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The Zakharov equation describes the evolution of weakly nonlinear surface gravity waves
for arbitrary spectral shape. For deep-water waves, results from the Zakharov equation
are well established. However, for two-dimensional propagation, in intermediate and
shallow water, there are problems related to the treatment of apparent singularities in the
contribution of the wave-induced set-up to the evolution of the surface gravity waves. More
specifically, the kernel in the integral term is characterized by a regular and an apparent
singular contribution. Here, we show that the Davey–Stewartson equation can be directly
derived from the Zakharov equation, also in the shallow water limit. This result provides
guidance on how to treat the singular contribution to the evolution of the action variable.
A relevant result that is obtained is that the growth rate obtained from the stability analysis
of a plane wave in shallow water does not depend on the singular part of the kernel of the
Zakharov equation.

Key words: surface gravity waves

1. Introduction

Surface gravity waves are usually described in the context of the potential flow of an ideal
fluid. As discovered by Zakharov (1968), the resulting nonlinear evolution equations are
obtained from a Hamiltonian, which is the total energy E of the fluid, while the appropriate
canonical variables are the surface elevation η(x, t) and the value ψ of the potential φ at
the surface, ψ(x, t) = φ(x, z = η, t)).
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In deep water the approach of Zakharov is well established. However, in shallow
water there is a problem because it is not immediately evident how one should treat the
apparent singularities related to the wave-induced set-up and current. For one-dimensional
propagation, a solution to this problem was suggested by Janssen & Onorato (2007) by
taking the limit of an infinitely long wave train for a single wave and agreement for surface
elevation, wave-induced current and the nonlinear dispersion relation was found with the
results of Whitham (1974). For the case of two-dimensional propagation, there is still
discussion on how to proceed (see e.g. Stiassnie & Gramstad 2009).

To avoid ambiguity in the integrals, in Gramstad (2014), it was strongly emphasized
to explicitly separate the wave-induced mean flow and set-up from the surface gravity
oscillations, resulting in a rather involved version of the Zakharov equation. Here, we
follow a slightly different route and show that such an approach is superfluous. Being
aware of the work in Onorato et al. (2009), where it is shown that the Boussinesq equation,
after removing non-resonant interactions, corresponds to the Zakharov equation in the
shallow-water limit, one may expect that the Davey–Stewartson (DS) equation, describing
a wave group, follows from the Zakharov equation in the narrow-band approximation.
This is explicitly shown in this paper by extending the analysis in Janssen & Onorato
(2007) to two horizontal dimensions. This is in keeping with results found by Stiassnie
& Shemer (1984), who were probably the first to make this connection. Indeed, from the
DS equation, an explicit expression for the nonlinear transfer function is obtained which
compares favourably with the narrow-band limit of the nonlinear transfer according to the
Zakharov equation. A number of properties of the resulting nonlinear transfer can then
be studied. For example, as pointed out already by Herterich & Hasselmann (1980), the
narrow-band limit of the nonlinear transfer is not unique as it depends on the order in
which the limit of the vanishing of the modulation wavenumbers is taken. Nevertheless,
we show that the non-uniqueness is resolved when one has knowledge of the initial
condition of the two-dimensional part of the mean wave-induced current. In addition,
we also perform a stability analysis of a plane wave and it is shown that, despite the
non-uniqueness of the nonlinear transfer coefficient, the growth rate of the Benjamin–Feir
instability in intermediate and shallow water is unique. Just recently, Pezzutto & Shrira
(2023) discussed the ambiguity problem and, based on a limiting procedure, they claimed
that, despite the fact that the coefficients are singular, the integrals are not. They used
this result for computing the Stokes frequency correction and the growth rate in the
modulational instability. Here, our prospective is different, and we do not make any attempt
to compute directly the integrals. We show that, for a Stokes wave train, the growth rates
are independent of such ambiguity, as this is connected to the initial condition on the mean
flow; moreover, we are able to associate the singular part of the integral with the auxiliary
variable Q (related to the mean flow) in the DS equation. In agreement with Davey &
Stewartson (1974), we find that the frequency correction in such limit can take an arbitrary
constant value.

The content of this paper is as follows. In § 2, we start from the DS equation and we
transform this coupled set of equations for the wave action variable and mean potential
to Fourier space. Then, the Fourier transform of the mean potential may be eliminated in
favour of the Fourier transform of the action variable, resulting in a standard four-wave
interaction equation for the action variable. According to the DS equation, the nonlinear
interaction coefficient is now explicitly known and the contribution of the wave-induced
mean potential is found to depend on the modulation wavenumber, in such a way that, in
the limit of vanishing modulation wavenumber, the limiting value of the transfer function
for a homogeneous background solution is an arbitrary constant. In § 3, we start from
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On the non-uniqueness of the kernel of the Zakharov equation

the Zakharov equation and we determine the narrow-band approximation of the nonlinear
interaction coefficient. The resulting approximation is in perfect agreement with the results
from the Fourier transform of the DS equation. As a consequence, it is found that, in the
narrow-band limit, both of the nonlinear transfers from the DS equation and the Zakharov
equation are not unique. Nevertheless, in § 4, a unique answer for the growth rate of the
Benjamin–Feir instability is found.

2. The Davey–Stewartson equation in Fourier space

The starting point is the DS equation, of which there are several equivalent forms available.
Since the Zakharov equation is formulated in terms of the action variable, we will take the
equation that is based on this variable. Hence, we introduce the action variable a(k, t)
defined in such a way that the surface elevation η(x, t) reads

η(x, t) =
∫

dk
(
ωk

2g

)1/2

[a(k, t)+ a∗(−k, t)] exp (ik · x) , (2.1)

where ωk = ω(k) = √
gk tanh(kh), with g acceleration of gravity, k = |k| =

√
k2

x + k2
y

the magnitude of the wavenumber and h the constant depth. Assuming a narrow-band
process with carrier wavenumber k = (k0, 0) propagating in the x-direction, and defining
the Fourier transform according to

A(x, t) =
∫

dka(k, t) exp{ik · x}, (2.2)

at leading order, one finds from (2.1)

η(x, t) =
(
ω0

2g

)1/2

[A(x, t) exp(ik0x)+ A∗(x, t) exp(−ik0x)], (2.3)

where ω0 = ω(k0). The DS equation for the complex envelope A = A(x, t) and for the
auxiliary variable Q = Q(x, t), related to the mean motion of the fluid, then becomes

i
∂A
∂t

+ λ∂
2A
∂x2 + μ

∂2A
∂y2 = ν|A|2A + ν1QA

λ1
∂2Q
∂x2 + μ1

∂2Q
∂y2 = ν2

∂2|A|2
∂y2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (2.4)

where

λ = 1
2
∂2ω

∂k2
x

∣∣∣∣
(k0,0)

, μ = vg

2k0
,

ν = k3
0

[
9T4

0 − 10T2
0 + 9

8T3
0

− 1
k0h

{
(2vg − c0/2)2

c2
S − v2

g
+ 1

}]
,

ν1 = k4
0

2ω0vg

{
2c0 + vg(1 − T2

0 )
}
, λ1 = c2

S − v2
g, μ1 = c2

S,

ν2 = 1
2

c0

T0
c2

Svg
2c0 + vg(1 − T2

0 )

c2
S − v2

g
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.5)
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Furthermore, T0 = tanh(k0h), c0 = ω0/k0 is the phase speed, vg = ∂ω/∂kx|(k0,0) is
the group speed and cS = √

gh is the shallow-water speed. We remark that the
one-dimensional form of the DS equation with Q = 0 agrees with earlier work by
Hasimoto & Ono (1972) and Whitham (1974). The two-dimensional version of the DS
equation was already found and studied by Benney & Roskes (1969).

Using the Fourier transform with wave vector κ = {l,m}, e.g.

q1 = 1
4π2

∫
dxQ(x, t) exp{−iκ1 · x}, (2.6)

we rewrite the DS equation as follows:

i
∂a1

∂t
− (λl21 + μm2

1)a1 = ν

∫
dκ2,3,4a∗

2a3a4δ1+2−3−4 + ν1

∫
dκ3,iqia3δ1−3−i

(λ1l2i + μ1m2
i )qi = ν2

∫
dκ2,4(m4 − m2)

2a∗
2a4δi+2−4.

⎫⎪⎪⎬
⎪⎪⎭ (2.7)

From the second equation in (2.7), one may express qi in terms of the action variable,
i.e.

qi = ν2

∫
dκ2,4

(m4 − m2)
2

λ1l2i + μ1m2
i

a∗
2a4δi+2−4. (2.8)

Note that, in the limit of li and mi going to zero, to get (2.8), we are dividing by zero; we
believe that this is the origin of the singularities in the subsequent analysis. Substitution
(2.8) in the first equation, gives the standard form of a four-wave interaction equation

i
∂a1

∂t
= Ω1a1 +

∫
dκ2,3,4G1,2,3,4a∗

2a3a4δ1+2−3−4, (2.9)

with the dispersion relation

Ω1 = λl21 + μm2
1, (2.10)

while the nonlinear transfer coefficient becomes

G1,2,3,4 = ν + ν1
ν2(m4 − m2)

2

λ1(l4 − l2)2 + μ1(m4 − m2)2
. (2.11)

For the equation to be Hamiltonian, the coefficient must satisfy a number of symmetries:
using the condition κ1 + κ2 = κ3 + κ4, one may also write G1,2,3,4 in terms of the
difference modulation vector κ1 − κ3. Moreover, G1,2,3,4 must be invariant with respect
to the exchange of labels ‘3’ and ‘4’. Combining these properties and defining

Ei,j = 1
4

(mi − mj)
2

λ1(li − lj)2 + μ1(mi − mj)2
, (2.12)

one obtains for G the symmetric form

G1,2,3,4 = ν + ν1[ν2(E1,3 + E2,3 + E4,2 + E4,1)]. (2.13)

From (2.13), it is immediately evident that the effect of the mean flow on the evolution of
the modulations is significant. In the function E both denominator and numerator depend
on the square of the difference between the modulation wavenumbers in such a way that,
if the size of the modulation wavenumbers decreases, the impact of the function E, and
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Figure 1. Wave-induced current function E = K2
y /(K

2
x + K2

y ) where Kx = li − lj and Ky = mi − mj as
function of Kx and Ky.

hence the mean flow, does not diminish. This is in sharp contrast with the effect of mean
flow on modulations in in infinite water depth as given by the two-dimensional Dysthe
equation; indeed, in Dungey & Hui (1979), it has been shown show, and further discussed
by Janssen (1983), that the deep-water wave-induced current is a higher-order effect.

It should be clear, see figure 1, that, at the origin the function, E is not well defined. This
is a potential problem because, when determining the growth rate of the Benjamin–Feir
instability, we need to evaluate the nonlinear transfer function for vanishing modulation
wavenumber difference, i.e. li = lj and mi = mj. To see this better, we consider E as a
function of Kx = li − lj and Ky = mi − mj, and set all the coefficients to 1, to get E =
K2

y /(K
2
x + K2

y ). Now, in the limit of vanishing modulation wavenumber difference, i.e.
Kx → 0,Ky → 0, one would expect to find a unique answer. However, this is not the case.
Considering the straight line through the origin, Ky = αKx, one finds that E = α2/(1 +
α2), so that the value of E at the origin depends on the limiting procedure, i.e. under what
angle the origin is approached. Despite this non-uniqueness, we will find that the evolution
of the modulations, e.g. the linear growth rate of the modulational instability, is found to
be unique.

In contrast, for the deep-water Dysthe equation the effect of the wave-induced current
has, after simplification, the form E = K2

x /(
√

K2
x + K2

y ) and this has at the origin the
unique value of zero because the numerator vanishes more rapidly towards zero than
the denominator. This is immediately seen by considering once more the straight line
Kx = αKy so that E = α2Kx/

√
1 + α2, which vanishes unambiguously for vanishing Kx.

3. The Zakharov equation and its connection with the DS equation

The Zakharov equation reads

i
∂a1

∂t
= ω1a1 +

∫
T1,2,3,4a∗

2a3a4δ1+2−3−4 dk2,3,4, (3.1)
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where the nonlinear interaction coefficient T1,2,3,4 is given in the Appendix. We are
interested in an envelope equation so that it is useful to rewrite the absolute value of the
wavevector k in the dispersion relation as

k = kx

√
1 + k2

y

k2
x
. (3.2)

Because in the DS equation k2
y/k

2
x � 1, i.e. the wavenumber in the y-direction is much

smaller than the one in the x-direction, we assume that there is a dominant wave
propagating in the x direction with wave vector components (k0, 0), and we consider the
narrow-band approximation

kx = k0 + l

ky = m.

}
(3.3)

Expanding the dispersion relation for small l and m, we obtain

ωk = ω0 + vgl + (λl2 + μm2). (3.4)

In the Zakharov equation the first two terms can be removed by a rotation, and we are left
with the dispersion relation of the DS equation, see (2.10). We now need to calculate the
narrow-band version of the coefficient T1,2,3,4. Its explicit form is given in the Appendix,
and it consists of two contributions. The first one is denoted by T(R)1,2,3,4 and represents
the regular contribution. It can be verified (see e.g. Janssen & Onorato 2007) that the
narrow-band version of the regular contribution becomes

T(R)1,1,1,1 = k3
0

9T4
0 − 10T2

0 + 9

8T3
0

. (3.5)

However, there is also a contribution from the non-resonant triads. This contribution is
denoted by T(S)1,2,3,4; these terms involve the product of the second-order coefficients V(−).
The difficulty of the calculation comes from the terms that, in the limit of a long wave
group, give rise to an apparent singularity. For example, the term that contains at the
denominator ω3 + ω1−3 − ω1 may give rise to a singular behaviour when k1 � k3.

The calculation that follows is similar to the one performed by Janssen & Onorato
(2007), but now extended to the case of two-dimensional propagation. We shall only give
results explicitly for the product term of the triads (1, 3, 1 − 3) and (4, 2, 4 − 2) and the
triads (3, 1, 3 − 1) and (2, 4, 2 − 4). The other contributions follow by interchanging the
indices 1 and 2. We need to calculate terms like the following one (see (A3)):

−V(−)1,3,1−3V(−)4,2,4−2

[
1

ω3 + ω1−3 − ω1
+ 1
ω2 + ω4−2 − ω4

]
. (3.6)

After some algebra one finds that (see also (23) in Janssen & Onorato 2007)

V(−)1,3,1−3 ≈ 1

4
√

2

(
k2

0 − q2
0

ω0

√
gω1−3 + 2k0(l1 − l3)

(
g

ω1−3

)1/2
)

; (3.7)

moreover, we need to compute terms such as

1
ω3 − ω1 + ω1−3

. (3.8)
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On the non-uniqueness of the kernel of the Zakharov equation

To this end, it is straightforward to show that, to the leading non-trivial order, we have

ω1−3 = csΔ1−3, (3.9)

with

Δ1−3 =
√
(l1 − l3)2 + (m1 − m3)2, (3.10)

while

ω1 − ω3 = vg(l1 − l3). (3.11)

Furthermore, the wavenumber condition k1 + k2 = k3 + k4 implies certain relations for
the difference vectors, e.g. l1 − l3 = l4 − l2 and m1 − m3 = m4 − m2. As a consequence,
one finds that ω1−3 = ω4−2 while ω1 − ω3 = ω4 − ω2. By interchanging 1 and 2, it
is found that ω2−3 = ω4−1 and that ω2 − ω3 = ω4 − ω1. Similar relations exist for the
parameter Δ, e.g. Δ1−3 = Δ4−2 and Δ2−3 = Δ4−1.

Putting together the first and the fourth term of T(S)1,2,3,4 denoted by 2F1,3, and the second
and the third term given by 2F2,3, one then finds

T(S)1,2,3,4 = 2F1,3 + 2F2,3, (3.12)

with

Fi,j = − 1
16

k3
0c2

s

c2
sΔ

2
i−j − v2

g(li − lj)2

[
(1 − T2

0 )
2Δ2

i−j

T0
+

(
4(1 − T2

0 )gvg

c2
sω0

+ 4
k0h

)
(li − lj)2

]
.

(3.13)

Furthermore, exploiting the above mentioned relations between the difference vectors, one
obtains the following symmetrical form:

T(S)1,2,3,4 = F1,3 + F2,3 + F4,2 + F4,1, (3.14)

so that the narrow-band version of the nonlinear interaction coefficient T1,2,3,4 becomes

T1,2,3,4 ≈ T(R)1,1,1,1 + F1,3 + F2,3 + F4,2 + F4,1, (3.15)

where T(R)1,1,1,1 is given by (3.5). To show that the narrow-band version of the Zakharov
interaction coefficient is identical to the corresponding one from the DS equation (3.3),
we have to further work on the form of the function Fi,j. Straightforward algebraic
manipulations show that this function is of the form

Fi,j = α1 + α2 − 4μ1α2Ei,j, with Ei,j = 1
4

(mi − mj)
2

λ1(li − lj)2 + μ1(mi − mj)2
, (3.16)

where Ei,j is identical to the form given in (2.12). Furthermore, the constants are

α1 = − 1
16

k3
0
(1 − T2

0 )
2

T0
and α2 = − 1

16
k3

0
T0(c2

s − v2
g)
(2c0 + vg(1 − T2

0 ))
2. (3.17a,b)

Using the expressions for μ1 and α2, it is then straightforward to establish that the
modulation dependent part of (2.13) matches the one in (3.16) since −4μ1α2 = ν1ν2.
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Now, it remains to establish whether the constant parts of (2.13) and (3.17a,b) agree.
After some algebra, using (32)–(33) of Janssen & Onorato (2007), i.e.

−1
4

k3
0

c2
s

c2
s − v2

g

[
(1 − T2

0 )
2

T0
+ 4(1 − T2

0 )gvg

c2
sω0

+ 4
koh

]
= − k3

0
k0h

[
(2vg − c0/2)2

c2
s − v2

g
+ 1

]
,

(3.18)

an alternative expression for α2 may be obtained which establishes a connection between
α2 and α1, i.e.

α2 = −α1 − 1
4

k3
0

k0h

[
(2vg − c0/2)2

c2
s − v2

g
+ 1

]
. (3.19)

As a consequence, one may write for the narrow-band version of the nonlinear interaction
coefficient

T1,2,3,4 ≈ T1D + ν1[ν2(E1,3 + E2,3 + E4,2 + E4,1)], (3.20)

with

T1D = T(R)1,1,1,1 + 4(α1 + α2) = k3
0

9T4
0 − 10T2

0 + 9

8T3
0

− k3
0

k0h

[
(2vg − c0/2)2

c2
s − v2

g
+ 1

]
.

(3.21)

Hence, the term T1D agrees with the term ν in the expression for G1,2,3,4 in (2.13),
which gives the nonlinear transfer for the DS equation. Note that T1D is in agreement
with Whitham (1974), and it gives the nonlinear correction to the dispersion relation for
a uniform weakly nonlinear wave train and the correction due to the one-dimensional
wave-induced current. The sum of these two terms vanishes for k0h = 1.363, which
signals for one-dimensional modulations the transition from unstable to stable. However,
as already shown by Hayes (1973) for two-dimensional modulations, there is still
modulational instability for k0h < 1.363.

4. Linear stability analysis of a uniform wave train

The main topic of this section is to study the linear stability results of a uniform wave train,
realizing that the nonlinear transfer coefficient is not unique in the limit of zero modulation
wavenumber (see § 2). Because the growth rate will be seen to depend explicitly on
the value of the T1,2,3,4 at the carrier wavenumber k0 = (k0, 0) and at the sideband
wavenumber k0 + κ , the main question to be answered is as follows: How does the
mentioned non-uniqueness affect the stability results?

Let us now revisit the stability analysis of a plane wave. The nonlinear dispersion
relation for surface gravity waves is obtained immediately from the Zakharov equation
(3.1). Consider the case of a single wave

a(k, t) = â(t)δ(k − k0), (4.1)

then substitution of (4.1) into (3.1) gives

dâ(t)
dt

= −iTNL|â(t)|2â(t), (4.2)

where TNL = T0,0,0,0. Equation (4.2) may be solved at once by writing

â(t) = a0 exp(−iΩt), (4.3)
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where Ω denotes the correction of the dispersion relation due to nonlinearity. It is given
by

Ω = TNL|a0|2. (4.4)

The dependence of the dispersion relation on the wave amplitudes is known to have a
profound impact on the time evolution of a weakly nonlinear wave train, but here we just
confine ourselves to discussing the short time behaviour of a nonlinear wave train by means
of a linear stability analysis.

Following Crawford et al. (1981) (see also Yuen & Lake 1982; Krasitskii & Kalmykov
1993), we now address the question as to whether a weakly nonlinear wave train is stable
or not in finite water depth (see also Brinch-Nielsen & Jonsson 1986; Gramstad & Trulsen
2011). To test the stability of a uniform wave train, we perturb it by a pair of sidebands
with wavenumber k± = k0 ± κ and amplitude A±(t), e.g.

a = A0δ(k − k0)+ A+δ(k − k+)+ A−δ(k − k−). (4.5)

Assuming that the sideband amplitudes are small compared with the amplitude A0 of
the carrier wave and neglecting the square of small quantities, the following evolution
equations for A± are found from the Zakharov equation (3.1):

i
d
dt

A± = T±,∓a2
0A∗

∓ exp[−i(�ω + 2TNLa2
0)t] + 2T±,±a2

0A±, (4.6)

where
T±,± = T(k0 ± κ,k0,k0,k0 ± κ),

T±,∓ = T(k0 ± κ,k0 ∓ κ,k0,k0),

TNL = T(k0,k0,k0,k0),

�ω = 2ω(k0)− ω(k0 + κ)− ω(k0 − κ),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.7)

and a0 is the same quantity as given in (4.4).
By means of the substitution

A+ = Â+ exp
[
−i

(
1
2�ω + TNLa2

0

)
t − iΩt

]
,

A∗
− = Â∗

− exp
[
+i

(
1
2�ω + TNLa2

0

)
t − iΩt

]
,

⎫⎪⎬
⎪⎭ (4.8)

where Ω is still unknown, a set of differential equations is obtained that contains no
explicit time dependence. A non-trivial solution is then found provided Ω satisfies the
dispersion relation

Ω = (T+,+ − T−,−)a2
0

±
{

− T+,−T−,+a4
0 +

[
−1

2�ω + a2
0(T+,+ + T−,− − TNL)

]2
}1/2

. (4.9)

We have instability provided that the term under the square root is negative (see Crawford
et al. 1981).

Let us now determine the dispersion relation explicitly for the narrow-band version of
the nonlinear transfer coefficient given in (3.20). Evaluating the parameters given in (4.7)

980 A32-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.2


M. Onorato and P.A.E.M. Janssen

with κ = (l,m), one finds

T+,+ = T−,− = T1D + 1
2
ν1ν2

m2

λ1l2 + μ1m2 + 2ν1ν2E0,

T+,− = T−,+ = T1D + ν1ν2
m2

λ1l2 + μ1m2 ,

TNL = T1D + 4ν1ν2E0,

�ω = −2(λl2 + μm2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.10)

Here, T1D is the part of the nonlinear transfer coefficient that is independent of the
modulation wavenumber κ = (l,m) and E0 is the value of E at the origin. Now, since
T+,+ = T−,− and T+,− = T−,+, the dispersion relation (4.9) simplifies to

Ω = ±{ − T2
+,−a4

0 + [ − 1
2�ω + a2

0(2T+,+ − TNL)
]2}1/2

. (4.11)

The most remarkable point to make now is that the term (2T+,+ − TNL), upon using (4.10),
does not depend on the undefined value E0 as

2T+,+ − TNL = T1D + ν1ν2
m2

λ1l2 + μ1m2 = T+,−. (4.12)

Since also the term T+,− does not depend on the undefined value E0, this implies that the
dispersion relation for Ω is well defined. Further simplification, using T+,− = 2T+,+ −
TNL, gives as dispersion relation

Ω2 = (λl2 + μm2)[2T+,−a2
0 + (λl2 + μm2)], (4.13)

which is in perfect agreement with stability results obtained directly from the DS equation.
Hayes (1973) and Davey & Stewartson (1974) showed that the wave train is unstable if

T+,−(λl2 + μm2) < 0. (4.14)

Note that λ = ω′′
0/2 is always negative while μ = vg/2k0 is positive, and T1D changes

from negative to positive as k0h decreases beyond k0h = 1.363 (Hasimoto & Ono 1972).
The two-dimensional effect involving the modulation wavenumbers l and m tends to
enhance the Benjamin–Feir instability. Hayes (1973) has shown that it is always possible
to choose l and m in such a way that criterion (4.14) is satisfied, but instability is practically
non-existent for shallow-water waves in the range 0 ≤ k0h ≤ 0.5.

Finally, it is remarked that, while T+,− is not unique at the origin, Ω from (4.13) is well
defined because T+,− is multiplied by �ω, which vanishes at the origin.

It is clear that the parameter T+,− plays an important role in the modulational instability.
Therefore, in order to obtain confidence in our results, we compare this parameter with
alternative approaches. From (4.10), we know that, in the narrow-band approximation, we
have

T+,− = T1D + ν1ν2
m2

λ1l2 + μ1m2 . (4.15)

Some effort has been made to try to validate the result given in (4.15) using direct
numerical computation of the original interaction coefficient. In figure 2, we show the
ratio of the narrow-band approximation in (4.15) and the numerical result obtained
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Figure 2. Dependence of T1,2,3,4 on the dimensionless depth parameter k0h. The case k1 = k0(cos θ,+ sin θ),
k2 = k0(cos θ,− sin θ), k3 = k4 = k0(cos θ, 0) is chosen. Shown is the analytical result in (4.15) normalized
with the numerical result for different values of θ .

by computing the element matrix of the Krasitskii’s interaction coefficient. This last
coefficient is evaluated following Janssen & Onorato (2007), where the wavenumbers
have been perturbed by a small amount in such a way that the perturbations (with size
of order 10−5) satisfy the wavenumber resonance conditions. Therefore, the computation
of the last coefficient is also an approximation, and one might expect deviations much
larger than machine precision. The analytical result was obtained by (3.20) where from
the outset we used the wavenumber condition k1 + k2 = k3 + k4 to simplify (3.20), so
that it only depends on the first three wavenumbers, thus

T1,2,3 = T1D + 2ν1ν2(E1,3 + E2,3). (4.16)

The conclusion, looking at figure 2, is that there is a reasonable agreement between
the analytical result and the numerical implementation of the Krasitskii interaction
coefficients. This implies that for numerical calculations of the nonlinear transfer in
shallow and intermediate water, i.e. the procedure suggested by Janssen & Onorato (2007),
seems to give valid results.

5. Discussion and conclusions

We have shown that in the narrow-band approximation the DS equation follows from
the Zakharov equation. This means that the Zakharov equation contains all the physics
presented by the DS equation. Moreover, we have shown that the growth rate of the
two-dimensional version of the Benjamin–Feir instability obtained from the Zakharov
equation agrees with the result from the DS equation. While it is shown that the growth rate
does not depend on the undefined value E0, this is an entirely different matter for the Stokes
frequency correction given by (4.4). It is seen that this correction does depend explicitly
on T0,0,0,0, therefore there is an ambiguity, which can only be resolved by making a choice
for E0. To see this, we look for an homogeneous solution for the envelope A(x, t) of the
DS equation in (2.4) by making the ansatz A(x, t) = A0 exp(−iΩt), with A0 a constant;
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the second of the equations in (2.4) becomes

λ1
∂2Q
∂x2 + μ1

∂2Q
∂y2 = 0; (5.1)

therefore, for a constant (in space) envelope, a solution of the above equation is that Q takes
any arbitrary constant, Q = const = Q0. This is all in agreement with Davey & Stewartson
(1974).

Hence, the nonlinear frequency shift depends on the chosen value of Q0. We note that,
if Q is a constant then, using (2.6), qκ = Q0δ(κ); therefore, with A0 = const, we get Aκ =
A0δ(κ) exp(−iΩt), and the apparent singular part of the kernel in (3.20) of the Zakharov
equation must be taken as a constant, i.e.

lim
κ1,κ2κ3,κ4→0

(E1,3 + E2,3 + E4,2 + E4,1) = Q1, (5.2)

with Q1 = Q0/(ν2|A0|2). The value of Q1 can be also chosen as 0, so that the kernel
becomes identical to the one-dimensional case computed in Janssen & Onorato (2007).
We remark, once more, that the choice of the constant Q0 is immaterial for the stability
analysis of a plane wave.

Finally, the non-uniqueness of the interaction kernel gives indeed rise to uncertainties
in simulations by means of, e.g. wave forecasting models. If one would just calculate
the nonlinear transfer without any extra precautions, the calculation would explode at
locations in the direction–wavenumber grid where the numerator and the denominator
of the interaction kernel vanish. In order to avoid such explosions, a procedure was
suggested in Janssen & Onorato (2007) in such a way that finite answers were obtained
in agreement with known results from Whitham (1974) in one dimension, and in the
present paper for two dimensions with the DS equation. The procedure is to perturb the
relevant wavenumbers by a slight amount in such a way that the wavenumber resonance
condition is satisfied. We underline that, in Yang, Yao & Zhang (2022), the growth rates
of the modulational instability using the Janssen & Onorato (2007) approach, extended to
two-dimensional propagation, have been compared with numerical results obtained from
a higher order spectral method simulation of the Euler equations and good agreement of
the maximum growth rates was reported.
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Appendix A. Nonlinear transfer coefficients

The correct version of the interaction coefficient T1,2,3,4 = T(k1,k2,k3,k4) was first
given by Krasitskii (1990, 1994) and Zakharov (1992). It is recorded here for reference.
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We have

T1,2,3,4 = T(R)1,2,3,4 + T(S)1,2,3,4, (A1)

with T(R) the regular contribution

T(R)1,2,3,4 = W1,2,3,4

− V(−)1+2,1,2V(−)3+4,3,4

[
1

ω1+2 − ω1 − ω2
+ 1
ω3+4 − ω3 − ω4

]

− V(+)−1−2,1,2V(+)−3−4,3,4

[
1

ω1+2 + ω1 + ω2
+ 1
ω3+4 + ω3 + ω4

]
, (A2)

while T(S) gives the singular contribution due to the wave-induced current

T(S)1,2,3,4 = −V(−)1,3,1−3V(−)4,2,4−2

[
1

ω3 + ω1−3 − ω1
+ 1
ω2 + ω4−2 − ω4

]

− V(−)2,3,2−3V(−)4,1,4−1

[
1

ω3 + ω2−3 − ω2
+ 1
ω1 + ω4−1 − ω4

]

− V(−)1,4,1−4V(−)3,2,3−2

[
1

ω4 + ω1−4 − ω1
+ 1
ω2 + ω3−2 − ω3

]

− V(−)2,4,2−4V(−)3,1,3−1

[
1

ω4 + ω2−4 − ω2
+ 1
ω1 + ω3−1 − ω3

]
. (A3)

Here, the second-order coefficients are defined as

V(±)1,2,3 = 1

4
√

2

{
[k1 · k2 ± q1q2]

(
gω3

ω1ω2

)1/2

+ [k1 · k3 ± q1q3]
(

gω2

ω1ω3

)1/2

+ [k2 · k3 + q2q3]
(

gω1

ω2ω3

)1/2 }
, (A4)

with ki = |ki|, ωi = ω(ki) and qi = ω2
i /g. The third-order coefficients become

W1,2,3,4 = U−1,−2,3,4 + U3,4,−1,−2 − U3,−2,−1,4

− U−1,3,−2,4 − U−1,4,3,−2 − U4,−2,3,−1, (A5)

with

U1,2,3,4 = 1
16

(
ω3ω4

ω1ω2

)1/2

[2(k2
1q2 + k2

2q1)− q1q2(q1+3 + q2+3 + q1+4 + q2+4)].

(A6)

Note that, here, a Fourier transform without the factor of 2π has been used. As a
consequence, compared with Krasitskii (1994) and Zakharov (1992), the second-order
coefficient is larger by a factor of 2π, while the third-order factor is larger by a factor
of 4π2. The advantage is that, in deep water, the narrow-band limit of T1,2,3,4 simply
becomes T1,1,1,1 = k3

1.
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