Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-07T11:16:19.318Z Has data issue: false hasContentIssue false

Hypersonic turbulent boundary layer over the windward side of a lifting body

Published online by Cambridge University Press:  03 June 2024

Siwei Dong
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
Ming Yu*
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
Fulin Tong
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
Qian Wang
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
Xianxu Yuan*
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
*
Email addresses for correspondence: yum16@tsinghua.org.cn, yuanxianxu2023@163.com
Email addresses for correspondence: yum16@tsinghua.org.cn, yuanxianxu2023@163.com

Abstract

In the present study, we performed direct numerical simulations for a hypersonic turbulent boundary layer over the windward side of a lifting body, the HyTRV model, at Mach number $6$ and attack angle 2$^{\circ }$ to investigate the global and local turbulent features, and evaluate its difference from canonical turbulent boundary layers. By scrutinizing the instantaneous and averaged flow fields, we found that the transverse curvature on the windward side of the HyTRV model induces the transverse opposing pressure gradients that push the flow on both sides towards the windward symmetry plane, yielding significant effects of the azimuthal inhomogeneity and large-scale cross-stream circulations, moderate and azimuthal independent influences of adverse pressure gradient, and negligible impact of the mean flow three-dimensionality. Further inspecting the local turbulent statistics, we identified that the mean and fluctuating velocity become increasingly similar to the highly decelerated turbulent boundary layers over flat plates in that the mean velocity deficit is enhanced, and the outer layer Reynolds stresses are amplified as it approaches the windward symmetry plane, and prove to be self-similar under the scaling of Wei & Knopp (J. Fluid Mech., vol. 958, 2023, A9) for adverse-pressure-gradient turbulent boundary layers. Conditionally averaged Reynolds stresses based on strong sweeping and ejection events demonstrated that the Kelvin–Helmholtz instability of the strong embedded shear layer induced by the large-scale cross-stream circulations is responsible for the turbulence amplification in the outer layer. The strong Reynolds analogy that relates the mean velocity and temperature was refined to incorporate the non-canonical effects, showing considerable improvements in the accuracy of such a formula. On the other hand, the temperature fluctuations are still transported passively, as indicated by their resemblance to the velocity. The conclusions obtained in the present study provide potentially profitable information for turbulent modelling modification for the accurate predictions of skin friction and wall heat transfer.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, S.D. & Eaton, J.K. 1989 Reynolds stress development in pressure-driven three-dimensional turbulent boundary layers. J. Fluid Mech. 202, 263294.CrossRefGoogle Scholar
Anderson, W., Barros, J.M., Christensen, K.T. & Awasthi, A. 2015 Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J. Fluid Mech. 768, 316347.CrossRefGoogle Scholar
Bai, T., Griffin, K.P. & Fu, L. 2022 Compressible velocity transformations for various noncanonical wall-bounded turbulent flows. AIAA J. 60 (7), 43254337.CrossRefGoogle Scholar
Balantrapu, N.A., Hickling, C., Alexander, W.N. & Devenport, W. 2021 The structure of a highly decelerated axisymmetric turbulent boundary layer. J. Fluid Mech. 929, A9.CrossRefGoogle Scholar
Bentaleb, Y. & Leschziner, M.A. 2013 The structure of a three-dimensional boundary layer subjected to streamwise-varying spanwise-homogeneous pressure gradient. Intl J. Heat Fluid Flow 43, 109119.CrossRefGoogle Scholar
Bradshaw, P. 1987 Turbulent secondary flows. Annu. Rev. Fluid Mech. 19 (1), 5374.CrossRefGoogle Scholar
Bradshaw, P. & Pontikos, N.S. 1985 Measurements in the turbulent boundary layer on an ‘infinite’ swept wing. J. Fluid Mech. 159 (1), 105130.CrossRefGoogle Scholar
Bruns, J.M., Fernholz, H.H. & Monkewitz, P.A. 1999 An experimental investigation of a three-dimensional turbulent boundary layer in an ‘S’-shaped duct. J. Fluid Mech. 393, 175213.CrossRefGoogle Scholar
Cantwell, B.J. 2019 A universal velocity profile for smooth wall pipe flow. J. Fluid Mech. 878, 834874.CrossRefGoogle Scholar
Chen, X., Dong, S., Tu, G., Yuan, X. & Chen, J. 2022 Boundary layer transition and linear modal instabilities of hypersonic flow over a lifting body. J. Fluid Mech. 938, A8.CrossRefGoogle Scholar
Cogo, M., Salvadore, F., Picano, F. & Bernardini, M. 2022 Direct numerical simulation of supersonic and hypersonic turbulent boundary layers at moderate-high Reynolds numbers and isothermal wall condition. J. Fluid Mech. 945, A30.CrossRefGoogle Scholar
Coleman, G.N., Kim, J. & Spalart, P.R. 2000 A numerical study of strained three-dimensional wall-bounded turbulence. J. Fluid Mech. 416, 75116.CrossRefGoogle Scholar
Dang, G., Liu, S., Guo, T., Duan, J. & Li, X. 2022 a Direct numerical simulation of compressible turbulence accelerated by graphics processing unit: an open-access database of high-resolution direct numerical simulation. AIP Adv. 12 (12), 125111.CrossRefGoogle Scholar
Dang, G., Liu, S., Guo, T., Duan, J. & Li, X. 2022 b Direct numerical simulation of compressible turbulence accelerated by graphics processing unit: an open-source high accuracy accelerated computational fluid dynamic software. Phys. Fluids 34 (12), 126106.CrossRefGoogle Scholar
Dengel, P. & Fernholz, H.H. 1990 An experimental investigation of an incompressible turbulent boundary layer in the vicinity of separation. J. Fluid Mech. 212, 615636.CrossRefGoogle Scholar
Dong, S., Lozano-Durán, A., Sekimoto, A. & Jiménez, J. 2017 Coherent structures in statistically stationary homogeneous shear turbulence. J. Fluid Mech. 816, 167208.CrossRefGoogle Scholar
van Driest, E.R. 1951 Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18 (3), 145160.CrossRefGoogle Scholar
Driver, J. 1990 Experimental study of a three-dimensional shear-driven turbulent boundary layer with streamwise adverse pressure gradient. NASA Tech. Memo.CrossRefGoogle Scholar
Duan, L., Beekman, I. & Martín, M.P. 2010 Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655, 419445.CrossRefGoogle Scholar
Fan, Y., Li, W., Atzori, M., Pozuelo, R., Schlatter, P. & Vinuesa, R. 2020 Decomposition of the mean friction drag in adverse-pressure-gradient turbulent boundary layers. Phys. Rev. Fluids 5 (11), 114608.CrossRefGoogle Scholar
Fernholz, H.H. & Vagt, J.-D. 1981 Turbulence measurements in an adverse-pressure-gradient three-dimensional turbulent boundary layer along a circular cylinder. J. Fluid Mech. 111, 233269.CrossRefGoogle Scholar
Franko, K.J. & Lele, S.K. 2013 Breakdown mechanisms and heat transfer overshoot in hypersonic zero pressure gradient boundary layers. J. Fluid Mech. 730, 491532.CrossRefGoogle Scholar
Gibis, T., Wenzel, C., Kloker, M. & Rist, U. 2019 Self-similar compressible turbulent boundary layers with pressure gradients. Part 2. Self-similarity analysis of the outer layer. J. Fluid Mech. 880, 284325.CrossRefGoogle Scholar
Griffin, K.P., Fu, L. & Moin, P. 2021 Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer. Proc. Natl Acad. Sci. USA 118 (34), e2111144118.CrossRefGoogle ScholarPubMed
Gungor, T.R., Maciel, Y. & Gungor, A.G. 2020 Reynolds shear-stress carrying structures in shear-dominated flows. J. Phys.: Conf. Ser. 1522 (1), 012009.Google Scholar
Gungor, T.R., Maciel, Y. & Gungor, A.G. 2022 Energy transfer mechanisms in adverse pressure gradient turbulent boundary layers: production and inter-component redistribution. J. Fluid Mech. 948, A5.CrossRefGoogle Scholar
Hasan, A.M., Larsson, J., Pirozzoli, S. & Pecnik, R. 2023 Incorporating intrinsic compressibility effects in velocity transformations for wall-bounded turbulent flows. Phys. Rev. Fluids 8, L112601.CrossRefGoogle Scholar
Hopkins, E.J. & Inouye, M. 1971 An evaluation of theories for predicting turbulent skin friction and heat transfer on flat plates at supersonic and hypersonic Mach numbers. AIAA J. 9 (6), 9931003.CrossRefGoogle Scholar
Huang, J., Duan, L. & Choudhari, M.M. 2022 Direct numerical simulation of hypersonic turbulent boundary layers: effect of spatial evolution and Reynolds number. J. Fluid Mech. 937, A3.CrossRefGoogle Scholar
Huang, P.G., Coleman, G.N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Jameson, A., Schmidt, W. & Turkel, E. 1981 Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes. AIAA Paper 1981-1259.CrossRefGoogle Scholar
Kimmel, R.L., Klein, M.A. & Schwoerke, S.N. 1997 Three-dimensional hypersonic laminar boundary-layer computations for transition experiment design. J. Spacecr. Rockets 34 (4), 409415.CrossRefGoogle Scholar
Kitsios, V., Sekimoto, A., Atkinson, C., Sillero, J.A., Borrell, G., Gungor, A.G., Jiménez, J. & Soria, J. 2017 Direct numerical simulation of a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation. J. Fluid Mech. 829, 392419.CrossRefGoogle Scholar
Kumar, P. & Mahesh, K. 2021 Simple model for mean stress in turbulent boundary layers. Phys. Rev. Fluids 6 (2), 024603.CrossRefGoogle Scholar
Lee, J.H. & Sung, H.J. 2011 Very-large-scale motions in a turbulent boundary layer. J. Fluid Mech. 673, 80120.CrossRefGoogle Scholar
Lee, J.H. & Sung, H.J. 2013 Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations. Phys. Fluids 25 (4), 045103.CrossRefGoogle Scholar
Li, W., Fan, Y., Modesti, D. & Cheng, C. 2019 Decomposition of the mean skin-friction drag in compressible turbulent channel flows. J. Fluid Mech. 875, 101123.CrossRefGoogle Scholar
Liu, S., Yuan, X., Liu, Z., Yang, Q., Tu, G., Chen, X., Gui, Y. & Chen, J. 2021 Design and transition characteristics of a standard model for hypersonic boundary layer transition research. Acta Mechanica Sin. 37 (11), 16371647.CrossRefGoogle Scholar
Maciel, Y., Gungor, A.G. & Simens, M. 2017 Structural differences between small and large momentum-defect turbulent boundary layers. Intl J. Heat Fluid Flow 67, 95110.CrossRefGoogle Scholar
Maciel, Y., Wei, T., Gungor, A.G. & Simens, M.P. 2018 Outer scales and parameters of adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech. 844, 535.CrossRefGoogle Scholar
Marusic, I., Mathis, R. & Hutchins, N. 2010 High Reynolds number effects in wall turbulence. Intl J. Heat Fluid Flow 31, 418428.CrossRefGoogle Scholar
Men, H., Li, X. & Liu, H. 2023 Direct numerical simulations of hypersonic boundary layer transition over a hypersonic transition research vehicle model lifting body at different angles of attack. Phys. Fluids 35 (4), 044111.Google Scholar
Modesti, D. & Pirozzoli, S. 2016 Reynolds and Mach number effects in compressible turbulent channel flow. Intl J. Heat Fluid Flow 59, 3349.CrossRefGoogle Scholar
Moyes, A.J., Paredes, P., Kocian, T.S. & Reed, H.L. 2017 Secondary instability analysis of crossflow on a hypersonic yawed straight circular cone. J. Fluid Mech. 812, 370397.CrossRefGoogle Scholar
Müller, U.R. 1982 Measurement of the Reynolds stresses and the mean-flow field in a three-dimensional pressure-driven boundary layer. J. Fluid Mech. 119, 121153.CrossRefGoogle Scholar
Nezu, I. 2005 Open-channel flow turbulence and its research prospect in the 21st century. J. Hydraul. Engng 131 (4), 229246.CrossRefGoogle Scholar
Ölçmen, S.İ.M. & Simpson, R.L. 1995 An experimental study of a three-dimensional pressure-driven turbulent boundary layer. J. Fluid Mech. 290, 225262.CrossRefGoogle Scholar
Paredes, P., Gosse, R., Theofilis, V. & Kimmel, R. 2016 Linear modal instabilities of hypersonic flow over an elliptic cone. J. Fluid Mech. 804, 442466.CrossRefGoogle Scholar
Passiatore, D., Sciacovelli, L., Cinnella, P. & Pascazio, G. 2022 Thermochemical non-equilibrium effects in turbulent hypersonic boundary layers. J. Fluid Mech. 941, A21.CrossRefGoogle Scholar
Piquet, J. & Patel, V.C. 1999 Transverse curvature effects in turbulent boundary layer. Prog. Aerosp. Sci. 35 (7), 661672.CrossRefGoogle Scholar
Pirozzoli, S. & Bernardini, M. 2013 Probing high-Reynolds-number effects in numerical boundary layers. Phys. Fluids 25 (2), 021704.CrossRefGoogle Scholar
Qi, H., Li, X., Yu, C. & Tong, F. 2021 Direct numerical simulation of hypersonic boundary layer transition over a lifting-body model HyTRV. Adv. Aerodyn. 3 (1), 31.CrossRefGoogle Scholar
Renard, N. & Deck, S. 2016 A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer. J. Fluid Mech. 790, 339367.CrossRefGoogle Scholar
Sanmiguel Vila, C., Örlü, R., Vinuesa, R., Schlatter, P., Ianiro, A. & Discetti, S. 2017 Adverse-pressure-gradient effects on turbulent boundary layers: statistics and flow-field organization. Flow Turbul. Combust. 99 (3–4), 589612.CrossRefGoogle ScholarPubMed
Sanmiguel Vila, C., Vinuesa, R., Discetti, S., Ianiro, A., Schlatter, P. & Örlü, R. 2020 a Experimental realisation of near-equilibrium adverse-pressure-gradient turbulent boundary layers. Exp. Therm. Fluid Sci. 112, 109975.CrossRefGoogle Scholar
Sanmiguel Vila, C., Vinuesa, R., Discetti, S., Ianiro, A., Schlatter, P. & Örlü, R. 2020 b Separating adverse-pressure-gradient and Reynolds-number effects in turbulent boundary layers. Phys. Rev. Fluids 5 (6), 064609.CrossRefGoogle Scholar
Schatzman, D.M. & Thomas, F.O. 2017 An experimental investigation of an unsteady adverse pressure gradient turbulent boundary layer: embedded shear layer scaling. J. Fluid Mech. 815, 592642.CrossRefGoogle Scholar
Schwarz, W.R. & Bradshaw, P. 1994 Turbulence structural changes for a three-dimensional turbulent boundary layer in a 30$^\circ$ bend. J. Fluid Mech. 272, 183210.CrossRefGoogle Scholar
Sillero, J.A., Jiménez, J. & Moser, R.D. 2013 One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to $\delta ^{+} \approx 2000$. Phys. Fluids 25 (10), 105102.CrossRefGoogle Scholar
Smits, A.J., Matheson, N., Yu, C. & Joubert, P.N. 1983 Low-Reynolds-number turbulent boundary layers in zero and favourable pressure gradients. J. Ship Res. 27, 147157.CrossRefGoogle Scholar
Smits, A.J., McKeon, B.J. & Marusic, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43 (1), 353375.CrossRefGoogle Scholar
Subrahmanyam, M.A., Cantwell, B.J. & Alonso, J.J. 2022 A universal velocity profile for turbulent wall flows including adverse pressure gradient boundary layers. J. Fluid Mech. 933, A16.CrossRefGoogle Scholar
Tong, F., Dong, S., Lai, J., Yuan, X. & Li, X. 2022 Wall shear stress and wall heat flux in a supersonic turbulent boundary layer. Phys. Fluids 34 (1), 015127.CrossRefGoogle Scholar
Trettel, A. & Larsson, J. 2016 Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28 (2), 026102.CrossRefGoogle Scholar
Tu, G., Chen, J., Yuan, X., Yang, Q., Duan, M., Yang, Q., Duan, Y., Chen, X., Wan, B. & Xiang, X. 2021 Progress in flight tests of hypersonic boundary layer transition. Acta Mechanica Sin. 37 (11), 15891609.CrossRefGoogle Scholar
Tufts, M.W., Borg, M.P., Bisek, N.J. & Kimmel, R.L. 2022 High-fidelity simulation of HIFiRE-5 boundary-layer transition. AIAA J. 60 (4), 20392050.CrossRefGoogle Scholar
Van Den Berg, B., Elsenaar, A., Lindhout, J.P.F. & Wesseling, P. 1975 Measurements in an incompressible three-dimensional turbulent boundary layer, under infinite swept-wing conditions, and comparison with theory. J. Fluid Mech. 70 (1), 127148.CrossRefGoogle Scholar
Volpiani, P.S., Iyer, P.S., Pirozzoli, S. & Larsson, J. 2020 Data-driven compressibility transformation for turbulent wall layers. Phys. Rev. Fluids 5 (5), 052602.CrossRefGoogle Scholar
Walz, A. 1969 Boundary Layers of Flow and Temperature. MIT Press.Google Scholar
Wan, B., Su, C. & Chen, J. 2020 Receptivity of a hypersonic blunt cone: role of disturbances in entropy layer. AIAA J. 58 (9), 40474054.CrossRefGoogle Scholar
Webster, D.R., Degraaff, D.B. & Eaton, J.K. 1996 Turbulence characteristics of a boundary layer over a swept bump. J. Fluid Mech. 323, 122.CrossRefGoogle Scholar
Wei, T. & Knopp, T. 2023 Outer scaling of the mean momentum equation for turbulent boundary layers under adverse pressure gradient. J. Fluid Mech. 958, A9.CrossRefGoogle Scholar
Wenzel, C., Gibis, T. & Kloker, M. 2022 About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers. J. Fluid Mech. 930, A1.CrossRefGoogle Scholar
Wenzel, C., Gibis, T., Kloker, M. & Rist, U. 2019 Self-similar compressible turbulent boundary layers with pressure gradients. Part 1. Direct numerical simulation and assessment of Morkovin's hypothesis. J. Fluid Mech. 880, 239283.CrossRefGoogle Scholar
Wenzel, C., Gibis, T., Kloker, M. & Rist, U. 2021 Reynolds analogy factor in self-similar compressible turbulent boundary layers with pressure gradients. J. Fluid Mech. 907, R4.CrossRefGoogle Scholar
Xu, D., Wang, J. & Chen, S. 2022 Skin-friction and heat-transfer decompositions in hypersonic transitional and turbulent boundary layers. J. Fluid Mech. 941, A4.CrossRefGoogle Scholar
Xu, D., Wang, J., Wan, M., Yu, C., Li, X. & Chen, S. 2021 Compressibility effect in hypersonic boundary layer with isothermal wall condition. Phys. Rev. Fluids 6 (5), 054609.CrossRefGoogle Scholar
Yao, J., Chen, X. & Hussain, F. 2018 Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing. J. Fluid Mech. 852, 678709.CrossRefGoogle Scholar
Yao, J., Chen, X., Thomas, F. & Hussain, F. 2017 Large-scale control strategy for drag reduction in turbulent channel flows. Phys. Rev. Fluids 2 (6), 062601.CrossRefGoogle Scholar
Yoon, M., Hwang, J. & Sung, H.J. 2018 Contribution of large-scale motions to the skin friction in a moderate adverse pressure gradient turbulent boundary layer. J. Fluid Mech. 848, 288311.CrossRefGoogle Scholar
Yu, M., Dong, S.W., Liu, P.X., Tang, Z.G., Yuan, X.X. & Xu, C.X. 2023 Post-shock turbulence recovery in oblique-shock/turbulent boundary layer interaction flows. J. Fluid Mech. 961, A26.CrossRefGoogle Scholar
Yu, M., Xu, C.-X. & Pirozzoli, S. 2019 Genuine compressibility effects in wall-bounded turbulence. Phys. Rev. Fluids 4 (12), 123402.CrossRefGoogle Scholar
Zagarola, M.V. & Smits, A.J. 1998 Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373, 3379.CrossRefGoogle Scholar
Zhang, C., Duan, L. & Choudhari, M.M. 2018 Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers. AIAA J. 56 (11), 42974311.CrossRefGoogle Scholar
Zhang, P.-J.-Y., Wan, Z.-H., Liu, N.-S., Sun, D.-J. & Lu, X.-Y. 2022 Wall-cooling effects on pressure fluctuations in compressible turbulent boundary layers from subsonic to hypersonic regimes. J. Fluid Mech. 946, A14.CrossRefGoogle Scholar
Zhang, Y.-S., Bi, W.-T., Hussain, F., Li, X.-L. & She, Z.-S. 2012 Mach-number-invariant mean-velocity profile of compressible turbulent boundary layers. Phys. Rev. Lett. 109 (5), 054502.CrossRefGoogle ScholarPubMed
Zhang, Y.-S., Bi, W.-T., Hussain, F. & She, Z.-S. 2014 A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech. 739, 392420.CrossRefGoogle Scholar