimized
to the experiments. It should be noted that these parameters could be determined by
measuring the critical packing density at a few pressure levels, making the simulations
free of any fitted parameter. The compressible two-phase model reacts sensitively to the
packing density, recreating the final runout, pile shape and failure mechanism of the
experiments very well. The model still lacks in some aspects, e.g. the time scale and the
velocity in the dense collapse, and the pore pressure peak in the loose collapse.

It was shown that the incompressible two-component model can be derived from the
compressible two-phase model by neglecting the relative velocity between phases. This
simplification yields reasonable results for subaerial granular flows at high Stokes numbers
but fails to describe the subaquatic granular flows at low Stokes numbers. This seems
to be contradictory, as the relative velocity (which was neglected in the incompressible
model) is very small in the subaquatic case (see figures 12 and 13) but considerable
high in the subaerial case (see figure 9). This apparent paradox can be resolved by the
fact that unhindered density changes have no notable influence on the flow dynamics.
However, if changes in packing density are constrained, the pore pressure will build up
and the rheology of the material will change drastically. Thus, pore pressure, rather than
compressibility, is the key factor that allows the two-phase model to accurately capture
the flow mechanics. The two-phase model provides many other upsides aside from the
inclusion of pore pressure. The continuous transition from dense granular material to pure
ambient fluid should be useful for the simulation of granular free streams (Viroulet et al.
2017), turbidity currents (Heerema et al. 2020) and powder snow avalanches (e.g. Sovilla
et al. 2015). Other studies have shown that the two-phase model is useful for sediment
transport (Chauchat et al. 2017) and other dilute particle–fluid mixtures (e.g. Passalacqua
& Fox 2011).

OpenFOAM provides a good platform to evaluate concepts (e.g. the multicomponent
and multiphase methodology) and models (e.g. μ(I), φ(I) and μ(J), φ(J)-rheologies).
The implemented rheologies can be further coupled with segregation (Barker et al. 2021)
or tsunami simulations (e.g. Si, Shi & Yu 2018b). However, the segregated semi-implicit
solver strategy of OpenFOAM sets limits to models and execution velocity, as (part of the)
viscous terms and the particle pressure are included explicitly. This has been shown to be
problematic, and a fully implicit solver that solves all equations simultaneously might be
superior in this regard.

The model can help to understand the extreme outruns of submarine landslides, such
as the Storegga landslide (e.g. Bryn et al. 2005) and the large variation in tsunamigenic
potentials (e.g. Løvholt et al. 2017). Theories such as hydroplaning and remoulding (e.g.
De Blasio et al. 2004) can be quantitatively described by the critical state theory and
its dynamic extension in the form of the μ(J), φ(J)-rheology. Hydroplaning, formerly
described as the flowing of sediment on a thin layer of liquid, can be interpreted as a
region of low or even zero packing density and vanishing effective pressure. This can
be observed in figure 15(g–i), where the front of the loose slide is lifted by pressure in
the surrounding fluid. Remoulding can similarly be explained with critical state theory
as an overconsolidated sample that is dilating during shearing (see figure 15a–f ). The
two-phase model and its capability to describe various and realistic failure mechanisms
with different time scales are particularly valuable for understanding the tsunamigenic
potential of submarine landslides and the respective slopes. The dense column collapses
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very slowly, reaching velocities of up to 0.1 m s−1 in small layers near the surface.
The loose column collapses entirely with velocities up to 0.4 m s−1. The tsunamigenic
potential of a landslide scales with initial acceleration and the mobilized volume (e.g.
Løvholt et al. 2017) and a substantial difference in tsunamigenic potential follows for
the dense and the loose slides. This shows that packing density, excess pore pressure
and permeability are key parameters in controlling stability, failure mechanism, slide
acceleration and tsunamigenic potential.

Many full-scale subaquatic landslide simulations are based on Bingham fluids, a
viscoplastic rheology independent of the pressure (e.g. Kim et al. 2019). This seems
to stand in strong contradiction to the model applied here. However, the simulation
of the loose case shows that packing density changes are small. For a nearly constant
packing density, the effective pressure decouples from the overburden pressure because
the weight is absorbed entirely by pore pressure. As a consequence, overburden pressure
and friction will decouple and the microscopic granular friction will appear as cohesion
on a macroscopic scale. The macroscopic description as a Bingham fluid is therefore
surprisingly consistent with the findings in this work, especially for fine-grained marine
sediments with low permeabilities.

6. Summary

This work highlights a path to extend the incompressible μ(I)-rheology for subaerial
granular flows to the compressible μ(J), φ(J)-rheology for subaquatic granular flows.
The implementation of the μ(I), φ(I)-rheology in a multiphase framework and the
μ(I)-rheology in a multicomponent framework allows us to conduct subaerial granular
collapses with two different models. The application shows consistency between the
incompressible μ(I)-rheology (e.g. Lagrée et al. 2011) and the compressible μ(I),
φ(I)-rheology. Notably, substantial modifications to the φ(I) curve are required for a
practical application of the rheology. The simulations show that compressibility and
dilatancy have a small influence on high-Stokes-number flows because the excess pore
pressure is negligibly small.

The implementation of the μ(J), φ(J)-rheology extends possible applications to
low-Stokes-number flows, e.g. subaquatic granular collapses. The incompressible model
reaches its limitations under these conditions and the compressible model is required
for an accurate simulation. In contrast to previous attempts, we applied exactly the
same set of parameters to initially dense and loose granular collapses, with satisfactory
results. Notably, the application of the μ(J), φ(J)-rheology does not require an extensive
fitting of constitutive parameters. The comparison between the compressible model and
experiments uncovered discrepancies in the time scale and the pore pressure. These could
be indicators for issues in the rheology, e.g. a missing bulk viscosity or issues with the
creeping regime that had to be introduced for numerical stability. The well-posedness of
the proposed model is not guaranteed and should be investigated in the future.

The compressible two-phase model has a wide range of applications and the results
have implications for many problems in geoscience. Applications to sediment transport
and scouring (Cheng et al. 2017) have been shown with a similar model. We further expect
the applicability to turbidity currents and all other gravitational mass flows with low and
high Stokes numbers. Furthermore, Si et al. (2018b) showed the applicability of a similar
model to landslide tsunami simulations by incorporating the free water surface.
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Appendix A. Derivation of the two-component model

The two-component model can be derived from the two-phase model by summing up the
mass and momentum conservation equations. The sum of the mass conservation equations
(2.1) and (2.3) yields

∂φc + φg

∂t
+ ∇ · (φcuc + φgug) = 0, (A1)

and with the definitions φc + φg = 1 and ū = φcuc + φgug we can derive the continuity
equation of the two-component model, equation (2.13).

The sum of the momentum conservation equations (2.2) and (2.4) is slightly more
complex and approximations are required due to nonlinearities. Therefore, we will cover
each term individually in the following. The sum of the time derivatives of equations (2.2)
and (2.4) can be simplified with the definition of the volume-averaged velocity ū, the local
density ρ = φcρc + φgρg and the relative velocity ur = ug − uc to give

∂

∂t
(φcρcuc + φgρgug) = ∂

∂t
(φcρc(ū − φgur) + φgρg(ū + φcur))

= ∂ρū
∂t

+ ∂

∂t
(φgφcur(ρg − ρc)) ≈ ∂ρū

∂t
. (A2)

The second term in (A2) vanishes if the relative velocity is zero or if the phase densities
are equal. The two-component model assumes that phase velocities are equal (equation
(2.11)) and the second term can be neglected. The error in the momentum conservation is
expected to be small in relation to limitations of the incompressible rheology.

The sum of the convective fluxes follows a similar pattern,

∇ · (φcρcuc ⊗ uc + φgρgug ⊗ ug)

= ∇ · (φcρc(ū − φgur) ⊗ (ū − φgur) + φgρg(ū + φcur) ⊗ (ū + φcur))

= ∇ · (ρū ⊗ ū) + ∇ · (φcφg(ū ⊗ ur + ur ⊗ ū)(ρg − ρc))

+ ∇ · (φcφgur ⊗ ur(φgρc + φcρg))

≈ ∇ · (ρū ⊗ ū). (A3)

The second and third terms vanish if the relative velocity is zero. Notably, only the second
term vanishes if the phase densities are equal due to the nonlinearity in the convection
term. For the approximation of the two-component model, it is sufficient to recover the
first term, as the relative velocity is neglected.
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The terms on the right-hand sides of equations (2.2) and (2.4) can be summed up without
further assumptions,

∇ · (φcT c + φgT g) = ∇ · T , (A4)

φc∇p + φg∇p + ∇ ps = ∇ptot, (A5)

φcρcg + φgρgg = ρg, (A6)

kgc(ug − uc) + kgc(uc − ug) = 0, (A7)

and the momentum conservation equation of the two-component model, equation (2.12),
can be assembled.

Appendix B. Sensitivity study

The numerical models require a wide range of parameters. Most parameters are physical
and can be derived from experiments and the literature. However, some parameters are
purely numerical and their values cannot be derived from experiments. The following
parameter study was used to derive numerical parameters that have been applied in
the simulations. The most influential numerical parameters are the grid size Δx, the
Courant number CFLdiff , related to the time step Δt, and the maximum viscosity νmax.
Furthermore, the effect of dynamic friction, i.e. the difference between a constant friction
coefficient μ and the μ(I) or μ(J)-rheology, is investigated. The applied model and the
flow regime (subaerial or subaquatic, dense or loose) are given in the captions for each of
the following figures.

B.1. Influence of the maximum viscosity
The maximum viscosity is one of the most influential numerical parameters in the applied
model. It should be reasonably high to mimic solid behaviour, but as small as possible to
improve numerical stability and to keep computational expense low. A reasonable limit can
be found by investigating the dimensionless governing equations, in which the respective
scales are isolated. The momentum conservation of the Navier–Stokes equations can be
written as

∂u
∂t

+ ∇ · (u ⊗ u) = − 1
ρ

∇ p + 1
2
ν∇2u + g (B1)

for a single incompressible Newtonian fluid with density ρ and constant viscosity ν. By
scaling space with the height of the slide H, the velocity with the respective free-fall
velocity

√|g|H, the time with the free-fall time
√

H/|g|, and the pressure with the
respective hydrostatic pressure ρ|g|H, the dimensionless variables (marked with a hat)
can be established as

x = Hx̂, (B2)

∇ = 1
H

∇̂ = 1
H

(
∂

∂ x̂
,

∂

∂ ŷ
,

∂

∂ ẑ

)T

, (B3)

u =
√

|g|H û, (B4)

t =
√

H
|g| t̂, (B5)

p = ρ|g|Hp̂. (B6)
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Introducing the dimensionless variables into the momentum conservation equation and
dividing by |g| yields

∂û
∂ t̂

+ ∇̂ · (û ⊗ û) = −∇̂p̂ +
√

1
|g|H3 ν∇̂2û + g

|g| . (B7)

In the case of a solid-like behaviour, the viscous term should dominate over all other
terms. All terms, except for the viscous term, are of order one and we can deduce that the
inequality √

1
|g|H3 νmax >

1
ε

(B8)

should be fulfilled to simulate the behaviour of a solid. In the above, ε is a small
dimensionless number, indicating the magnitude of viscous stresses over other terms. The
viscosity that is required for a solid-like behaviour can be calculated as

νmax >
1
ε

√
|g|H3, (B9)

as a function of the respective scales by choosing the magnitude of viscous stresses over
other terms, ε. The required magnitude for ε can be estimated by conducting a numerical
sensitivity analysis.

Variations of νmax (and thus ε) are presented in figure 16 for the subaerial case at
t = 0.8 s, using the two-component model. The value of νmax = 1 m2 s−1 is adequate for
this example and the left side of the pile stays nearly static as is the case in the experiment.
The respective value for the dimensionless scaling factor ε follows as 0.1 (H = 0.1 m,
|g| ≈ 10 m s2), indicating that viscous forces have to be approximately 10 times higher
than all other contributions to the momentum conservation equation. For lower viscosities,
the pile is notably deformed and shows no stable regions and no granular characteristics.
Rather, the pile shows the characteristics of a viscoplastic fluid (see rheology comparisons
by Lagrée et al. (2011)), which indicates that the viscosity threshold was dominating the
simulation. Notably, cases with high maximum viscosity are stable after t = 0.4 s while
cases with low maximum viscosity keep flowing beyond t = 0.8 s. For an application of
granular rheologies in OpenFOAM, we suggest a maximum viscosity following (2.28)
with ε = 1/10.

B.2. Grid sensitivity
The grid sensitivity is an important issue for complex flow models, and we provide a
full grid sensitivity analysis for the multicomponent and the multiphase models. The grid
sensitivity study for the multicomponent model is solely conducted for the subaerial case
because the mechanics of this model is similar in all cases. The final pile shape of the
investigated case is shown in figure 17 for various grid resolutions. This model reacts very
robustly to coarse grids, and 30 cells along the pile height are sufficient to get accurate
results for the final pile shape.

The two-phase model is more complex in terms of grid sensitivity. Three different failure
mechanisms of the granular column can be observed in the simulations with the two-phase
model. The three mechanisms react differently to a variation of the grid resolution. In some
cases, the model reacts very sensitively to coarse grids and a grid refinement study should
always be performed when applying this model. Figure 18 shows the grid convergence
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Figure 16. Pile shape at t = 0.8 s of the subaerial granular collapse with various values for νmax using the
two-component model. The high influence of this numerical parameter and the unphysical effect of low values
is clearly visible. The dashed black line shows the final pile shape of the experiment for comparison. The
two-phase model behaves similarly.

0.100

0.75

0.50
z (m)

0.25

0

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0033

�x (m)

0.0025

0.0017

Exp.

Figure 17. Grid sensitivity of the two-component model for the subaerial case. The model behaves similarly
in the subaquatic cases. The black dashed line shows the experimental final pile shape for reference.

analysis for the subaerial, the subaquatic dense and subaquatic loose cases. The two-phase
model is slightly more sensitive to coarse grids than the two-component model in the
subaerial case; see figure 18(a). The problematic area is the thin flow front and the issue
is probably related to the mixed role of the phase-fraction field.

The two-phase model is very sensitive to coarse grids in the subaquatic dense case; see
figure 18(b). Breaching of a thin layer of grains on the unsupported side of the column
leads to a reduced phase fraction in cells that contain the slide surface. This reduces
the effective pressure in all of those cells and further the shear strength, accelerating the
collapse. The result is a mesh dependence of the final pile shape and the collapse velocity.
The mesh had to be refined down to a cell size of 0.0005 m to achieve accurate results.
Notably, the difference between the smallest two cell sizes is still remarkable at the front
of the collapse. An additional refinement step would be desirable, but this would have
exhausted the available computational resources.

The loose subaquatic case can be simulated with good accuracy on a relatively coarse
mesh as shown in figure 18(c). This is not surprising, as the failure mechanism and flow
pattern are much simpler. In particular, the effective pressure discontinuity at the free
surface is weaker than in the dense case and thus requires a smaller grid resolution.

B.3. Time-step duration sensitivity
The time-step duration is investigated similarly as the grid resolution. The time-step
duration is not fixed but is adapted to velocity (CFLconv) and viscosity (CFLdiff ), relative
to the grid size. The viscous contribution to the CFL number is always much bigger in the
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Figure 18. Grid sensitivity of the two-phase model for the subaerial case (a), the dense subaquatic case (b)
and the subaquatic loose case (c). The black dashed lines show the experimental final pile shapes for reference.

investigated cases and the time-step sensitivity study was conducted based on this value.
Notably, stability can be guaranteed only for CFLdiff < 1. However, CFLdiff allows only
an estimation of the stability and in some cases larger time steps are possible.

The two-component solver can operate in two modes, using a full momentum predictor
step or a reduced momentum predictor step. The full momentum predictor step solves the
full linearized system of the discretized momentum conservation equation. The reduced
momentum predictor step calculates an explicit prediction of the velocity field based on
the velocity field of the last time step. This has a substantial influence on the stability when
viscous stresses are dominant.

Figure 19(a) shows the final pile shape for various time-step durations and the full
momentum predictor step in the two-component model. Notably, oscillations in pressure
can already be seen at CFLdiff = 2 (not shown) and they grow substantially for higher
CFLdiff . The pressure oscillations start to influence the pile shape at CFLdiff = 10 and the
pile is completely distorted for CFLdiff = 100.

The two-component model is more robust to larger time steps when operating with
the reduced momentum predictor step; see figure 19(b). Pressure oscillations start
approximately at CFLdiff = 100 and the first influence on the slide geometry can be
observed at CFLdiff = 1000. Anyway, it is recommended to run the two-component model
with small enough time steps to prevent pressure oscillations, ideally at CFLdiff = 1, as
done in this work.
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Figure 19. Sensitivity of the two-component subaerial model on the time-step duration, expressed by the
viscous CFL number. The solver was operated with the full momentum predictor (a) and the reduced
momentum predictor (b).

The two-phase model reacts less sensitively to large time-step durations. In fact,
simulations were stable up to CFLdiff = 1000. No pressure oscillations could be observed
and the final pile shape is nearly unaffected for all cases; see figure 20. However, the
accuracy became worse for large time-step durations and we observed a slower initial
acceleration for CFLdiff = 1000. No subaquatic simulations with the two-phase model
and CFLdiff = 1 have been conducted, as this would have exhausted the computational
resources.

B.4. Influence of dynamic friction and wall friction
The effect of the dynamic increase of friction following the μ(I)-rheology and the effect
of the reduced wall friction were investigated with both models. Results are shown in
figure 21(a) for the two-component model and in figure 21(b) for the two-phase model. The
models do not react sensitively to the variation of the friction model and the basal friction
coefficient. The runout is slightly underestimated in simulations with the μ(I)-rheology on
a rough surface. However, the introduction of the smooth surface elongates the runout and
the simulations fit the experiment well. Simulations with a constant friction coefficient on
a rough surface also fit the experiment well; simulations with constant friction coefficient
on a smooth surface overestimate the runout.

The dynamic contribution to the effective pressure and friction is imperative for
simulations at low Stokes numbers. Figure 22 shows the dense and loose subaquatic
two-phase simulations with critical state theory and μ(J), φ(J)-theory. The outrun cannot
be controlled without the dynamic contributions of the μ(J), φ(J)-theory and exceeds the
final runout very quickly.

B.5. Influence of the creep shear rate
The influence of the creep shear rate S0 is shown in figure 23 for the subaquatic dense
case. Figure 23 shows an early time step at t = 1.0 s and the final pile shape at t = 10 s.
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Figure 20. Sensitivity of the two-phase model on the time-step duration, expressed by the viscous CFL
number in the subaerial case (a), the subaquatic dense case (b) and the subaquatic loose case (c).
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Figure 21. Influence of dynamic friction, dynamic effective pressure and wall friction on the final pile shape
in the two-component model (a) and the two-phase model (b).
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Figure 22. The dense granular collapse at t = 6.0 s (a) and the loose granular collapse at t = 0.65 s
(b), simulated with critical state theory and μ(J), φ(J)-rheology. The dashed black line shows the final
experimental pile shape. The simulations with critical state theory clearly exceed the experiment early in the
simulation.
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Figure 23. Influence of the creep shear rate S0 on the pile shape. Two time steps are shown, t = 1 s
(continuous) and t = 10 s (dashed). The black dashed line shows the final experimental pile shape.

A reduction of the creeping shear rate from 5 s−1 to 1 s−1 leads to a slower initial collapse
of the column. The delayed collapse is desirable and brings the simulation closer to the
experiment. However, the low value for S0 leads to oscillations in the particle pressure
because the simulation accelerates and reaches shear rates beyond S0 too quickly. The
simulation with S0 = 5 s−1 shows no oscillations and has thus been utilized in the main
part of this work. Notably, a smaller time-step duration will allow smaller values for S0, but
for an increased computational cost. The final pile shape is barely affected by the change
in S0.
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