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ABSTRACT. This paper contains a critical survey of the literature on the bearing capacity of floating ice 
plates. It consists of a discussion of general questions, a critical survey of analytical attempts to determine 
the bearing capacity of floating ice plates and a survey of field and laboratory tests on floating ice plates 
and their relation to the analytical results. It concludes with a systematic summary of the results, a discussion 
of observed shortcomings, and suggestions for needed investigations. 

REsuME. La capaciti de porter des charges statiques ou quasi-statiques des plaques de glace j1ottantes. L'etude 
contient une revue critique de la litterature au sujet de la capacite de porter des charges, des plaques de 
glace flottantes. Une introduction consacree it une discussion de questions generales precede une revue 
critique des approches analytiques ten tees pour determiner la capacite de portage, puis une revue des 
experiences effectuees sur le terrain et en laboratoire sur les plaques de glace flottantes, ainsi que leur relation 
avec les resultats analytiques. L'article conclut sur un resume systematique des resultats, une discussion des 
insuffisances observees et des suggestions pour les nouvelles recherches necessaires. 

ZUSAMMENFASSUNG. Die Tragfahigkeit von Eisdecken unter statischen oder quasi-statischen Lasten. Der Artikel 
enthalt eine kritische Durchsicht der Literatur ilber die Tragfahigkeit von Eisdecken. Nach einer einleitenden 
Diskussion allgemeiner Fragen werden die analytischen Ansatze zur Bestimmung der Tragfahigkeit sowie die 
Feld- und Laborversuche an Eisdecken in ihre~ . Beziehlmg zu den analytischen Ergebnissen kritisch 
ilberprilft. Schliesslich folgt eine systematische Ubersicht der Ergebnisse, eine Diskussion festgestellter 
Unstimmigkeiten und Vorschlage flir notwendige Untersuchungen. 

J NTRODUCTION 

Frozen lakes and rivers have been utilized since early limes for transportation and storage 
purposes. In Russia railroad tracks have been placed over frozen rivers, in the absence of 
bridges, since about 1890 (Sergeyev, 1929). Floating ice plates are increasingly utilized as 
airfields for the landing of aircra.ft (Moskatov, 1938; Sharp, 1947; Assur, 1956; Stearns, 
1957; Linell, 1958), as platforms for storage in logging operations (Duff, 1958; Rbse and 
Silversides, 1958), as platforms for the construction of river structures (Marchuk and Mitta, 
1966; Vishniyakov and Silantiyev, 1970), as off-shore drilling platforms in the northern 
regions (Daily, 1969), and as aids iJ;! various other civilian and military operations (Banin, 
1960; Chikovskiy, 1965; Lysukhin, 1968; Rothlisberger, 1968; U.S. Air Force. Alaskan Air 
Command, 1968; Herbert, 1970). The successful defense of Leningrad during World War II 
was greatly facilitated by the "ice road" over Lake Ladoga (Goure, 1964, relevant pages are 
listed in the index on p. 360 under "Ice-road"). The recent oil discoveries in northern Alaska 
have increased the interest in the Arctic ice cover for off-shore drilling purposes. 

A rational utilization of floating ice plates for all these activities require the kriowledge of 
their bearing capacity when they are subjected to loads of short and long duration. Such 
information is also ·needed for the design of icebreakers (Jansson, 1956; Popov and others, 
1967) . . 

Field observations reveal that when a vehicle is small and relatively heavy, it may break 
through the ice plate immediately after placement. In such cases, the plate response may be 
considered elastic up until failure. When the vehicle is relatively light, at the instant of 
loading the ice plate deforms elastically, but sustains the load. However, as time progresses, 
the ice plate continues to deform in creep, especially in the vicinity of the vehicle, and after 
a certain time interval the vehicle may break through the ice. 
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In the past, numerous attempts have been made to determine the bearing capacity of 
floating ice plates subjected to vertical loads. Particularly since World War 11, many papers 
containing test data and related analyses have been published. However, in spite of all these 
publications, there is as yet no reliable analytical method for predicting the bearing capacity 
of floating ice plates subjected to static or dynamic loads. This is particularly the case for 
floating ice plates reinforced by pressure ridges, a phenomenon often encountered in the 
Arctic (Kovacs, 1972; Weeks and Kovacs, unpublished), for which not even test data can be 
located in the literature. 

One of the main reasons for the lack of dependable methods for determining the break­
through loads of ice plates is that the lower surface of an ice plate is alwqys subjected to the 
freezing temperature of about o°C, at which the mechanical properties of ice vary drastically 
with small changes of temperature. Other reasons are: the dependence of the mech;mical 
properties of ice plates upon the rate of freezing, the velocity of the water below the plate 
during the freezing process, the salinity of ice, etc. Discussions of the mechanical properties of 
ice have recently been presented by Voytkovskiy (1960), Weeks and Assur (1967, 1969), 
Lavrov (1969), and Bogorodskiy and others (1971). 

Another main reason is the lack of communication among the various investigators, partly 
caused by language barriers . This has resulted in the duplication of analyses and tests, often 
rendered useless because of the same shortcomings. Also, the introduction of incorrect 
solutions for floating ice plates and their subsequent utilization for comparison with test data 
have not helped in solving the problem under consideration. 

The purpose of this paper is to present a critical survey of the literature on the bearing 
capacity of floating ice sheets. First, the various analytical attempts ' to determine the bearing 
capacity are reviewed, grouped according to the "failure criterion" used. This is followed by 
a discussion of test data and their relation to the analytical results. The paper concludes with a 
systematic summary of results, a discussion of observed shortcomings, and recommendations 
for needed investigations. It is .hoped that this survey and summary of results will establish a 
sense of direction in the investigations and will contribute towards the development of effective 
methods for determining t~e bearing capacity of floating ice plates. 

ANALOGY METHOD 

This method for predicting the bearing capaci ty of a floating ice plate subjected to a static 
vertical load, discussed by Korunov (1939-40, 1940), is based on the notion of an analogy of 
two plates. Korunov assumed that the ice plates under consideration are homogeneous and 
isotropic and that for two plates with thicknesses hi and h2 the corresponding failure moments 
in cylindrical bending are 

M 
_ (Jrh2

2 

2 - 6 . 

Assuming that the failure stress (Jr for the two plates is the same, it follows that 

MI h l
2 

(1 ) 

Considering the effect of two different loads, PI acting on the plate with thickness hi and P2 
acting on the plate with thickness h2' Korunov assumed that M is proportional to P and 
obtained from Equation (2) * 

'" Note that Equation (3) was used before by Moskatov (1938, p. 51 ). 
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Equation (3) may be rewritten as follows: 

Pa = Ah2 

where A = P2/h22 and Pa is the allowable load. According to the above method, if an allow­
able load P2 of an ice plate of thickness h2 is known (from a test), then the allowable load Pa 
of an ice plate of different thickness may be computed if the O'f values are the same for both 
plates. Thus, the coefficient A in Equation (4) is to be determined from a specific test. 

Some shortcomings in the derivation of Equation (4) were discussed by Lagutin and 
Shulman (1946). Note also that in a floating ice plate the bending stress distribution is 
usually not linear across the plate thickness (Kerr and Palmer, 1972) and therefore the use of 
Equations (I) may not be admissible. 

Nevertheless, because of its extreme simplicity and its agreement with various test results, 
Equation (4) found wide popularity, as shown in the following table (valid for Pa in metric 
tonnes and h in cen timeters). 

Korunov (1940) } 
Peschanskiy (1967) 

Lebedev (1940) } 
Zubov (1942) 

TAB,LE 1. VALUES OF A IN EQUATION (4) 

Source Vehicle type A 
Mg cm- 2 

0.01 

0.0166 

Instructions of the Engineering Committee of the Red Army dated 1946 wheeled vehicles 0.0070 
tracked vehicles 0.0 I 2 3 

Lysukhin (1968) wheeled vehicles 0.0082 
tracked vehicles 0.0 I 2 3 

To demonstrate the use of Equation (4) let us determirie the necessary ice thickness for the 
crossing of a river by a truck weighing 36 metric tonnes, according to Korunov (1940). Using 
Equation (4) the necessary ice thickness is 

h = VJOoY36 = JOx6 = 60 cm. 

Additional examples of the use of Equation (4) are presented by Moskatov (1938), Lysukhin 
(1968) and Gusev (1961). 

In order to take into consideration the effects of temperature, the dimensions of load 
distribution, and the salinity of the ice, Zubov modified Equation (4) as follows: 

Pa = KMsAh2 (5) 

where K, M and s are the corresponding correction coefficients. For a discussion of this 
extension the reader is referred to Zubov (1942) and Lagutin and Shulman (1946). 

Based on field experience with fresh-water ice, Korunov (1956) modified Equation (4) by 
. introducing a correction coefficient n which takes into consideration the condition of the ice 

as follows: 
Ah2 

Pa =-. 
n 

(6) 

In the above formula A = 0 .01 tonne/cm2 , and n is related to 0'1 for T < -7°C as shown in 
Table 11. 

TABLE H. VALUES OF n IN EQUATION (6) 

or kg/cm> 
n 

12 
2.0 

25 
1.0 
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5 

4 

3 
n 

2 

o 10 20 30 40 
eT

f 
(kg/cm2) 

Fig. T • .1 plot of h'OrtIllOl"S correctioll coefficiellt 11 as a jimc/ioll ojfailllre stress. 

A graph of these values is shown in Figure I. I t should be noted that this graph may be 
presented by the equation 

25 kgjcm2 
n = 

ar 

Substituting it into Equation (6), we obtain for T < - 7°C 

arh2 
Pa = --

2500 

if Pa is in tonnes, or, if Pa is in kilograms, 

Pa = o·4arh2. (7) 
The values ar were stipulated by Korunov ( 1956) for five types of ice. Korunov (1956) 

also introduced another correction coefficient for thaw temperatures. For details and 
examples, the reader is referred to Korunov's paper. 

METHOD BASED ON THE BENDING THEORY OF ELASTIC PLATES AND THE CRITERION Umax = at 

This method of predicting the bearing capacity of a floating plate subjected to loads of 
short duration, consists of the following three steps: 

(i) Determination of the maximum stress amax in the floating ice plate due to a given 
load, assuming that the ice plate is elastic. 

(ii) Determination of the load Per at which the first crack occurs, utilizing the criterion 

(8) 

(iii) Correlation of Per with the breakthrough load Pt. This step, disregarded by many 
investigators, is needed because, according to field tests, for various plate geometries 
the occurrence of the first crack does not cause breakthrough; therefore for these 
cases Pr > Per. 

In the criterion given by Equation (8), ar is the "failure stress". It is usually obtained by 
loading a floating ice beam to failure and then computing the largest bending stress at which 
it failed. In the located literature, amax is determined using the classical bending theory of 
thin elastic plates. These results are reviewed below. 
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The response of a homogeneous and isotropic elastic p late that rests on a liquid and is 
subjected to a static vertica l load q is described by the partial differential equation 

DV'4w + yw = q (9) 

where w(x,y) is the p late d efl ection at (x,y), D is the fl exural rigidity of the plate, and y is 
the weight per unit volume of the liquid . 

Fig. 2. A floating ice plate subjected to a distributed load q over a circular area of radius a. 

Solutions for the infinite plate subjected to a concentrated load P, and to a load uniformly 
distributed over a circular area , were presented by H ertz ( 1884). Bernshteyn ( 1929) utilized 
this discussion for the de termination of the allowable load for an infinite ice plate. Using the 
criterion given by Equation (8), in conjunction with the solu tion for an infinite plate subjected 
to a uniform load over a circular area as shown in Figure 2 , Bernshteyn obtained 

(loa) 

where v is Poisson's ratio for the plate material, C(a) is a given function of IX = a/f, as shown 
in Figure 3, a is the radius of the circu lar area subjected to the uniform load q = Pj7Ta 2 , 

0 .60 

0.50 

0.40 

C (a) 

0 .30 

0 .20 

0 . 10 

o 0 .2 0 .4 

a 
0 .6 0 .8 

Fig . 3. Graph ofC(CY. ) against 1t . Th is iJ a modified graph . In the original version (Bernshteyn, 1929) C (CY.) is presentedfor P 
in tonnes, h in meters and a in kg cm- '. 
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l = (D /y) l, and D = Eh3/ [12 (I-V2 ) ]' If crmax = crt is a valid criterion, then Per is the load 
intensity at which the plate cracks. 

To demonstrate the use of Equation ( lOa) Bernshteyn computed the crmax due to a 
railroad car weighing 24 Mg for a 70 cm thick ice plate as follows. 

Assuming that for Volga ice E = 550000 Mg/m2 and v = 1/3, he obtained 

l = (D /y) ! = 11.50 m. 

He then assumed that the effect of the weight of the railroad car may be represented by a load 
uniformly distributed over a circular area with radius a = 1.54 m. Hence, ex = all = 0.134. 
From Figure 3 it follows that C(IX) = 0.417 . For the above values Equation ( loa) yields 

24 000 X 3 X (4/3) X 0.417 
crmax = ( ) kg/cm2 = 8.16 kg/cm2 = 800 kN/m2

• 70 2 

The next step is to check whether crmax ~ crt. For additional numerical analyses, refer to 
Bernshteyn (1929). 

Other numerical examples, based on the Bernshteyn solution, were presented by Volkov 
(1940) and by Bregman and Proskuryakov (1943; part IV, section 7). 

The determination of the load Per for a floating infinite plate based on Equations (8) and 
(9) and the assumption that the load q = P/( TTa 2 ) is distributed uniformly over a circular 
region of radius a, was also presented by Wyman (1950) , Kubo (1958), and Savel'yev (1963, 
section 5). Wyman obtained for the load Per the expression 

TTIX 
Per = ( + ) k " crrh2. 3 1 v el IX 

( lob) 

This is identical to Equation ( loa) noting that 

kei 'IX 
C(ex) = -. 

TTIX 
(11 ) 

The determination of Per, assuming that the uniform load is distributed over a square 
area with sides b, was obtained by Golushkevich and included in his doctoral dissertation*. 
The derived expression yields loads which are very close to those obtained from Equations 
( lOa) or ( lOb). 

SolutIons for an infinite plate were also presented in the books by Schleicher (1926), 
Korenev (1954) , Korenev ( 1960), and Korenev and Chernigovskaya (1962). 

A solution for the infinite plate subjected to a row of equidistant loads was presented by 
Westergaard (1923) in terms ofa trigonometric series. Solutions to similar problems (periodic 
load distribution), also in terms of trigonometric series, were presented by Lewe (1923), 
Muller ( 1952), and Panfilov (I 963 [a], 1 964[ a] ). The book by Shekhter and Vinokurova 
(1936) discusses related problems. 

Since Equation (9) is linear, it appears that when the plate is subjected to several loads, 
the method of super position should be used. This idea was demonstrated by Ken (1959[b]) 
for the solution of the floating plate subjected to a row of equidistant loads. A major advantage 
of this approach is that the distribution of the loads on the floating plate may be aribtrary, 
whereas the use of trigonometric series is suitable only when the loads act along straight lines, 
all loads along a line are of the same intensity and distribution and the distance between them 
is the same. 

The analysis of floating ice plates for arbitrary load distributions may be greatly simplified 
by utilizing influence surfaces (Timoshenko and Woinowsky-Krieger, 1959). Such charts 
were presented by Pickett and Ray (1951) for concrete pavements. Influence surfaces for 

• This dissertation entitled "0 nekotorykh zadachakh teorii izgiba ledyanogo pokrova [On some problems of 
the theory of bending of floating ice plates]" dates from 1944 and is referred to by various Soviet authors without 
information of the institution to which it was submitted. 

https://doi.org/10.3189/S0022143000013575 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000013575


BEARING CAPACITY OF FLOATING ICE PLATES 235 

bending moments, more suitable for ice-plate problems, were presented by Palmer (un­
published). Palmer's charts may also be used for the determination of the load distribution 
on a plate that yields the largest possible bending moment. An attempt to solve such a 
problem without influence surfaces was made by Neve1 and Assur (1968). They considered 
the problem of the most unfavorable distribution of crowds on a floating ice plate from the 
point of view of bearing capacity, based on Equation (8). Using influence surfaces, this 
problem was recently analyzed by Palmer (unpublished). 

Bernshteyn's Equation ( loa) is shown as a solid line in Figure 4. Shulman ( 1946) simpli­
fied Equation ( loa) by replacing the curve for 0.07 < 0( < 0.65 with a straight line described 
by the expression 

2.0~----.------,------~-----.--~--, 

1.5 

1.0 

o 0 .2 0 .4 0 .6 0 .8 1.0 
a 

Fig. 4. Comparison . between Equatioll ( / 0) alld proposed simplified relatiolls. 

Based on the idea of a straight-line approximation, Panfilov (I 960[b]) proposed the 
expression 

( I2b) 

It should be noted that Panfilov's approximation, Equation ( 12 b) , is the same as the one 
presented by Shulman, since for v = 0.3 

ah2 
_ a(12(I-V2)y)I /4h2", (L)I /45/4 

4· 1 l - 4· 1 (Eh 3 ) 1/ 4 '" 7·4a Eh. 

The following approximation was also proposed by Panfilov ( I 960[b]) : 

27Tcrrh2 
Pcr = ( ) ( 6 I· 3 1 +v o. 82+0.0190(2- n (X) 

However, since it is not much simpler than the exact expression, Equation ( loa), its useful­
ness is questionable. 

Panfilov ( I g64[b] ) attempted to derive another approximate expression for P cr, assuming 
that the deflections of a floating ice plate subjected to a concentrated force P may be expressed 
approximately as: 

(
A )( AX AX)( Ay AY)' w(x,y) = Wo exp - y2 (x+y) , sin y2 + cos y2 sin y2 +cos y2 (15) 

where 

A = (yjD)!. ( 16) 
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From the equilibrium equation 

P = 4Y J J W dx dy. 
o 0 

Panfilov determined the only unknown, Wo, as 

P 
Wo = 8 ( yD)~ . ( 18) 

Comparing the resulting w(x,y) with the exact solu tion and finding that the agreement is 
relatively close, Panfilov determined the bending moments using the relations (Timoshenko 
and Woinowsky-Krieger, 1959, p. 81) 

I 
~ , 

My (x,y) = - D (22W + v 22W) J 
( 19) 

of OX2 

and the approximate w (x,y ) given In Equation ( IS). For the bending moments under 
load P, he obtained 

Mx (o, o) = My (o, o) 
( I +v)P 

8 

the 

Equating this expression with Mcr = afh2/6, Panfilov obtained, for v = 1/3, the expression 

P CI' = G fh2• (21 ) 

At this point, it should be noted that the fact that the approximate and exact deflections 
are relatively close (in the sense of comparing two graphs) does not imply that the second 
derivatives are also close. Thus, for example, whereas the exact solution for the classical 
plate theory based on Equation (9) yields infinite moments under the concentrated load P, * 
Panfilov's approximate solution yields the finite value shown in Equation (20). This point 
may be demonstrated further by comparing the graphs for the bending moment Mx (x, 0) 
based respectively on Equation (15) and on the exact solution . It may be shown that although 
the d eflections are relatively close, the bending moments based on Equation (15) do not 
approximate closely the actual bending moments, especially in the vicinity of the load. 

Other approximate solutions for the infinite plate were discussed by Korunov (1967). 
Assuming that Bernshteyn's Equation ( loa) is the correct expression for predicting the 
bearing capacity, Korunov proposed the empirical expression (for h in cm) 

or P cr = (0.06 Mg/cm
2)/CY.hZ } , (22) 

Pcr = (60 kg/cm2)eth2 

and then showed that for special situations, this agrees with the results of Equation ( loa). 
Noting that Equation (22 ) is based on af = 24 kg/cm2 = 2 350 kN/m 2 , it follows that 

Pcr 
-h = 2·5et . ar 2 

Note that, according to Equation (22) , for a given ar, Pcr is proportional to the second 
tcrm in Equation ( I2a) or (12b), namely to h;/4, whereas Equation (21), derived for et = 0 , 

is proportional to the first term, namely to h2 • Note a lso the difference between Equation (7) , 
suggested by Korunov, and Equation (21 ) , derived by Panfilov. A comparison of various 
approximate expressions for PCI' with the one based on Equation ( lOa) is shown in Figure 5. 

* To determine the stresses under the load, the corrcction derivcd by Westergaard may be used (Timoshenko 
and Woinowsky-Krieger, 1959, p. 275)' 
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2.0r-----.------.------r---~.__r--~ 

/ 

1.5 
/ y eq.12 

eq. 22/ \ 
~/ err 10 

1.0- ~eq. 21 

o 

:;/ 
/ 

-/---------- ----------
/ \eq. 7 for Pall 

0.2 0.4 0.6 0.8 
a 

Fig. 5. A colllpariso/l (1/ 1//'/JrIl.l'illll/tiolU for 1"'r u'ith e.l'l/c/ /'a/llr.<. 

1.0 

237 

It appears that, instead of deriving numerous approximate expressions for Equation (lOa) 
that differ substantially from each other and are not much simpler than the exact expression, * 
it should first be established whether Equation ( loa) is suitable for predicting the bearing 
capacity of floating ice plates for loads of short duration. This and related questions will be 
discussed later. 

Solutions for the floating semi-infinite plate with a free edge subjected to lateral loads were 
presented by Shapiro (1943) and by Golushkevich in hi~ doctoral dissertation (see footnote 
on p. 234) using Fourier integral methods. Shapiro's results were verified and extended by 
Nevel (1965). 

Zylev (1950), using Equation (8), presented calculations of the bearing capacity of a 
floating semi-infinite ice plate subjected along its free edge to vertical and horizontal loads. 
However, Zylev's approximate solution of Equation (9) for the vertical load, recently included 
in a number of books (e.g. Korzhavin, 1962; Butyagin, 1966) is incorrect, as shown below. 

For the semi-infinite plate shown in Figure 6, Zylev assumes an approximate solution of 
the form . 

w(x,y) = [cosh (lXx) + r sinh (lXx)]f (y ) 

where 

for x < 0 } r = - 1 for x > 0 

Substituting Equation (23) into Equation (9) with q = 0, he obtains an ordinary differential 
equation of fourth order for f(y). To determine the four constants, Zylev uses two regularity 
conditions at infinity and the conditions 

My(x,o) = 0 

00 00 

P = J J yw dx dy. 
o - 00 

It should be noted that for the chosen deflection surface given by Equation (23), ow/2x 
is discontinuous along the y -axis, which is not the case in an actual ice plate. Also , 03W/ cx3 
is discontinuous along the y-axis; this implies that for the assumed deflection surface there 

* A prospectiv~ user of Equation (10) does not have to be familiar with Bessel functions if he utilizes the 
C(IX) graph shown in Figure 3. 
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exists a line load along they-axis, This is in contradiction with the assumed plate load shown 
in Figure 6. Furthermore, along the free edge, where the largest stresses are anticipated, the 
boundary conditions for a free edge are not satisfied. Therefore, the validity ofZylev's solution 
for the semi-infinite plate, even for the determination of an approximate Pcr, is questionable. 

Fig. 6. Floating sellli-infinite plate with free edge subjected to load P. 

According to Zylev's results, the largest bending moment takes place at the point x = 0 
and y = I. 14Dl. On the basis of this analysis 

Pcr = 0.8"\[1 -exp ( - ,.\)] - lcrrh2 

where 

According to Shapiro's results, crrnax takes place under the load. Utilizing Equation (8), 
the load at which the first crack occurs becomes 

Pcr = S(a.)crfh2 

where S(a.) for v = 0.36 is given in Figure 7. 
Panfilov ( lg60[a]) compared the values of the load Pcr , for tne infinite plate as well as the 

semi-infinite plate. The corresponding graphs are shown in Figure 7. This comparison shows 
that the Pcr for the semi-infinite plate, according to Zylev (dashed line), is much higher than 
the Pcr according to Shapiro and Golushkevich. If 0 < bit < 0.5, it is even higher than the 

~ 
2 

eT
f 

h 

1.5 r----,---,---,---,----, 

o 
b 

~ 
Fig. 7. Comparison of analytical results. 
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Pcr of the infinite plate. In view of this comparison and the obvious errors contained in 
Zylev's solution, it is suggested that Equation (27) should not be used for the analysis of the 
semi-infinite plate with a free edge. 

According to Panfilov ( Ig60[a] ) it follows from. Figure 7 that for 0.07 < bit < 1.0, the 
value of Pcr for the infinite plate is about 2.45 times the value of Pcr for the semi-infinite plate. 
A more precise relationship is shown in Figure 8. 

(pcr ) in!. pI. 

(Per) semi in!. pI. 

3 .5.-----.------.------,---~ 

3.0 

2.5 

2 .0 '------'----0=-'.'=5---'------'1.0 

bit 

Fig. 11. Rfial iulI belWffll erilimi !t1fld.I.Jur Iltf ill/llli lf Ilialf "lid .Ifll/i.illjlllilf pia/I' . 

On the basis of the graph for the semi-infinite plate shown in Figure 7, Panfilov ( I g60[ a]) 
proposed the following approximate expression for the interval 0.07 < bll < I: 

Pcr = 0.I6 (1+ 2·30bll)crch2. (30) 

Panfilov ( lg64[b] ) also attempted to derive an approximate expression 
problem shown in Figure 6, assuming that 

(
A )(.,\x AX ) Ay 

w(x,y) = Wo exp - ,\12 (x +y) sm y'2 + cos y'2 cos y'2 . 

for P r l' for the 

However, the result obtained, similar in form to Equation (21), is of questionable value. 
The objections raised in connection with Equation (21) also apply here . It should also be 
noted that the deflection surface, Equation (31), does not satisfy Equation (9) or the boundary 
conditions along the free edge, where the stresses are de termined for use in Equation (8). 

The semi-infinite plate subjected to equidistant loads P along the free edge was analyzed 
by Westergaard (1923). Similar problems were solved by Panfilov (1963[b] , [d] ) . The books 
of Shekhter and Vinokurova (1936) and Korenev and Chernigovskaya ( 1962) also contain 
solutions to related problems. 

The solution for the semi-infinite plate, simply supported along the straight edge and subjected 
at any point of the plate to a concentrated force P, as shown in Figure 9, was derived by Kerr 
( I 959[ a]) . Using the method of images, the following exact closed-form solution was 
obtained: 

P A2 
w(x,y) = -k {kei ('\y'{ (x-xo)2+f}] -kei [Ay'{ (X+XO)2+f}]}· (3 2 ) 

27T 

Palm er (unpublished) utilized this solution to construct a number of influence surfaces for 
bending moments. 

A numerical solution for the semi-infinite plate, clamped along the edge and subjected to a 
force P at a point on the plate, was presented by Korenev ( Ig60). 

An analysis of a floating infinite strip, free along both edges and subjected to a lateral load, 
utilizing the Fourier integral method, was presented by Shapiro (1942). Detailed results 
for similar problems were presented by Panfilov ( lg66[a], I970[a]). 
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x 

y 

Fig. 9. Floating semi-infinite plate. simply, supported along the strlli.~ht ed.~1' (/lId\lI~jected to a load Pat (xo,o ). 

The solution for a Aoating infinite strip , simply supported along both edges and subjected to a 
concentrated force P at any point on the plate, was presented by Kerr (1959[a]), utilizing the 
method of images. The resulting deAec tion was given as a rapidly converging infinite series 
of fundamental solutions fo r the infinite plate. A solution for this problem was presented by 
W estergaard ( 1923) in terms of Fourier series. Nevel (1965) presented a solution in terms ofa 
Fourier integral. A solution for a similar problem was presented by Panfilov ( 1966[a] ) also 
using the Fourier integral method. 

Kashtelyan (1960) presented calculations for the direct d etermination of PI (that is by 
eliminating step (iii ) in the above procedure) which are based on the observation that the 
carrying capacity is reached when the wedges which form initially break off. However , 
K ashtelyan 's solution for the wedge-shaped plate on which hi s calculations are based, may 
not be accurate enough , as shown in the following. 

For the rectangular corner plate with free edges, shown in Figure 10, Kashtelyan assumed an 
approximate solution 

w(x,y) = f exp [ -!X (x+ y )l cos (!Xx ) cos (!Xy ) 

where !X and f are unknown parameters. 

From the condition 

P = J J yw dx dy 

Fig. l a. Floating quarter-infinite plate JIIhjecled to a load P at its apex. 

https://doi.org/10.3189/S0022143000013575 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000013575


BEARING CAPACITY OF FLOATING ICE PLATES 

Kashtelyan obtained 

Then, utilizing the Bubnov- Galerkin method, for a one-term approximation he used 

f f ( ~74w+yw/D)w dxdy = 0 

o 0 

and determined from it 

Thus, according to Equation (35) 

j = '2P/( yD )!. 

It should be noted that the above analysis contains errors: because the assumed d eflec­
tion given by Equation (33) does not satisfy the boundary conditions of zero moments and 
zero shearing forces along the free boundary, Equation (36) is not complete. Also , the work 
term of the force P is missing. According to the principle of virtual displacements, the proper 
Bubnov-Galerkin equation for a on e-term approximation w = jw , (x,y), wherej is the only 
unknown , is 

x 

f I (Dv4 w + kw )w, dx dy + f ,'v/ y(x, 0) 2;, (x, 0) dx-I r'y (X, o )w ,(x, 0) dx+ 

o 0 0 0 

o o 

where NIx and /\1y are given by Equations (19) and 

[
2'W C'lW ] 

['x (o,y) = - D -~-+( 2 - V ) -::;-:;-
ex 3 ex (y2 x~o 

[',, (x,o ) = - D [alw + (2 - v) ~J ayl 2X2 ay y ~O 
} 

~ote , however , that the purpOS(' of Equation (36) is not to determinejbut a. 

Comparing thej-value gin'l1 by Equation (38) with the corresponding value of the exact 
solution of an infinite plate, j = P/8 (yD )l, and the (incorrec t) approximate solution by 
Zylev ( 1950) for a semi-infinite plate,j = P/'2 ( yD) l, Kashtelyan ( 1960), without justifi cat ion, 
generalized his solution for a wedge oj any opening angle q, (Fig. 11 ) by assuming that 

1(11')2 P 
I = '2 ~ (yD )! 

Fig . I.'. Floating wedge loaded lit its apex. 
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an equation which satisfies Equation (3B) for </> = 7T/2 and the other two cases (</> = 27T and 
</> = 7T) mentioned above. Utilizing Equation (B), he then obtained for the "failure load" ofa 
floating wedge plate of opening angle </> the expression 

(
</»2 I 

Pr = - -- crrh2. 
7T 0.966 

Note that, according to field observations made by Kashtelyan (1960), when </> < 120°, 
Per = Pr. Thus, according to Equation (42) for a floating wedge with </> = !7T, as shown in 
Figure 10, the breakthrough load is 

Pr = (':)2 crrh2 = o.259crrh2. 
2 0.966 

Observations in the field indicate that the failure mechanism of a semi-infinite plate subjected 
to a force P at the free edge proceeds as follows: First a radial crack forms, which starts under 
the load and propagates normal to the free boundary. This is followed by the formation of a 
circumferential crack that causes final failure , as shown in Figure 12. 

)( 

y 

Fig. 12. Failure mechanism of a floating semi-infinite plate subjected to a load P at the free edge. 

According to Kashtelyan, the failure load for this case is equal to the failure load of two 
free-floating wedges, each of opening angle </> = 7T/2. Namely, 

Pr = 2 X O.259crrh2 = O·5IBcrrh2. (43) 

In a similar way, Kashtelyan determined the Pr for an infinite plate. Assuming that n is 
the number of radial cracks and that the n formed wedges are all of equal opening angle, i.e. 
</>n = 27T/n, as shown in Figure 13, the following expression for the failure load results: 

Pr = n (27T ,:)2 crrh2 = 4crrh2 . 
n 7T 0.966 o.966n 

Noting that n = 27T/c/>n, this expression may also be written as 

Pt = 2.oB (~n ) crrh2 

where </>n is the opening angle of the formed wedges. Note that with decreasing </>n the load 
Pr in Equation (44) decreases and that the above approach does not take into consideration 
the effect of the wedge-in moments along the cracks. 

Kashtelyan showed that the results of 150 tests on floating ice plates agree closely with the 
bearing capacity values based on Equations (43) and (44). In view of the errors discussed 
above, however, this agreement is not convincing. 
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p 

Fi.t: . 13. FaiLure mechaTlismjor a LargefioatiTlg ice plale subjecled 10 a load P. 

An approximate solution for the quarter plate with free edges loaded at the apex, was also 
presented by Westergaard (1948). 

An exact, closed-form solution for the quarter plate simply supported along the edges and 
subjected at any point of the plate to a concentrated force P was presented by Kerr (I 959[ a]), 
using the method of images. 

The response of a narrow infinite wedge resting on a liquid base, as a beam problem, is 
described by an ordinary differential equation with a variable coefficient. This equation was 
solved by Dieudonee (unpublished) by means of the Laplace method of integration . Nevel 
(1958) solved it using the method of Frobenius. Nevel's solution consists of a sum of four 
infinite series which were evaluated by Nevel (1961) and are presented as graphs. An approxi­
mate solution for large values ofx was presented by Hetenyi (1946). 

An early attempt to determine the bearing capacity of a floating ice plate utilizing a 
floating wedge solution was described by Papkovich (1962, p. 424- 26). In this analysis it was 
assumed that the wedge response is governed by a modified bending theory of beams by 
stating the base parameter as (Fig. 14) 

k(x) = y[b+2X tan (rp/2)] (45) 

and the ftexural rigidity as 

Eh3 

EI(x) = ( ) (b+ 2X tan (rp /2)) 
12 1-112 

where y is the weight per unit volume of the liquid. The term (I - 112) was apparently included 
to get plate action for the wedge. The deflection was assumed to have the form . 

w(x) = A exp (- ..\x) cos ( AX) (47) 

x 

Fig. 14. Floating wedge-shaped plate subjected to a load p = qb. 
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where 

A = [~]~ = [3Y(I-V
Z)]1 

4E1(x) Eh3 

and the unknown constant A was determined by minimizing the total potential energy. 

Substituting the determined 
2AZP 

A= . 
Y[Ab + tan (4) /2)] 

into Equation (47) , yielded the deflection 

2 Alp 
w(x) y[Ab + tan (4) /2)] exp (- AX) cos ( AX). (50) 

The bending moment was 
dlw 

M(x) = -El -d = -EI(x) 2AAl exp (- AX) cos (Ax) 
Xl 

and the stresses in the upper and lower fibres were obtained as 

M (x) Eh 
a(x) = ±w() = ± --AAl exp (-AX) cos ( Ax). 

x I _yl 

From the condition da/dx = 0, the position of the largest stress x = 1T/(4A), was determined. 

Substituting this value into the above equation, it follows that 

0.15 
a max = -- A AlEh. 

I _yl 

Utilizing the failure criterion given by Equation (8), namely a m ax = at, it follows from 

Equation (SI), using Equations (48) and (49) , that 

Ab+tan (4)/2) 
Pt = athl. (52) 

0·9 

Noting Equation (48), the above expression for the failure load of a wedge of opening angle 4> 

may also be written as 

{[ b ] [tan (CP/2) ] } 
Pt = 0.9 [3 ( I - Vl )y/E]' /4 h5

/
4+ 0.9 hl at · 

Pointing out that an ice plate breaks under the weight of an icebreaker into wedges and that 

Pt in Equation (53) is of the form 

Pr = A,h l +Azh5l4, (54) 

Papkovich suggested that Equation (54) be utilized for the determination of an empirical 

expression for the breakthrough load of an ice plate by determining the parameters A 1 and Al 

from field test data. 
It should be noted that although Equation (53) is only an approximation (for example, the 

corresponding bending moment at x = 0 is not zero), its dependence upon h is identical with 

that in Equations (In) and ( I2b) for the infinite plate and Equation (30) for the semi­

infinite plate, respectively. Even the term b( y/E) l appears in the proper place. This observa­

tion will be of importance when discussing the test data presented by Panfilov ( I960[a]). 

For solutions to other plate problems for which response is governed by Equation (9), 

reference is made to the books by Schleicher (1926), Shekhter and Vinokurova (1936), 

Korenev (1954, 1960) and Korenev and Chernigovskaya (1962), to the survey articles by 

Korenev (1957, 1969) and Savel 'yev (1969) , and to the literature on the analysis of highway 

and airport pavements. 
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When a floating ice plate seals the liquid base, then in addition to the buoyancy pressure 
kw (x, y), the liquid exerts also a uniform pressure P* on the plate. In these cases, an additional 
condition has to be imposed on the solution to reRect this situation. The unknown p* is 
determined from this condition. 

If the assumption that the liquid is sealed and incompressible is justified, then this addi­
tional condition is 

I I wdA = 0 (55) 
A 

where the integration extends over the domain of the plate A. 
Floating plates subjected to Equation (55) were analyzed by Nevel (1963) and Kerr 

(1965, 1966). Kerr and Becker ( 1967) solved plate problems by assuming that the sealed 
liquid is compressible. They showed that the effect of the sealed liquid depends not only 
upon its relative compressibility but also upon the sealed volume: the larger the sealed volume, 
the smaller the sealability effect. This result suggests that the use of Equation (55) for the 
analysis of an ice plate that covers a river or a lake, as suggested recently by Mahrenholtz 
(1966) is not justified. 

The analyses reviewed in this section are based on Equation (9), which is the differential 
equation for a homogeneous and isotropic thin elastic plate. In an actual Roating ice plate, 
the material parameters vary across the thickness of the plate; hence, the Roating ice plate is 
inhomogeneous. This variation is very pronounced in sea-ice plates as well as in a plate 
whose upper surface is subjected to very low air temperatures. 

An early attempt to take into consideration the variation of Young's modulus £ by 
Bregman and Proskuryakov (1943, p . 73) is incorrect because the investigators did not take 
into consideration that when E varies across the plate thickness the resulting stress distribution 
is not linear. 

According to recent papers by Newman and Forray (1962), Panfilov ( I966[b]) , and 
Assur ( 1967), when Young's modulus £ varies with the plate thickness h, and Poisson's ratio v 

is assumed to be constant, Equation (9) is still valid if the flexural rigidity is 
h- z o 

D = _I - I zz£(z) dz 
I -v2 

(56) 

-z. 
and the position of the reference plane is determined from the condition 

h- .to 

I ;:.E(;;;) d;:. = o. 

In order to utilize the available solutions of Equation (9) for nonhomogeneous plates 
with £ = E (;:.) , it had to be shown that, except for Equation (56), the corresponding boundary 
conditions are the same as those for homogeneous plates. This was done recently by Kerr and 
Palmer (1972), who systematically formulated this problem utilizing Hamilton's principle in 
conjunction with the three-dimensional theory of elasticity. 

Kerr and Palm er ( 1972) also showed that even though the plane-section hypothesis is 
assumed, the resulting bending stress distributions are not linear across the plate thickness . An 
example is shown in Figure IS . This finding suggests that the well-known stress equation 

6Mmax 
O"max = --h-z -

utilized by various investigators in conjunction with Equation (8), or for the determination of 
the failure stress 0"1 from tests on Roating ice beams, may not be applicable in general. 
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Fig. 15. Stress distribution ill all ice plate for the shown E(z ). 

METHOD BASED ON VISCO-ELASTIC THEORIES 

It was observed in the field that for IQads which do not cause an instantaneous break­
through, the ice plate deforms at first elastically and then, with ·progressing time, continues 
to deform in creep, especially in the vicinity of the load. . 

Two characteristic deflection-versus-time curves for fixed loads P are shown in Figure 16. 
Curve I represents the case when, after a time, the rates of deformation diminish and the ice 
plate and load come to an apparent standstill. This curve corresponds to a safe load for any 
length of time under consideration . Curve 11 represents the case when, after a time, the rates of 
deformation increase and after a time If the load breaks th.rough. Thus, the load that corres­
ponds to curve 11 is safe for time I < If , but then it has to be moved to another location to 
prevent breakthrough. 

The above field observations suggest that, for an analytical determination of breakthrough 
loads which do not cause immediate failure, a visco-elastic analysis has to be conducted. 

It appears that the small-deformation theory of plates may be sufficient for plates which 
follow curve I. However, the analysis of plates which respond according to curve 11 is more 
complicated because in the vicinity of the load, a region of prime interest, the small deflection 
theory may not be valid when it is approaching If. Also, as the plate deflections increase, the 
plate may start to crack- a phenomenon not predicted by the usual theories of visco-elastic 

c 
o -u ., 

;;::: ., 
o 

IT 

Time 

Fig. 16. Two characteristic curves of dejlection versus time. 
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continua. To predict cracking, a separate failure or crack criterion has to be used. Also, after 
the first crack takes place, the analysis gets even more involved because of the introduction of 
additional , often irregular, plate boundaries. 

For an analytical determination of a "safe" load P < Pr and a "time to failure" Ir, i t is 
desirable to have one visco-elastic theory for floating ice plates which for time I ~ 0 yields the 
elastic response and for I > 0 yields responses according to curves I or Il , depending upon the 
load and the material parameters of the ice (which in turn depend upon the temperature 
distribution , salinity, etc.). This theory should be supplemented by a crack or failure criterion 
valid for the elastic and visco-elastic range. 

The elastic theory in conjunction with the crack criterion cr max = crr discussed above could, 
if proven correct, be a special case o f such a general theory. 

Another failure criterion was proposed by Zubov (1942) and by K obeko and others 
( 1946[b] ). On the basis of their test data, they concluded that for loads of short or long 
duration , a floating ice plate fails under the load when a certain defl ection Wr IS reached: 
namely, when 

Wmax = Wf· (58) 

According to Kobeko and others (1946[b] ) for this criterion it does no t matter whether the 
plate d eflections are purely elastic or visco-elastic, as shown in Figure I 7. 

w 

2 
3 

t020 ~ t ( 2 ) 
f • f 

T i me 

Fig. 17. Thefailure criterion based 011 plate defiections. 

Equation (58) was also adopted by Savelyev ( 1963, section 5) for the study of the effect 
of temperature and salinity on the carrying capacity of a floating ice cover. 

Panfilov (196 I) proposed the above criterion for floating ice plates which are cracked in 
the dished area. His justification was that then water begins to flood the upper surface of 
the plate, with a resulting loss of base pressure in this area. It may be added that the flooding 
of the upper surface near the load also raises the temperature of the upper layers of the plate 
to about o°C, thus decreasing the strength of the ice in the area of high stresses. 

From experiments on floating ice plates with plate thicknesses h from I to 6 cm and 
temperatures from -3°C to - 8.5°C, Panfilov (1961) found , for h and Wc in centimeters, that 

Wf = 2.2 hi. 

In this connection note that using the criterion W max = Wr in conjunction with Equation 
(59) and the solution for an infinite (uncracked) elastic plate subjected to a co~centrated 
load P 

P 
Wmax = w(o, 0) = 8(yD) ! ' 
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~- j 
8(yD) ! - 2.2h 

[ 
yE ]1 

Pr = 17.6 ( ) h2
• 12 I -v2 (60) 

Thus, according to Equation (59), the breakthrough load Pr is proportional to h2 • It may be 
of interest to note that if the largest deflection of the plate under consideration is expressed by 
the equation 

€P 
Wrnax = (yD)! 

where € is a coefficient, then a Pr expression of the form shown in Equation (54) corresponds 
to the criterion 

where ex and f3 are coefficients. 
Test data are needed to establish whether the failure criterion, Equation (58), and its 

special forms Equations (59) or (6 I), are indeed valid for elastic as well as visco-elastic 
deformations. 

In the early attempts to take time effects into consideration for floating ice plates, one 
approach, presented by Bregman and Proskuryakov (1943, p. 53), utilizes the solutions for 
elastic bending and tries to fit the experimental data by modifying the elastic constants. In 
another approach presented by the South Manchurian Railway Company* in 1941, the 
elastic results are multiplied by a time factor, for example ( I +extP) , where t is time and ex and 
f3 are constants to be determined from experimental data. However, these approaches have 
no rational foundation and their results are of questionable value. 

Another early approach is based on a hypothesis by Zubov (1942, p. 49) which states that 
deflections of ice plates, especially at comparatively high temperatures, are caused mainly 
by the vertical shearing forces. To verify Zubov's assumption, Zvolinskiy (1946) analyzed a 
plate resting on a liquid, assuming that the deformations are entirely due to shearing action 
and that for creep deformations the material obeys Newton's 1aw of viscosity. Although the 
resulting differential equation was relatively simple, the obtained solution was rather involved 
because of the prescribed initial conditions. Quoting a translation of Zvolinskiy (1946, p. 2 I) : 
"In this formula the result is not self evident, and analyzing it does not help us to visualize 
the picture of the phenomenon". 

Zvolinskiy used, for the initial condition, the elastic deflection surface caused by shear only. 
However, according to the 'experiments by Bernshteyn (1929, fig. 18) shortly after the load is 
placed, the deflection surface agrees closely with the elastic deflection surface due to bending. 
Also, since the elastic deflections are relatively small, the effect of assuming that the elastic 
deformations are zero seems to be negligible compared with the introduced error of assuming 
shear as the only force responsible for creep deformations. This assumption was made by 
Kerr (1959[b]), who attempted to simplify Zvolinskiy's analysis in order to study the charac­
teristic features of the creep deformations based on Zubov's hypothesis. 

Recorded observations of the effect of static loads on the deformation of floating ice fields, 
for example by Bernshteyn (1929, p. 48) and Zubov (1942, p. 146), showed that in some cases 
the rates of deflection decreased after the load was placed and after a certain time interval the 

* Translation of report by South Manchurian Railway Company, 1941, translated by U. S. Snow, Ice and 
Permafrost Research Establishment as "Bearing capacity of natural ice cover" . (In Studies on river ice; with 
special reference to the construction of railroad on ice. V.S. Snow, Ice and Permafrost Research Establishment. Transla­
tion 50, Part Ill.) 
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plate came to a standstill, whereas in other cases the rates of deflection increased until the 
plate collapsed under the load as shown in Figure 16. The observed decreasing and increasing 
rates of deflection should result from a general formulation of the problem. However, because 
of the simplifying assumptions made, Kerr (I959[b]) had to set up two separate formulations 
for the decreasing and increasing rates of deformation, in order to obtain this response. 
Although some of the resulting solutions did agree with deflection expressions given by Zubov 
(1942, p. 24; 1945, p. 148), because of the various assumptions made, these results should be 
used with caution for the determination of breakthrough loads. 

The assumption that the predominant deformations of a floating ice sheet are caused by 
shearing forces was also made by Krylov (1948). 

The intense development of the linear theory of vis co-elasticity after World War II had its 
effect also on the formulation of ice-plate problems. In 1947 Golushkevich (referred to by 
Kheysin (1964)) presented an analysis assuming that ice behaves elastically for volumetric 
deformations and visco-elastically for deviatoric deformations. His formulation was based on 
the linear bending theory of plates, linear constitutive equations, and the assumption that 
the material parameters do not vary across the plate thickness. The obtained equations were 
linear. The special case of an incompressible material was analyzed in detail. 

A general formulation for visco-elastic plates, based on the linear bending theory of plates 
and the assumption that the constitutive equation is a linear relation of differential operators, 
was presented by Freudenthal and Geiringer (1958). The utilization of this equation for 
floating ice plates was discussed by Kheysin (1964). As a special case, Kheysin analyzed an 
infinite ice plate subjected to a concentrated force P, assuming that the ice is incompressible 
for volumetric deformations and that it responds like a Maxwell body for deviatoric deforma­
tions. A similar problem which arises when the load is distributed uniformly over a circular 
area, was analyzed by Nevel (1966), who also presented graphs and a comparison with the 
results of a test. Yakunin (1970) presented solutions for various load distributions, assuming 
that the ice responds like a four-element model; namely a series combination of a Maxwell 
and a Kelvin model. Except for the paper by Yakunin, in the above analyses it is a~sumed 
that the material parameters are constant throughout the plate. 

As discussed in the preceeding section, in an actual floating ice cover the material para­
meters vary with depth. In an attempt to take this into consideration, Yakunin (1970) 
derived an approximate formulation for a varying modulus of elasticity and coefficient of 
viscosity, and solved it for a variety ofload distributions. He found that, as in the elastic case, 
the variation of material parameters across the plate thickness has a profound effect upon the 
stresses in the ice cover. 

A visco-elastic analysis of the ice cover based on Reissner's theory of plates, which takes 
into consideration th·e effect of bending as well as shearing forces upon the deformations, was 
recently presented by Garbaccio (1967,1968). Garbaccio assumed that the ice responds like a 
series combination of a Maxwell and a Kelvin model and that the material parameters are 
constant throughout the ice plate. 

Panfilov (1961), citing observed short-comings of linear theories, derived a differential 
equation for floating ice plates, based on the linear bending theory of plates and the non­
linear visco-elastic constitutive equations proposed by Voytkovskiy (1957, 1960). Additional 
derivations, along the same line, were presented by Panfilov (197o[b]) who, however, gave no 
solutions to the derived differential equation. 

An attempt to analyze the time-dependent stresses of an ice cover, using a non-linear 
constitutive equation, was presented by Cutcliffe and others (1963). 

The linear bending theory and a non-linear constitutive equation was also used by 
Garbaccio (1967, 1968) to analyze ice-plate problems. Garbaccio attempted to obtain an 
approximate solution of the resulting non-linear formulation by means of a linearization 
technique. 
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Fig , 18. Failure load as a function of time to failure. 

In the absence of reliable analyses for predicting the bearing capacity of ice plates subjected 
to loads of long duration, Panfilov (196 I), constructed from field test data the graph shown in 
Figure 18. In this graph lr is the time period between placement of the load and breakthrough 
Pr(o) is the magnitude of the load just sufficient to break through immediately after placement 
on the plate (at lr = 0), as discussed in the previous section, * and Pr (lr) is the load that breaks 
through after a time tr. From the shown graph, it follows that Pr(tr) < Pr (O) for tr > o. Thus, 
for example, a 'load that has to park safely on the ice plate for 6 h should be smaller than 
o.ifr(o), where Pr(o) is determined from a separate analysis. To represent the graph shown 
in Figure 18 analytically, Panfilov proposed the expression for lr in hours, 

Pr (lr) 
Pr (o) = I +0.7Slr! . 

Solving this equation, the "safe" storage time is obtained as the time that is smaller than 

tf = [Pr(o) -Pr(tr) ] 3 
, O·7sPr(O) 

A gr.aph si'milar to the one shown in Figure 18 was also presented and discussed, by Assur 
([ 1962] [b ]). ' 

Korunov (1968) pointed out that Equation (62) was obtained from tests on ice plates under 
specific conditions. He then proposed the following modification of Equation (63) : 

[
Pr(O) -Pr(tr) ] 3 

tr = K 
o·75Pr(0)n 

where K and n are correction coefficien'ts which take into consideration the shape of the load 
and the outside temperature. 

Other expressions of the type shown in Eq~ation(62) were presented and discussed , by 
Panfilov (I970[b]). For a related discu~sion refer to Yakunin (1970). 

, • In the previous section, it is denoted, for brevity's sake,_as Pr. 
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METHODS BASED ON THE YIELD-LINE THEORY OR LIMIT ANALYSIS 

The theory oJ yield lines was utilized for the analysis of continuously supported plates by 
Johansson (1947) and Bernell (1952). Persson (1948) used it for the analysis ofa floating ice 
plate. Assuming that the yield-line moment per unit length is Mo, Persson obtained for the 
case shown in Figure 2, 

47T 
Pr = ( ) ( 6 ' ) Mo· I +1' 1-0. 21X ' 

(65) 

Using a similar approach, Assur . ' 
([1962][b) ) presented, for the breakthrough load, the 

expreSSIOn 

(66) 

The method of limit analysis was used by Meyerhof (1960) for the analysis of the bearing 
capacity of floating ice plates. Assuming that the ice plate is thin , rigid ideally plastic, that 
it can, without cracking, resist a full plastic moment Mo, and that the ice obeys the Tresca 
yield condition, Meyerhof obtained for the case shown in Figure 2 

" Pr = 3.37T(1 +~IX)Mo, 0.05 < ex < 1.0. (67) 

Assuming that the floating ice plate prior to failure is cracked radially into numerous wedges, 
Meyerhof obtained for the same case 

47™o 
Pr = --, 0.2 < IX < 1.0. (68) 

I -!IX 
I n an extensive discussion of Meyerhof's paper, Hopkins (Hopkins and others, 196 I) 

questioned the degree of realism in approximating the mechanical behavior of ice by a rigid 
perfectly-plastic material. Hopkins, as well as Wood, also questioned the use of the Tresca 
yield condition . ' 

Recently, Coon and Mohaghegh (1972) also analyzed the floating ice plate by the method 
of limit analysis, but assumed that the ice obeys Coulomb's law. For the problem shown in 
Figure 2 they obtained 

(69) 

Additional results and discussions are presented by Meyerhof (1960) and Coon and 
Mohaghegh ( 1972). 

Related results were published by Korenev (1960, part I1 , § 7) and Serebryanyy (1960) . 
It should be noted that the often-used expression for the limit bending moment, 

AlIo = (Joh' /4, is based on a stress distribution of a homogeneous plate as shown at (a) in 
Figure 19, whereas, because of the thermal gradient in the plate, the distribution of limit 
stresses could be, noting Peschanskiy (1945) and assuming that a full plastic moment does 
exist, as shown at (b) in Figure 19. Also, the assumption that the ice plate can, without 
cracking, resist a full plastic moment Mo may not be n;alistic, since its formation was not 
observed in the field. When using yield-line theory, it may be more realistic to work with 
"cracks" instead of "yield lines" and "wedge-in moments" instead of the "plastic moment 
Mo", especially along the radial cracks. 

A comparison of the various Pr expressions presented above with the formula for Per given 
in Equation (lOa) by Bernshteyn is shown in Figure 20. For comparison purposes, it was 
assumed that (Jr = (Jo and that Mo = croh'/4. Note that a different number in the denominator 
of Mo only shifts a plotted graph vertically. 

Note that all graphs of Pr/ ((Joh') against ex obtained using plasticity methods show the 
same characteristics and that they may be represented by a straight line, as in Equations 
(I2a) or (I2b). 
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Fig. 19. Development of a full plastic belldillg II/oll/enl ill a hOll/n.~elleolls plate (a ) alld effect of a thermal gradient in the plate 
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Fig. 20 . Comparison of various expressionsfor Pr with the Pcr deduced by Bemshteyn in Equation (10). 

COMPARISON OF ANALYTICAL AND TEST RESULTS 

General remarks 

The mechanical properties of ice vary drastically in the vicinity of the melting (or freezing) 
temperature of about ooe . Because the lower surface of a floating ice plate is usually at the 
freezing temperature, the plate response is obviously affected by this . This effect is especially 
severe when the upper surface is also subjected to temperatures near o°C, because then the 
temperature throughout the plate is close to the melting temperature. 

To demonstrate the variations of temperature with time, consider a floating ice plate 
subjected for a long time to an air temperature of - IOoC . Assume that at time t = 0 the air 
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temperature rises to - I DC . Then the corresponding temperature distributions for different 
times are as shown in Figure 2 I. Note that although the temperatures at the top and bottom 
surfaces are constant for t > 0, the temperatures throughout the plate vary with time. H ence, 
if two identical tests are performed before a thermal steady state is established, the results may 
differ, depending upon the time (after the sudden outside temperature change) when a parti­
cular test is conducted. 

Fig . 2 1. Temperntllre distrib1ltioll ill the ice sherl (schematic) .for different. times. 

A similar situation occurs in the floating test beams used for the determination of the 
failure stress crr , because, after a beam is cut out from the ice, the side walls com e in contac t 
with the rising water and the outside air. 

Another thermal problem may arise in a test when an ice cover in the field is loaded by 
pumping water into a large tank that rests directly on the cover , for then the bottom of the 
tank, which is made of metal or canvas, rests on the ice, and the upper surface of the ice plate 
in the contact region is subjected to temperatures near ODC which may differ substantially 
from the outside air temperature. This type of loading usually causes a change in the stress 
distribution and a lowering of the strength of the ice in the area where failure usually starts, 
thus affecting the test results. 

These and related questions , such as the effect of a sharp drop of the air temperature, the 
rate of loading, the penetration of water through the ice plate during loading, etc., have to 
be considered when the test data of floating ice plates are correlated with corresponding 
analytical results . In the following , various tes t results are presented and correlated with 
analyses discussed previously. 

Effect oj bending and shearing Jorces on the deflection oJ an ice cover 

As shown in the previous sections, an analytical determination of the breakthrough load 
utilizes a formulation for the ice cover. In order to simplify the necessary analyses, such a 
formulation contains a number of assumptions. It is essential that the assumptions made be 
justified, from a physical point of view, since otherwise the analytical results may have no 
relevance to the actual problem under consideration. 

One such assumption, included in the derivation of Equation (9), states that a straight line 
normal to the reference plane, remains straight and normal to the deformed plane (sometimes 
called the Kirchhoff hypothesis) . Physically, this kinematic assumption implies that the 
deflections are caused only by bending stresses, and that the effect of shearing forces is negli­
gible. This assumption , discussed at length in books on strength of materials, has been proven 
to be justified for the elastic response of slender beams and thin plates made of a variety of 
materials. 
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On the other hand, basing his view on field observations, Zubov (1945) suggested that the 
deflections of an ice cover are mainly caused by shearing forces and hence the effect of bending 
upon the deflections is negligible. 

Because the resulting equations are used for the analytical determination of Pr , for addi­
tional examples see Panfilov ( I 963[ c]), it is essential to determine whethel,' Kirchhoff's or 
Zubov's assumption is to be used for the formulation of ice-cover problems. In this connection, 
note that the plate deflections due to a load q which is distributed over a circular area , based 
on Equation (9), are, according to Wyman (1950), 

wt(r) = q; [;+ ker ' (Q:) ber ( Ar) - kei' (Q:) bei (Ar ) 1 
wk) = qQ: [ber' (Q:) ker ( Ar ) -bei' (Q:) kei ( Ar )], 

y 

0 ::::;; r ::::;; a} 
, (70 ) 

a ::::;; r ::::;; 00 

where A = (YID )l, whereas the differential equation for an ice plate, according to Zubov's 
hypothesis, is 

- GhV 2w+ yw = q . 

where G is the shear modulus and the corresponding deflections are 

0 ::::;; r ::::;; a } 

'"'" ' 
a ~ r < "'-' 

where 10' Ko, It and Kt are Bessel functions and K = [y j(Gh)Jl. To show the different nature 
of the deflection curves based on these two assumptions, the Equations (70) and (72) were 
evaluated numerically for h = 10 cm, v = 0.3 and E = 10500 kg/cm 2 (10.7 MN/m2). For 

.alh = I and 5 the corresponding values of G were determined using the condition that the 
largest deflections w( 0) for both theories are equal. The results are shown in Figure 22. 

Note that the response of an ice cover according to Zubov is identical to the response of 
the shear layer in the Pasternak foundation as shown by Kerr (1964) . 

r (m) 

0r----T----~2r---_i3--_==4:::;~5~~~6~~~7 

0.001 

E= 10,500 kg/cm 2 w(O) 

-p- 0 .002 

(cm / kg) 

--a/h=1 

---- a/h=5 

0.005~--~----~----~----~----L---~~--~ 

Fig. 22. Deflection curves according to bending and shear theories. 
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As early as 1929, Bernshteyn compared the deflections of an ice field on the river Volga 
subjected to loads of short duration , at air temperatures of - 15°C < T < - 7°C, with 
corresponding results based on Equation (9). This comparison is shown in Figure 23. Since 
the agreement is very close, it was concluded that the use of 'Equation (9) , and hence 
Kirchhoff's hypothesis, is justified for the formulation of problems of ice plates subjected to 
loads of short duration. 

Shmatkov (1968) compared test data of an ice plate on lake Baykal, subjected to a vertical 
load of short duration but at air temperatures of about o°C, with analytical results based on 
Equations (9) and (71). This comparison is shown in Figure 24. On the basis of these data 
Shmatkov concluded that at air temperatures of about ooe the deformations are mainly 
caused by shearing forces. 

r (m) 

o.-___ 1~0~~2,0~--~--~~~~5~0~--6,0 

5 
w 

(mm) 

10 

(o)Test data 

15L---~-----L----~----L---~----~ 

Fig. 23 . Cfllllpari.1'01I ur ice-plal f defiecliow d,u 10 load., or "hurl duTt/lioll al 15 (; . - T .--- - 7°e. 

10 

20 
• 

cm) 
30 

40 

50 

r (m) 

-- -- eq 9 

----- eq 71 

(0) Test Data 

All units ore ton 1m2 

Fig. 24. Comparison of ice-plate dejlectiolls due to loads of short duration at a°e. 

This conclusion raises the question of the effect of the ice temperature upon the range of 
validity of Equations (9) and (71) for the formulation of ice covers. A comparative study 
involving more test data, especially at air temperatures near o°C, is urgently needed to 
clarify this important question. In these tests, a special effort should be made to separate the 
elastic from the non-elastic deformations. It may also be advisable to note the difference 
between the crystallographic structure of an ice cover formed over a lake in which the water 
is essentially at rest, and that over a river in which the. water moves at a certain velocity, and 
the effect of this difference upon the mechanical properties of an ice cover. 
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Determination of Pc( 0) 

Test results and their relationship to the allowable load given by the analogy method were 
discussed by Klyucharev and Izyumov ( 1943) and by Kobeko and others (1946[b]). Gold 
(1960) compared Equation (4) with the field results of the Canadian pulp and paper industry. 
The conclusion from this comparison was that the formula given in Equation (4) is not 
sufficient for the determination of failure loads, since the presence of cracks, thermal stresses, 
and natural variation in effective thickness is not taken into consideration. Another reason 
could be that the failure load Pr is not proportional to hz but may be a more complicated 
function of h, as indicated by the expressions in Equations ( lOa) and ( In). Additional 
results were presented recently by Gold (1971). 

In order to establish which of the various formulas for Per and Pr(o) obtained using the 
criterion amax = ac are suitable for predicting the carrying capacity of a floating plate 
subjected to loads of short duration, the values of Pr( 0) obtained analytically are next com­
pared with corresponding results from tests conducted on floating ice plates. 

Since the analyses are based on an elastic theory, only the results of tests with very short 
loading times to failure are of interest. Such tests were recently conducted by Panfilov 
(1960[a]) in the laboratory as well as in the field. The laboratory tests were conducted at 
-IO°C. The floating plate was loaded by means of stamps of the dimensions shown in Figure 
25. The loads were placed statically at rates which caused breakthrough within 5 to 20 s. 
Hence the loads were of short duration. In addition to the failure loads Pr, loads at which the 
first radial crack occurred Per were recorded. The laboratory tests were conducted with 
fresh- and salt-water ice. The thickness of the ice plates varied from 7 to 30 mm. The 
field tests were conducted on thicker ice plates. An ice plate was loaded by placing a metal 
water tank on a structure which rested on the ice plate and simulated the contours of wheel 
loads. The ice strength ac was determined from floating cantilever tests with the load acting 
downwards. Additional details are contained in the paper by Panfilov ( 1960[a] ). 

p 

Oi h2 

Fresh Water Ice 
(o)d= 10 cm, (0) 2,2 cm, (+)5,5 cm, (<)-) 10 x 10 cm. 

Salt Water Ice (S=5%.) 
(a) 2.2 cm, (t) 5,5 cm; (0) 10. 10 cm . 

Salt Water Ice (S= 10 %0) 
(6)2,2cm; (+)5,5 cm; (0) 10,10 cm. 

o 0 .2 0.4 0 .6 0 .8 1.0 

Fig. 25. Results of laboratory tests for the failure of all infinite plate. 
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The results of 56 laboratory tests for the " infinite" plate are shown in Figure 25 . The 
failures followed the usual pattern: First, the formation of radial cracks which emanated from 
the region under the load, then the formation of circumferential cracks at which time the 
load broke through the plate. 

In Figure 25, Curve I represents P cr/( arh2 ) according to the analyses by Bernshteyn ( 1929), 
Golushkevich in his dissertation in 1944, and Wyman (1950). Curve II was proposed by 
Panfilov as representing the test data and is described by the equation 

P b 
-h = 1. 2 5 + 1.0 5 -l . ar 2 

It was obtained by an averaging process. The test data show a scatter in a relatively narrow 
band. 

Before proceeding with the discussion of these test results, a different concept is introduced 
for the evaluation of ice-plate tests. This is necessary because averaging curves, such as curve 
11, are not suitable for most engineering purposes. 

Breakthrough Loads 

_b_ 
41[) 
y V/ y 

Fig. 26. Plot indicating arellJ aJ Jllfe load., a1/d breakthrough loads. 

From an engineering point of view, there is a need to determine safe loads at which an 
object may move slowly or park briefly on a floating ice plate, or breakthrough loads for the 
design of ice breakers at which the plate definitely collapses. These loads may be obtained 
by introducing into the results of field tests an upper envelope u and a lower envelope L, as 
shown in Figure 26. It is reasonable to expect that the area under envelope L contains safe 
loads and the area above envelope u the breakthrough loads. The area between the envelopes 
is the region of the test failure loads and nothing definite can be said about it with respect to 
safety or breakthrough. From this point of view, only the regions above curve u and below 
curve L are of interest and the test results are needed to separate these two regions . 

For the test data of infinite plates shown In Figure 25, the upper envelope u may be 
represented by the equation 

and the lower envelope L by the equation 

b 
I.5 + I. I T 

( Pr) b 
arh2 L = 1.0 + 1.2 l . 
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Therefore, if the bounds shown in Figure 25 should prove reproducible by other investigators 
(for loads of short duration and T = - IOOC) a safe load could be determined from the 
condition 

P < (1.0 + 1.2 (D;y)i) cr!h z 

where crf is obtained from a floating cantilever beam test loaded downward. 
According to test data shown in Figure 25 

(P!testh ~ 2Pcr. 

Note, however, that the cr! values for these two cases are usually not the same. Panfilov 
(I g60[ a]) observed that if P cr is the load at which the first crack takes place then 

pcrtest ~ iPttest. 

From the above two equations it then follows that 

P crtest ~ tP cr· (76) 
A proper analysis should yield a value of Pcr equal to pcrtest. Possible reasons why this is not 
so in Equation (76) are: ( I) The crf values used in Figure 25 are those obtained by loading the 
cantilever beam downward, whereas for the determination of Pcr the tensile stresses that crack 
the plate are in the lower fibers of the plate and there crf is smaller because of the higher 
temperatures; (2) The stress distribution is not linear across the plate thickness and the 
stresses in the upper fibers are larger than those in the bottom fibers , whereas the analyses and 
test evaluation are based on a linear distribution with equal stresses at the top and bottom 
fibers; and (3) the criterion crmax '= crf may not be valid. 

According to the simple analytical results by Kashtelyan ( lg60) for an infinite plate that 
cracks into five wedges (crn = 271' /5) 

Pf <P n 
- = 2.08 - ~ 0.8 
a!hz 71' 

and when the plate cracks into six wedges (<Pn = 71'/3) 

Pt 
-h ~ 0·7· crr 2 

Thus according to this analysis, Pr values are obtained w.hich are far below the · test data 
presented in Figure 25. 

Also compare the graphs presented in Figure 20 with the test data of Figure 25. Note 
that the upper graphs in Figure 20 are based on Mo = croh2/4 and that they may be shifted 
toward the test data by choosing a larger number in the denominator of Mo . . 

The test results for a semi-infinite plate subjected to an edge load, as shown in Figure 6 are 
, presented in Figure 27. The failures followed the usual pattern: first, the formation of a crack, 

which emanates under the load and is normal to the free boundary; then the formation of a 
circumferential crack at which the two wedges break off. 

In Figure 27, Curve I is the Pcr according to the analyses of Shapiro (1943) and Golush­
kevich in his dissertation. Curve II was proposed by Panfilov (Ig60[a]) as representing the 
test data, which show a scatter in a relatively narrow band. It is described by the equation 

P b 
-h = 0.45+ 0.38 -{ . at 2 

It can be easily verified that the upper envelope U is described by the equation 

C~2)U = 0.58 + 0.27 ~ 
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P 

0: h2 , 

o 0 .2 0.4 0 .6 0 .8 1.0 

b 

~ 
Fig. 27. Test resultsJor theJailure oJ a semi-infinite plate with an edge load .. 

and the lower envelope L by the equation 

C~2t = 0.35+ 0 .39 ~. 

259 

Hence, if the bounds shown in Figure 27 should prove to be reproducible by other investi­
gators, a safe load for the crossing of a long gap in a floating plate (a bridge between two 
semi-infinite plates) could be determined from the condition 

P < (0.35 + 0.39 (D;y) i) h2
ar. 

On the other hand, the breakthrough load for a semi-infinite plate, often needed for the 
design of icebreakers, should satisfy the condition 

P > (0.58+0.27 (D;y)l) h
2
ar 

where ar is determined from a floating cantilever test loaded downward. 
According to the test data shown in Figure 27, for 0.1 < bll < 1.0 

(Prtesth ::::::: 1.6Pcr . (77) 
. Panfilov ( I 960[ a] ) observed that also for the semi-infinite plate 

P crtest ::::::: iPrtest. 

From the above two equations it then follows that 

Prtest ::::::: 1. I Per. (79) 

In view of the three possible shortcomings listed in the discussion of the infinite plate, this 
agreement is very close. 

Panfilov's test results for the infinite and semi-infinite plate show that 

(Prtest)inr plate::::::: 2.7 (Prtest)seml-lnr plate. (80) 

This does not agree with the findings reported by Kashtelyan ( 1960, p. 33) . Equation 
(80) indicates that the effect of the wedge-in moments is not negligible if one attempts to 

6 
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compute Pr analytically from wedge solutions. Without the wedge-in moments, Pr of the 
infinite plate would be equal to twice the Pr of the semi-infinite plate. In this connection, note 
the corresponding relationship obtained analytically for Per, which is shown in Figure 8 . 

According to Kashtelyan (1960), for the observed wedge formation for a semi-infinite 
plate <p = ,"/2, and 

Per/( crrh2
) = 0.518 

a value which agrees with the test data shown in Figure 27 for IX < 0.4. 
Other test data for loads of short duration were obtained by Yakunin ( 1970); however, 

these results were not available for review. 

Determination of Pr (tr ) 

Early test results for ice covers subjected to loads of long duration were reported by 
Bernshteyn (1929), the South Manchurian Railway Company (see the footnote on p. 248), 
Kobeko and others ( 1946[a], [b] ) and the V.S. Corps of Engineers ( 1947). More r ecent 
test results are presented by Sundberg-Falkenmark (1963), Frankenstein (1968), Panfilov 
(1961, 1965, 1970[b]), Stevens and Tizzard (1969), and Yakunin (1970). 

Although some writers compared their test data with analytical results and found satis­
factory agreement for certain situations, there is a need for a systematic study of available test 
data, supplemented with new test results, in order to establish first the proper plate theory for 
ice covers which will predict the deflec tions as a function of time, and then a failure criterion 
for the determination of Pr(tr ) and tf. 

In connection with the above studies it may also be useful to note the tes t results presented 
by Shishov (1947), Bu tyagin (1955), Black (1958), Gold and others ( 1958), Korzhavin and 
Butyagin (1961 ), Frankenstein (1963), Brunk (unpublished), as well as the discussions by 
Assur ([1962][a] ), Piste r (1965), Dykins (unpublished ), F .K. (1968), and Yakunin ( 1970). 

Determination of crf 

For the analytical d e termination of Pr (o) the value crr is needed. It is usually determined 
from a beam cut out from an ice plate and tested in situ. A detailed description of such tests 
was given by Butyagin ( 1966, section IV). A cantilever test beam is shown in Figure 28 . 

Fig. 28. Canlilever leJI beam for the determinalion of ar . 
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Other test data were presented by Weeks and Anderson (1958), Frankenstein ( 1959, 1961 ), 
Brown (1963), Sokolnikov (1964), Tabata and others ( 1967), and Tauriainen (1970). R elated 
questions are discussed by Lavrov (1965, 1969) , Savel'yev ( 1963, section 5) , Peschanskiy 
( 1945), Smirnov ( 1967), Frankenstein (1970), Butyagin (1958), W eeks and Assur ( 1969), and 
Kerr and Palmer ( 1972 ). 

In order to establish a standard procedure for the determination of Cir , it should be of 
interest to determine the effec t of the rate upon crr , as well as to clarify why Fra nkenstein 
( 1959, 196 I), using the test set-up shown in Figure 28, found that for certain cases the deter­
mined Cir value is higher when P acts upwards, whereas Butyagin ( 1955), using the same set-up, 
reports that according to his test results the Cir value is higher when P acts downwa rds. 

S UMMARY AND R ECOMMENDATIO NS 

When utilizing fl oating ice as a place for storage purposes or a s a pavement for moving 
vehicles, there is a need to know the magnitude o f the " break-through load" Pr( tr ) a nd the 
corresponding " time to failure" tr . Until now, there has been no general theory in the 
literature suitable for the prediction of Pr(tr ). The majority of papers on the bearing capacity 
of ice pla tes deal with the determination of the special case of Pr (o), the load which is just 
sufficient to break through the ice in:mediately after it is placed on the ice cover. Only a few 
papers deal with the determination of Pr(t r). The procedures for the determination of Pr(o) 
and Pr(tr ) are summarized in Table Ill. 

T ABLE Ill. PROCEDU RES FOR D ETE RMI N I NG Pr (o) AN D Pr(tc) 

Pr {o) 
Based on elasticity analyses 

Ana logy method De termina tion 
for deter- of Per based 
mina tion of on elastic 
P" theory of 

pla tes and 
criterion 
Om ax = ar . 
Then 
correlation of 
p c .. a nd Pr{o) 

Direct deter­
mina tion of 
Pr {o) by 
ana lyzing 
the cracked 
pla te. Use of 
elas tic theory 
and criterion 
atn ax = ar 

B ased on plasticity analyses 

D e termina tion 
of Pr{o) using 
vield-line 
theory 

D e termination 
of Pr{o) using 
limit-load 
theory 

Pr (t r) 

U se of a visco­
elasti c theory 
In con­
jun c tion with 
a fa ilure 
criterion 

Attempts to d e termine Pr(O) are based on elasti c a s well as plasticity theori es. 
The basis of the analol!)! method, which utilizes relationships of an elastic theory, are ques tion­

able. Thus, the results obtained with this method , although very simple, should be used with 
caution. In this connection, note the position of Equation (7) in Figure 25 as compared with 
some findings by Gold (1960, 197 I ). 

Another approach is based on the elastic theory oJ plates. In this procedure, for the given 
load, the maximum stress in the plate Cimax is de termined first , then Equation (8) , crm ax = Cir, 
is used to determine Per; a load which is just suffi cient to cause the first crack. Since, a ccording 
to fi eld tes ts, for infinite and semi-infinite plates Pr (o) > Per, an empirical rela tio n be tween 
Per and Pr( 0) is n eeded for the determination of Pr( 0). Equation (74), which is based on data 
by Panfilov (1960[a] ), could be used , if proven to be generally valid , as such an empirical 
relation for the infinite plate. In this procedure, crr i,s deterrriined from a fl oating ice bea m that 
fails in tension in the bottom region of the cross sec tion. 

In still another approach, the empirical relation is eliminated and Pr(o) is d e termined 
directly, by using the elastic theory Jor the analysis oJ the cracked ice plate, which consists o f wedges 
that emanate from the loaded region, and by assuming that Pr( 0) is reached when the wedges 
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break off. Also here Equation (8) is utilized as the crack criterion. The value for crr is obtained 
from a floating ice beam that fails in tension in the upper region of the cross-section. 

Publications that follow either of these two approaches contain several questionable 
assumptions; for example, although in a floating ice plate the material parameters, especially 
E, vary throughout the thickness, the expression valid for only a linear distribution of bending 
stresses is used exclusively for the determination of the maximum stress. Also , the use of the 
equation 

crr = 6Mr/h2 

for the determination of crr from a beam test may not be justified (Kerr and Palmer, 1972). 
Another questionable practice is the utilization of Equation (8) as the failure criterion. 

Equation (8) represents the well-known " maximum-stress criterion" (Timoshenko, 1941; 
Filonenko-Borodich, 1961). It implies that the failure stress crI is not affected by any other 
stresses at the point of failure. Tests have shown that Equation (8) is applicable to a variety of 
brittle materials when 'not subjected to hydrostatic compression. Although many publications 
dealing with the bearing capacity of floating ice plates use Equation (8), not a single publica­
tion could be located which describes test results that prove, or disprove, the validity of this 
criterion for floating ice plates. This situation is very unsatisfactory, since crmax in plates is 
usually biaxial, whereas the crI value is determined from a test with uniaxial bending stresses. 
Recently, Panfilov (1970[ c]) suggested the criterion 

(81 ) 

which is the two-dimensional version of the well-known "maximum strain" criterion. How­
ever, Panfilov, did not offer sufficient experimental data to justify the use of this criterion 
either. In the literature on the mechanics of materials, several other failure criteria are 
described that mayor may not be suitable for floating ice plates. For an early discussion 
related to plates on a Winkler base refer to Schleicher ( 1926, section 9). It appears that first 
it has to be established whether the simple criterion given by Equation (8), which is also 
applicable for materials with different crr values for tension and compression, is valid for 
floating ice plates subjected to vertical and in-plane loads. 

An additional short-coming of the publications that analyze the cracked plate is that the 
investigators neglect the wedge-in moments in the radial cracks. This does not seem to be 
permissible, in view of the tests by Panfilov (1960[aJ) who found that PI(o) of an infinite 
plate is larger than 2Pr ( 0) for a semi-infinite plate. 

The approaches for the determination of Pr (o) that are based on plasticity theories use the 
yield-line or limit-load analysis. For a discussion of a possible short-coming of these two analyses 
refer to the listed references. Note that the yield-line theory is conceptually related to the 
approach which analyzes the cracked plate. In this connection, it may be more realistic to 
work with cracks instead of yield lines and wedge-in moments instead of plastic moments, 
especially along the radial cracks. 

In view of the variations of ice properties in an actual ice cover and its effect upon Pr (o), 
it may be advisable from a practical point of view to use the concept presented in Figure 26. 
Its theoretical justification is that the straight-line upper or lower bounds of Pr( 0) are of the 
form 

Pt 
- = A + Bex 
CJrh2 

which relates it to various analyses discussed above. This approach, if restricted to straight­
line bounds, is essentially the same as the one discussed by Papkovich (1962, p. 424- 26), 
except for the introduction of the notion of upper and lower bounds for Pr(o). Also, note the 
similarity of the trend of the graphs and test data shown in Figures 4, 20 and 25. 
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The experimental data for Pr (o) presented by Panfilov ( Ig60[a] ) (Fig. 25 and Fig. 27) 
show littl e scatter. More test data are needed to es tablish whether the Pr values for other ice 
plates, tested under different conditions, fall in the same range. 

The analytical determination of Pr (t ) has received much less attention than the determination 
of Pr( 0). It is reasonable to assume that the necessary formulation consists of a visco-elastic 
plate theory and afailure criterion. In this connec tion, it is essential first to establish the range of 
validity of a simple formulation consisting of a linear visco-elastic plate theory (a bending 
theory, a shear theory, or a combination of both effects) in conjunction with a failure criterion 
of the type shown in Equation (58). 

Until reliable analytical methods are developed for predicting Pr (tr ) and tr , from a pra~ ti ca l 

point of view it appears advisable to establish whether the empirical relation , Equation (62 ) , 
or a similar expression , as proposed by Assur ([Ig62][b] ), is generally valid. The tes t results 
needed for this purpose are also necessary for formulating the proper failure criterion as well 
as for es tablishing the validity of a chosen visco-elastic plate theory . 

1IIS. received 27 November 1972 and in final form 18 December 1975 
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