Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T22:45:51.499Z Has data issue: false hasContentIssue false

Singularity of the water strider propulsion mechanisms

Published online by Cambridge University Press:  29 March 2021

Thomas Steinmann
Affiliation:
Institut de Recherche en Biologie de l'Insecte, IRBI UMR CNRS7261Tours, France
Antoine Cribellier
Affiliation:
Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
Jérôme Casas*
Affiliation:
Institut de Recherche en Biologie de l'Insecte, IRBI UMR CNRS7261Tours, France
*
Email address for correspondence: jerome.casas@univ-tours.fr

Abstract

Our understanding of animal locomotion in air and water has progressed considerably, based on studies of their wakes. Wake vortices are the hallmarks of momentum transfer and enable an inverse inference of the forces applied by animals. Such approach has recently been extended to locomotion at the air–water interface, focusing on the familiar water striders and their dual hallmarks, surface capillary waves and bulk water vortices, produced by their paddling legs. However, the principal mechanisms of propulsion used in this type of locomotion remain a matter of debate. We confirm that the main force driving propulsion is the capillary force resulting from surface tension, and that interface relaxation makes a major contribution to the increase in vorticity of the water bulk. There is therefore no one-to-one mapping between forces and hallmarks in the fluid. Locomotion at the air–water interface for animals with virtual oars much larger than the size of their legs thus requires specific treatment outside the existing framework based on immersed propulsive appendices.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agbaglah, G., Thoraval, M.J., Thoroddsen, S.T., Zhang, L.V., Fezzaa, K. & Deegan, R.D. 2015 Drop impact into a deep pool: vortex shedding and jet formation. J. Fluid Mech. 764 (June), 764R1764R12.CrossRefGoogle Scholar
Amestoy, P.R., Duff, I.S., Koster, J. & L'Excellent, J.-Y. 2001 A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Applics. 23 (1), 1541.CrossRefGoogle Scholar
Andersen, N.M. 1976 A comparative study of locomotion on the water surface in semiaquatic bugs (Insecta, Hemiptera, Gerromorpha). Vidensk. Meddr. Dansk. Naturch. Foren. 139, 337396.Google Scholar
Armisén, D., Nagui Refki, P., Crumiére, A.J.J., Viala, S., Toubiana, W. & Khila, A. 2015 Predator strike shapes antipredator phenotype through new genetic interactions in water striders. Nat. Commun. 6 (May), 17.CrossRefGoogle ScholarPubMed
Batchelor, G.K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bühler, O. 2007 Impulsive fluid forcing and water strider locomotion. J. Fluid Mech. 573, 211236.CrossRefGoogle Scholar
Cahn, J.W. & Hilliard, J.E. 1958 Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (2), 258267.CrossRefGoogle Scholar
Chatellier, L., Jarny, S., Gibouin, F. & David, L. 2013 A parametric PIV/DIC method for the measurement of free surface flows. Exp. Fluids 54 (3), 14881503.CrossRefGoogle Scholar
Dabiri, J.O. 2005 On the estimation of swimming and flying forces from wake measurements. J. Expl Biol. 208 (18), 35193532.CrossRefGoogle ScholarPubMed
Dabiri, J.O. 2019 Landmarks and frontiers in biological fluid dynamics. Phys. Rev. Fluids 4 (11), 110501. arXiv:1904.13013.CrossRefGoogle Scholar
Denny, M.W. 1993 Air and Water : The Biology and Physics of Life's Media. Princeton University Press.CrossRefGoogle Scholar
Denny, M.W. 2004 Paradox lost: answers and questions about walking on water. J. Expl Biol. 207 (10), 16011606.CrossRefGoogle ScholarPubMed
Dickinson, M. 2003 How to walk on water. Nature 424, 621622.CrossRefGoogle ScholarPubMed
Drucker, E.G. & Lauder, G.V. 1999 Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. J. Expl Biol. 202 (18), 23932412.Google ScholarPubMed
Feng, X.-Q., Gao, X., Wu, Z., Jiang, L. & Zheng, Q.-S. 2007 Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. Langmuir 23 (9), 48924896.CrossRefGoogle ScholarPubMed
Gao, P. & Feng, J.J. 2010 A numerical investigation of the propulsion of water walkers. J. Fluid Mech. 668, 363383.CrossRefGoogle Scholar
Gao, X. & Jiang, L. 2004 Water-repellent legs of water striders. Nature 432 (7013), 36.CrossRefGoogle ScholarPubMed
de Gennes, P.-G., Brochard-Wyart, F. & Quere, D. 2004 Capillarity and Wetting Phenomena. Springer.CrossRefGoogle Scholar
Gomit, G., Chatellier, L., Calluaud, D. & David, L. 2013 Free surface measurement by stereo-refraction. Exp. Fluids 54 (6), 15401551.CrossRefGoogle Scholar
Hsieh, S.T. & Lauder, G.V. 2004 Running on water: three-dimensional force generation by basilisk lizards. Proc. Natl Acad. Sci. USA 101 (48), 1678416788.CrossRefGoogle ScholarPubMed
Hu, D.L. & Bush, J.W.M. 2010 The hydrodynamics of water-walking arthropods. J. Fluid Mech. 644, 533.CrossRefGoogle Scholar
Hu, D.L, Chan, B. & Bush, J.W.M. 2003 The hydrodynamics of water strider locomotion. Nature 424 (6949), 663–6.CrossRefGoogle ScholarPubMed
Ji, X.Y., Wang, J.W. & Feng, X.Q. 2012 Role of flexibility in the water repellency of water strider legs: theory and experiment. Phys. Rev. E: Stat. Nonlinear Soft Matt. Phys. 85 (2), 17.CrossRefGoogle ScholarPubMed
Koh, J.S., Yang, E., Jung, G.P., Jung, S.P., Son, J.H., Lee, S.I., Jablonski, P.G., Wood, R.J., Kim, H.Y. & Cho, K.J., et al. 2015 Jumping on water: surface tension-dominated jumping of water striders and robotic insects. Science 349 (6247), 517521.CrossRefGoogle ScholarPubMed
Kundu, P.K., Cohen, I.M., Dowling, D.R. & Tryggvason, G. 2015 Fluid Mechanics, 6th edn. Academic Press.Google Scholar
Leng, L.J. 2002 Splash formation by spherical drops. J. Fluid Mech. 427, 73105.CrossRefGoogle Scholar
Matloff, L.Y., Chang, E., Feo, T.J., Jeffries, L., Stowers, A.K., Thomson, C. & Lentink, D. 2020 How flight feathers stick together to form a continuous morphing wing. Science 367 (6475), 293297.CrossRefGoogle Scholar
Michon, G.J., Josserand, C. & Séon, T. 2017 Jet dynamics post drop impact on a deep pool. Phys. Rev. Fluids 2 (2), 113.CrossRefGoogle Scholar
Mukundarajan, H., Bardon, T.C., Kim, D.H. & Prakash, M. 2016 Surface tension dominates insect flight on fluid interfaces. J. Expl Biol. 219 (5), 752766.CrossRefGoogle ScholarPubMed
Novara, M. & Scarano, F. 2012 Performances of motion tracking enhanced Tomo-PIV on turbulent shear flows. Exp. Fluids 52 (4), 10271041.CrossRefGoogle ScholarPubMed
Peng, J. & Dabiri, J.O. 2008 The ‘upstream wake’ of swimming and flying animals and its correlation with propulsive efficiency. J. Expl Biol. 211 (16), 26692677.CrossRefGoogle ScholarPubMed
Petit, L., Hulin, J.-P. & Guyon, É. 2012 Hydrodynamique Physique, 3rd edn. EDP Sciences.Google Scholar
Ramananarivo, S., Godoy-Diana, R. & Thiria, B. 2011 Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc. Natl Acad. Sci. USA 108 (15), 59645969. arXiv:1011.4688.CrossRefGoogle ScholarPubMed
Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12 (2), 61.CrossRefGoogle Scholar
Rein, M. 1996 The transitional regime between coalescing and splashing drops. J. Fluid Mech. 306, 145165.CrossRefGoogle Scholar
Rinoshika, A. 2011 Vortical dynamics in the wake of water strider locomotion. J. Vis. (Visualization) 15 (2), 145153.CrossRefGoogle Scholar
Roman, B. & Bico, J. 2010 Elasto-capillarity: deforming an elastic structure with a liquid droplet. J. Phys.: Condens. Matter 22 (49), 493101.Google ScholarPubMed
Saffman, P.G. 1970 The velocity of viscous vortex rings. Stud. Appl. Maths XLIX (4), 371380.CrossRefGoogle Scholar
Santos, M.E., Le Bouquin, A., Crumiere, A.J.J. & Khila, A. 2017 Taxon-restricted genes at the origin of a novel trait allowing access to a new environment. Science 358 (6361), 386390.CrossRefGoogle ScholarPubMed
Shi, F., Niu, J., Liu, J., Liu, F., Wang, Z., Feng, X.Q. & Zhang, X. 2007 Towards understanding why a superhydrophobic coating is needed by water striders. Adv. Mater. 19 (17), 22572261.CrossRefGoogle Scholar
Steinmann, T., Arutkin, M., Cochard, P., Raphaël, E., Casas, J. & Benzaquen, M. 2018 Unsteady wave pattern generation by water striders. J. Fluid Mech. 848, 370387.CrossRefGoogle Scholar
Steinmann, T., Casas, J., Braud, P. & David, L. 2021 Coupled measurements of interface topography and three-dimensional velocity field of a free surface flow. Exp. Fluids. 62, 14.CrossRefGoogle Scholar
Suter, R.B., Rosenberg, R., Loeb, S., Wildman, H. & Long, J.H.J. 1997 Locomotion on the water surface: propulsive mechanisms of the fisher spider Dolomedes triton. J. Expl Biol. 200, 25232538.Google Scholar
Suter, R.B., Wildman, H. & College, V. 1999 Locomotion on the water surface: hydrodynamic constraints on rowing velocity require a gait change. J. Expl Biol. 202, 27712785.Google ScholarPubMed
Thoraval, M.J., Li, Y. & Thoroddsen, S.T. 2016 Vortex-ring-induced large bubble entrainment during drop impact. Phys. Rev. E 93 (3), 110.CrossRefGoogle ScholarPubMed
Tinaikar, A., Advaith, S. & Basu, S. 2018 Understanding evolution of vortex rings in viscous fluids. J. Fluid Mech. 836, 873909.CrossRefGoogle Scholar
Umeyama, M. 2012 Eulerian-lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry. Phil. Trans. R. Soc. A: Math. Phys. Engng Sci. 370 (1964), 16871702.CrossRefGoogle Scholar
Vella, D. 2008 Floating objects with finite resistance to bending. Langmuir 24 (16), 87018706.CrossRefGoogle ScholarPubMed
Wieneke, B. 2008 Volume self-calibration for 3D particle image velocimetry. Exp. Fluids 45 (4), 549556.CrossRefGoogle Scholar
Willert, C.E. & Gharib, M. 1991 Digital particle image velocimetry. Exp. Fluids 10 (4), 181193.CrossRefGoogle Scholar
Yue, P., Feng, J.J., Liu, C. & Shen, J. 2004 A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293317.CrossRefGoogle Scholar
Yue, P., Zhou, C., Feng, J.J., Ollivier-Gooch, C.F. & Hu, H.H. 2006 Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing. J. Comput. Phys. 219 (1), 4767.CrossRefGoogle Scholar
Zhang, Y., Liu, P., Qu, Q. & Hu, T. 2019 Energy conversion during the crown evolution of the drop impact upon films. Intl J. Multiphase Flow 115, 4061.CrossRefGoogle Scholar
Zhao, L., Huang, Q., Deng, X. & Sane, S.P. 2010 Aerodynamic effects of flexibility in flapping wings. J. R. Soc. Interface 7 (44), 485497.CrossRefGoogle ScholarPubMed
Supplementary material: File

Steinmann et al. supplementary material

Steinmann et al. supplementary material

Download Steinmann et al. supplementary material(File)
File 1.6 MB