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MATHEMATICAL MODELS OF ICE SHELVES*

By P. A, SHumskiy and M. S. Krass

(Institut Mekhaniki, Moskovskiy Gosudarstvennyy Universitet im. M. V. Lomonosova,
Michurinskiy Prospekt, Moscow V-234, U.S.5.R.)

AssTrAcT. For flat external ice shelves, expanding freely in all directions, the problem of thermodynamics
is one-dimensional. In the affine dimensionless system of coordinates, equations of the dynamics together
with the rheological equation lead to the non-linear integro-differential equation involving the reduced
temperature. In the quasi-steady case the boundary problem for this equation is solved by means of the
method of combining asymptotic expansions. It is shown that if ice is coming from the upper and lower
surfaces in the opposite directions the regime is unsteady because of the internal heat accumulation.

The integro-differential equation for the temperature in the case of thinning internal ice shelves is more
complicated, but it can be solved by a method analogous to the one mentioned above.

REsuMmE. Modéles mathématiques de plateformes de glace. Pour des plateformes de glace externes plates,
s'étendant librement dans toutes les directions le probléme thermodynamique est uni-dimensionnel. Dans un
systeme de coordonnées affine sans dimensions, les équations de la dynamique combinées avec I'équation
rhéologique conduisent 4 une équation integro-différentielle non-linéaire concernant la température réduite.
Dans le cas d’un état quasi-stationnaire, le probléme des limites pour cette équation est résolu en associant des
développements asymptotiques. On montre que si la glace arrivant au voisinage des surfaces inférieures et
supérieures provient de directions opposées, le régime est instable a cause de I'accumulation interne de chaleur.

L’équation integro-différentielle pour la température dans le cas de plateformes de glace internes
amincissantes est plus compliquée, mais la marche de la solution est analogue a celle mentionnée ci-dessus.

ZUSAMMENFASSUNG. Mathematische Modelle von Schelfeisen. Fiir flache, dussere Schelfeise, die sich allseits
frei ausdehnen kénnen, geniigt ein eindimensionales thermodynamisches Modell. Im affinen, dimensions-
losen System der Koordinaten fithren die dynamischen Gleichungen zusammen mit der rheologischen
Gleichung zur nichtlinearen Integro-Differentialgleichung fiir die reduzierte Temperatur. Im quasi-
stationdren Fall lisst sich das Randwertproblem fiir diese Gleichung mit Hilfe der Nahtmethode, verbunden
mit asymptotischer Fortsetzung losen. Es wird gezeigt, dass fiir den Fall des Eiszustromes von der Ober- und
Unterseite in entgegengesetzter Richtung das System infolge der Ansammlung innerer Wiirme instationar
wird.

Die Integro-Differentialgleichung fiir die Temperatur im Falle von ausdiinnenden, inneren Schelfeisen
ist verwickelter, doch ldsst sie sich mit &hnlichen Methoden lsen wir die oben genannte.

INTRODUCTION

Floating glaciers are flat slabs which become gradually thinner near the edge, but they
combine a horizontal surface, like that of ice divides, with a high velocity, a fact that sharply
distinguishes them from the latter. Both these peculiarities result from the absence of tangen-
tial stresses on the free lower surface. Except for the internal edges adjacent to the land, all
the remaining surfaces of the floating glaciers are free. Therefore, in the three-dimensional
orthogonal coordinate system with the axis O normal to the upper and lower surfaces, no
tangential stresses are present at all, since the normal stresses coincide with the coordinate
axes. But the curvatures of the upper and lower surfaces k;f and k7 are negligibly small due
to the flat shape of floating glaciers, so conditions are very favourable for applying the method
of a thin boundary layer, and the model is simplified by the absence of horizontal tangential
stresses (a3 = 0). Nevertheless, the other four components of the stress tensor may have
values of the same order in the general case, so that the dynamics is described by a statically
undeterminate system of equations. On the other hand, the conditions are, as a rule, compli-
cated by an essential non-isothermality. Therefore, one should distinguish various types of
floating glaciers according to their dynamics, described by different models. In this paper the
symbols are mainly as in the previous paper (Grigoryan and others, 1976) so no list of symbols
is provided here.

* This paper was accepted for the International Symposium on the Thermal Regime of Glaciers and Ice
Sheets, Burnaby, Canada, April 1975, but was not presented because of the absence of the authors.
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Fig. 1. Coordinate system.

Let us direct the horizontal axis O¢ of the affine system of dimensionless coordinates
along sea-level from the internal to the external boundary of the glacier (in the direction of the
ice motion), and direct the vertical axis Ol upward (Fig. 1). The characteristic linear
horizontal dimension L exceeds considerably the average thickness H, so that

H . ‘
=1 <1 (1)

The glacier is bounded by the upper and lower surfaces, { = .J,(7) and { = J,(7) respectively
(7 being the dimensionless time). The density of ice is p, the density of water is py.

Due to the relatively small thickness of the glacier given by Equation (1), the floating layer
of ice must be in a local equilibrium along the vertical

Zi(r) = L 2. (2)
P

External ice shelves are ones which border upon the shore along one edge only, and at
some distance from the shore can expand freely in all directions like drifting tabular icebergs.
In these cases the slopes of both upper and lower surfaces as well as the horizontal variations
of temperature and of accumulation and ablation rates are as a rule so small that they can
be considered with sufficient accuracy as flat plates without any physical differences between
the directions in the horizontal plane, with the exception that strains lead to motion relative
to the fixed edge.

I. EXTERNAL ICE SHELVES
1. Fundamental equations. Formulation of the problem

The system of equilibrium equations for the case in which there is a negligibly small
contribution from the inertial terms is of the form:

Fﬁ Caik
“E“‘“ ka =P = o, (3)

where § is the pressure, 6 are the stress deviator components, g; is the ith component of the
acceleration due to gravity. The boundary conditions of the problem are:

Gy
g: ‘Zl: _p+Pg_!-{ G{C = 0, G_!{: = GJ;-’; = 0! T: T[('T), (4’)

()’ -
L=2y —pt—eop=—L22, og=og=0 T=Tyr, (5
pgH P

where 7 is the reduced temperature. Equations (4) represent the conditions on the free
surface bordering the air; Equations (5) are the conditions at the contact with the water
when the viscous coupling forces of water are neglected.
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The second boundary conditions in each of Equations (4) and (5) under the condition
given by the inequality in (1) lead to the fact that the horizontal tangential stress in a floating
glacier is absent to an accuracy of the terms of a higher order of small quantities, whereas the
horizontal stresses are equivalent to

Ogr = Opp = 0, Sge = Oy (6)

As a result, taking into account the horizontality of the ice surfaces, the following two equations
are alone retained from the system of Equations (3):

f§< Hng )_0’ fC( p+ngc“) N 2

The incompressibility equation should be also added; taking account of Equations (6) it
acquires the form
23€§§+€;§ = 0, (8)

and also the heat-transfer equation (Grigoryan and others, in press) (neglecting the horizontal
variation in temperature)

?T v © cT 02T

+ = 8¢ 2

5 7L 3%

and the rheology relations (the power flow law), which in dimensional form may be written as

éix — Ran "6y exp [—x (71_—1)] : (10)

We also write the expressions for the components of the strain-rate tensor

i) ov;
‘-‘.z.s:;.f’ €§§=P,_§’

+ Neixaix, (9)

(11)
€ik = O, k # 1.

So far as ice is incompressible, owing to the Equation (6) we have

Oyp = —20g- (12)
The kinematic conditions of the boundary displacements are:
0z
E = ‘zl) a‘r] = v(‘{'“ﬂ]: (13)
el
L= 35 _F'-r_z = Ur—dy, (14)

where a, and 4, are the accumulation rates at the upper and lower boundaries respectively.
The combination of equations and the boundary conditions (7)-(14) defines completely the
problem of the thermodynamics of a floating ice shelf.

2. Solution of the dynamical problem

Integration of Equations (7), taking into account the first equations of the conditions (4)
and (5), results in the relations:

. = f(¢ S =
_p+ngG§§7f( )a _p+'Pch§€_ —(5“@}
whence due to Equation (12) we obtain

- - 1) A L (15)

where fis an unknown function of the argument .
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The expression for the intensity of the shear stresses, taking account of Equation (12), is

¢ = /30 (16)
Consider now the conditions at the contact of the glacier with water (Grigoryan and others,
in press):
= Gy B Tn 0 < C < zn
§=E%  oy=o0, P ofr T = ‘ Fe= (17)
P& "‘ngfpy Tzs zz < C < 0,

where T, and T, are the temperatures of air and water, respectively. From the sccond
equation in (6) taking into consideration Equation (12), we get

Zl_' OSZCSZH
ikl (18)

=8 op=1—
: 3% le—(l—i) €.~ z:, g {

Pw

x1

0.

AN

Consequently, at the marginal ice cliff there arises a horizontal tensile stress which reaches
the maximum value pgH(1—p/pw) /30, at the water level (where £ = Z,—<,), and which
decreases linearly down to zero at the upper and lower edges of the ice cliff. Therefore, at
the ice cliff there arises the torque of moment:

e
%f%gocda

which is equilibrated by a complicated stress in the marginal part of the glacier. However,
at some distance from the ice cliff the stress in the ice layer is distributed so that a uniform
rate of the horizontal extension of the ice slab in the vertical cross-section is provided
(Weertman, 1957)

€3
=0k € = €, € = €. (19)

These are constant in the whole slab and change in time only with the variation of {. The
average value of the extending stress in the vertical cross-section is

H
G = %i (:—P—i) z (20)

It follows from the conditions (13) and (14) that, provided the ice layer is in equilibrium,
Equation (2), the vertical velocity v, depends on the vertical coordinate and the accumulation

rates as
vr :€3€+Da2__,0_ a,. (21)
Pw Pw
From the rheology, Equation (10), we get
' o, HK
o —:—g = €y = — 3n/2qy" exp (—xf), (22)

where 8 = 1— 7, 0 < 8 < 1. So far as ¢; and ¢, are independent of the coordinate {, then
o = C exp (x8).

The constant € can be readily determined if we know the expression for the average value of
the vertical stress from Equation (20). Thus
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s
H =t
u = o = B2 (1L 22 | [ oxp (et att] " exp (),
S - (23)
€; H)nKH no2n -n
fy = =g = % (I—piw) < [J exp (xB/n) dC] : :
<z

9. Temperature regime of a glacier

The substitution of Equations (21), (22) and (23) into the heat-transfer equation (9)
results in the integro-differential equation for the steady case:

w— dé dz8 ‘
(—f,]—%-@—% a;—Pi a[) ap = degp S e (x8jn), (24)
where
¢ k
I= JCXP (kB[n) AL, 8¢ = prow
Zl
KH PgH n n n
fi=wxgrn g (B (--2) " ]
(25)

-~

n+1r 2ln+r1)
P

FHEK
— n—{n+1lqg—-(n+1)/ + el
Jor= el Rl e Tl [ ] R

Equation (24) describes the quasi-stationary temperature field 7({, ) = 1 —8({, ) in the
glacier (inasmuch as the dimensionless time 7 is inserted in the equation parametrically).
The boundary temperature conditions follow from the conditions (4) and (5)

(=2, O8=1—T(7) = 6i(); (26)
{=2u7), 0=1-T7) = 6:(). (27)

The method of solving the boundary problem (24), (26), (27) is based on the fact that the
value 8. is small for ice shelves :

80 < I,
while f; = O(1).

As a result, this problem falls into the class of singular boundary problems, for which the
methods of solution are fairly well studied (Cole, 1968). We shall search for a solution of
Equation (24) for the main bulk of ice, proceeding from the expansion of the solution in a
power series of the small parameter 8.

0 = 0,4 8c0,48:20,+ ..., (28)
with the boundary condition (26), and with the boundary condition (27) for the boundary
layer. It is necessary to match the solutions at the contact of the boundary layer and the
internal region. The evolution of the solution is as follows.

It should be first noted, that the distribution of temperature with depth depends essentially
on the pattern of flow lines in the glacier—in other words, the solution of Equations (24),
(26), (27) depends on the ratio of the values occurring in the expression for the velocity,
Equation (21). There are two ways the vertical velocity can change with depth:

Vg < 0, zz <L = ZIJ {29)
or

v =0, a5t 58y e Lo €0 & Ty (30)
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If we first consider (A) the case of (29), i.e. when melting occurs at the lower surface of the
glacier (a, << 0, €;{; < pa,/pw). The substitution of the expansion (28) into Equation (24),
after reducing the similar terms at the same powers of 8., results in a sequence of differential

q:quatious )
) e n
(‘dtigij‘zl (n+1) xp{‘K ﬂ/ ),
(31)
=, =1,2,3,...,

where U = fiI-"{+{ pa,/pw— (pw—p) a:/pw; it follows from the condition (2g) that I/ > o.
The boundary conditions for the system (31) are:

=4 8, = 8,(7), 0; = o, = 5 % = ) (32)
The solution for the zero approximation is, thus, of the form:
— —1I
fll-n§_|_i at_Pw £ a;
n ® fa Pw Pw
f, = ;]n exp (—xﬂ,/n)—;f—Iln — . (33)
1 ﬂ]’”ZH—L al_PL_P a,
Pw Pw

Since { < Z,, it is clear that with a decrease of { the value 8, increases, i.e. the temperature
decreases from the lower surface to the upper one.

The totality of solutions of differential equations (31), which, when they are summed,
gives the expansion (28), does not satisfy the boundary condition (27). Consequently near
the boundary { = Z, there inevitably arises a boundary layer with a large temperature
gradient so that on its lower boundary the temperature satisfies the condition (27).

In order to retain the ““governing terms’’, i.e. the summands with derivatives, we introduce

the boundary layer in the following way:

=t Sf‘. (34)
Consider the inner expansion in this layer:
0 = go(xy) +8c8:(xx) +8c%82(xx) + - . (35)
Due to Equation (2g) the following relations hold true
d 1 d d?2 1 d?

i=nbetls [=%am' 0 Iidg
The insertion of the expansion (35) into Equation (24), after the similar terms are reduced,
leads to a sequence of differential equations
dg, dig 7
dxy  dryg?’

_U..

dg,  dg
*dxy,  dxy?

—J2 €xp (xgo/n), (36)

d
— Uy g i

dg:  dig . dgi- .
dx¥+dx¥z = filhxy dxy 1= 1,2, ..., J

U*

where Uy = fil-*Z,+ pa,/pw— (pw—p) @:/pw > 0. The boundary conditions for this
sequence of equations follow directly from the condition (27), taking (34) into consideration:

Xy = O;a &(7) = 8:(7) = 1—T,(7), 8i =0, I=1,2, ... (37)
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The solution for the zero approximation of the inner expansion is given by the formula:

8o = C, exp (— Uyxy) +C,.
The constants €, and (, are obtained from the boundary condition at x, = 0, and also from
the condition of “‘matching™ the solutions (28) and (35); the last operation may be carried

out most simply by “matching™ the terms of the same order separately at the internal limit.
The matching of the zero-order terms of the expansion is:

go( ) = 0,(Z5). (38)
The conditions (37) and (38) give the final form of the solution of the problem (24)-(27) in
the first approximation:
(a) in the region of the boundary layer of the order of 8. (of the thickness O(8.)):
&o = [0:(7) —04(Zs, 7)] exp (—Usty) +8(Z, 7); (39)
(b) in the main region the solution is given by Equation (33). The solution, Equations

(33) and (39), is obtained to an accuracy of the terms of the order of 8. and of a higher
order.

This solution may be specified from the correspondiﬁg systems of Equations (31) and (38).
The temperature curve corresponding to Equations (33) and (39) is shown in Figure 2.

T

G

Z, 0 ?

Fig. 2. Temperature profile when melting vecurs at the bottom.

Next let us consider (B) the case (30), i.e. when freezing occurs on the lower surface of the
glacier (2, > o, pa,/pw < €;<;). Inside the ice layer there is a line, where the vertical velocity
changes its sign. In this case two regions of the expansion (28) are distinguished; in the upper
one {x < { < £, the solution #, has the form of Equation (33), whereas in the lower one we
have, respectively:

Pw—P

a,

nfil

P
f:I_nC'i'_ a,—
Kez)_l_’f 2 ll’l Pw , (40)

n
6, =-In|exp (——T

e S
Firwgatg . LETC,

Pw Pw

Thus, the temperature increases from the lower surface to {4 and decreases from {4 to 2.
The matching of the branches (33) and (40) can be performed with the help of the boundary
layer

%= 53 (41)
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Since inside this boundary layer function U has the expansion

U= ({—&) Ui+({—L)? U+ ... U >0
the substitution of an expansion like Equation (35) into Equation (24), taking into considera-
tion Equation (41) and the differential relations d/d{ = d/8.} d, d?/d{* = d?/8. d&* with
regard to Equation (21), results in the system of equations

dzh, _ dha, 7
G = O
\
dhy  dhe fol-(n+)) exp (% hu) ; i=1, . (42)
Fra
0, 1> I, )

The solution for the zero approximation* is
hy(8c, &) = B, erf (I-1n/2f i3) + B, (43)

Tz--"/’—r\

e

|
I
|
|
I
|
:

g

¥, {’* 0 g‘

Fig. 5. Lomperatuse profile when freezing oceurs at the bottom.

Constants B, and B, are determined from the conditions of matching with the branches of
Equations (33) and (40) at the inner limit (Cole, 1968). The curve of the temperature
distribution in depth is shown in Figure 3. When the temperature function has been deter-
mined, the value  can be found from the transcendental equation, which is obtained by
substituting Equation (33) or (40) into the first equation of (25):

I= J.E)(p (1@[n) d. (44)

>
L]

4. Conditions of the thermal stability of a glacier

It may be seen, when comparing the results presented in Figures 2 and 3 with the data
available, that the majority of external ice shelves have temperature distributions which fall
into the case (A) of the preceding section. This means, that the vertical velocity of the ice
motion according to Equation (2g) displaces ice particles from the upper surface through the
whole layer to its lower surface. The dissipative heat generated in this case is transferred

* Here, as well as in Equations (36). in the zero approximation we neglect the heat-generation effect in the
boundary layer itself.
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from the upper to the lower layers by this advection velocity. Since the dissipative heat-
generation coefficient is rather small (at & = 0.15 cm?®year kgf?, v, = 1 m/year, p/pw =
0.92, g, = 0.5 to 1 kgfjem?, 7 = 42.7 kgf em/cal, H = 500 m (Shumskiy, 196g), we obtain
J: ® 107% to 1073), the temperature gradient in the main bulk of the ice layer is also small.
[t increases essentially in the bottom part, where almost all the heat generated is accumulated
due to advection, reducing the heat flow into the glacier*. Such a regime of the glacier is
stable, as it does not cause any fluctuations with increased temperature.

To be more precise, the method of transportation of the dissipative heat is determined by
flow lines, for which according to Equations (19) and (21) we have the following relation:

W P
dt EJ€+% ﬂz‘*;: a,
7 - (45)
gfsf—vg(o)

Whence we get the equation of flow lines

4 'fpw—p P
C = 287_( g == a|) 3 (46)
[G-su@|® ot o

26 €3

where 4 is a constant, and ¢; is determined according to (23). The pattern of the flow lines
having regard to (29) is shown in Figure 4.

/

£
RS N R

/

AN

2 ¥

Fig. g. Flow-line pattern when molting occurs at the bottom.

In those parts of the glacier where there is a horizontal temperature gradient lateral
temperature fluctuations may appear due to the advective heat transfer.

The case (B) of the previous section, which is in agreement with the conditions (30),
shows the unstable regime of the shelf glacier. Indeed, the generated heat is transferred to the
inner surface { = {4 with the zero vertical velocity (the corresponding picture of the flow lines
is shown in Figure 5). Thus, the surface { = {, of the change of sign of ve is the surface of
the accumulation of the heat generated in the whole bulk of ice. Though the dissipative heat-
generation coefficient is rather small, as has been noted above, the total effect of the heat
“collection™ during a large period throughout the whole thickness of ice may happen to be
considerable for a relatively narrow zone in the neighbourhood of { = . Indeed, with the
parameter values given in this section, the heat generation per cubic centimetre of ice on the
average has a value of the order of 1073 to 1072 cal/year (4 x 1073 10 4% 1072 J/year). In a
narrow zone of accumulation of several tens of centimetres in thickness 0.1 to 1 cal/year cm?

* Strictly speaking, one should distinguish relatively thin ice layers at the glacier boundaries, where the main
seasonal variations in temperature occur and phase transitions take place.
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(0.4 to 4 J/year cm?) will converge from an ice layer of, for instance, 100 m. At the volumetric
heat capacity of ice equal to 0.4 cal/em?® (1.7 J/em?) this value is sufficient for the temperature
in the zone of heat accumulation to increase up to the melting point and for the ice-water
phase transition to begin over a period of several vears. The role of the conductive heat

-
o

S——
—————

Fig. 5. Flow-line pattern when freezing oceurs at the bottom.

outflow from the accumulation zone is comparatively small: when the heat conduction
coefficient of ice is A = 5+ 10 3 caljem s, the specific heat capacity is ¢ & 0.45 cal/g, and
the density is p = (0.90 to 0.92) gjem?, then the effective radius of the conductive heat
outflow per a year will be:

re = (Afpe)t = (kt)* = (1 to 2) m. (47)

However, the advection directed against the conductive heat outflow “locks™ the heat in the
limits of the accumulation zone; the effect of the conductive heat removal almost vanishes,
since the radius of the advective transport of heat is:

ra = ul, (48)

and at v & (1 to 2) m/year, re X Ty

The thickness of the accumulation zone is determined from the condition of equivalence
of the conductive and convective transport of heat and comprises some tens of centimetres,
as has been already mentioned above.

The temperature regime of ice shelves was considered by Zotikov (1964). However,
he only analysed the temperature distribution in depth, without considering the dynamics
of ice (the vertical velocity in the heat-transfer equation was given parametrically) and the
heat-generation effect.

In that paper a somewhat unexpected conclusion was reached on the possibility of ice
motion in the opposite direction from the glacier surface (the so-called S-type field of tempera-
ture). This, as has been mentioned above, contradicts the physical nature of the heat accumu-
lation process. The cause of this erroneous conclusion by Zotikov (1964) consists first of all in
neglecting the heat-generation effect, that is impermissible in analysing the quasi-stationary
field. As a result, on the graph of the S-type temperature curve the necessary maximum is
absent in the neighbourhood of the point corresponding to the neutral surface. Indeed, for
the temperature gradient in the presence of inner sources of heat g, uniformly distributed
through the whole thickness of the glacier, from equation (80) of Zotikov (1964) considering
the expressions for the mass-transfer velocity in case (B)

W(z) = —wil(n+1)z—nl, 2= 2/H,

(wy and w) are absolute values of the velocities on the upper and lower glacier surfaces
respectively, n = wi/wy) we obtain the following expression
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o) = v/ exp [%Pu(n+!) (Z_nj_ )z] )

2(3pu(n+t1))* dz

TB*TH"pu(:i:)[ {A(QHI)} {(2 ”+‘)i}] -
“f{(z(ﬁn) }”’f{(iﬂﬂj I) }
R [ e

wyH pe H?
Pu=uTP, q

where

=

AL

1) — f atetde B — j exp (—) I(2) e

With the values of the parameters given above inserted we get p, = 5 to 25, § = 2.5 to 20,
so that §/py = 0.5 to 1.2"°. Since at z > 1 the function I(z) increases extremely rapidly,
for glaciers of a sufficiently large thickness (several tens of metres) we have large values of
fru, and then the sign of the derivative d T/dz is determined by the last term in Equation (49).
At n & 1 (the vertical velocity turns to zero in the middle part of the ice layer) we have, on

the glacier surfaces,
_ Ja ey L

/

R Y BT
= I, g BRI > 1. i dzao.

Consequently, the curve of the temperature distribution with depth is similar to that shown
in Figure 3; it has a maximum in the neighbourhood of the plane z = n/(n+1) at which the
sign of the vertical velocity changes.

Ice melting is inevitable in the zone of heat accumulation during a large lifetime (the
duration of the ice passing through the glacier). Since water discharge is impossible, a layer
of water should appear in this zone, which is incompatible with the stability of the glacier,
subjected, for instance, to the bending stress due to long waves, and so on. Therefore the
conclusion must be drawn, that the existence of glaciers with an opposite motion of ice from
the glacier surfaces, which in their shape are similar to flat-parallel slabs, is impossible. Ice
formation on the bottom near the inner boundary of the ice shelf is always connected with a
considerable variation in thickness and of the boundary conditions in the longitudinal
direction, facts that essentially change the regime of the glacier.

(a)

ta

fu

(b)

II. INNER ICE SHELVES

Ice shelves in bays and internal seas partly border the grounded ice sheet, or land free of
ice, and partly the water. The ice motion, as a rule, starts from the grounded ice sheet and is
directed towards the marginal cliff, from which icebergs break off. The ice-free shores in the
boundary zone produce a retarding effect, and outside it they prevent sideways extension.
The direction of motion coincides with the direction of the steepest surface slope. In the same
direction the variation in temperature and in the accumulation-ablation on the upper and
lower surfaces of the glacier are observed. The lines of the slope and of motion in the plan

&
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present arcs with a negligibly small curvature; provided the axis O§ is oriented along these
arcs, we shall get
ket = kf =0, Ay = 1. (50)
In this section the lower surface of the glacier will be taken as the surface { = o.
The ratio of the longitudinal and transverse horizontal stresses is defined by the shape of
shores:
= o tan w, (51)

Gy

where w is the angle between the ice-free shores of the bay, or between the directions of the ice
discharge from the shores covered by the grounded ice sheet; w > o when these lines diverge
approaching the mouth. Usually, the angle w varies within the range
—45° Sw< 45"
At w > 45° there appear conditions for a free spreading, which are typical of external shelf
glaciers. On the other hand, at w < —45° the discharge of ice is so hampered, that the bay
usually has a grounded ice sheet. From Equation (51) it follows that
Ogr = —og(1+tan w). (52)
Outside the sea-shore zone the retardation effect produced by shores is absent, therefore
Gtk = O, t# kK Gge = Gy, ) = T Ger = Oy
(53)
6 = ogl1+4tan w+tan? w)t,
The Equations (4), (5), (50) and (51) also remain valid for the case under consideration,
with the only difference that
Z = Z(Es T)’ Tl = [(§: T): T, = Tz(f: T)' (54)
Neglecting the curvatures of the upper and lower surfaces of the glacier (k¢ = k,f = 0),
we assume the coordinate axes O¢, On to be horizontal, and the axis O{ vertical. Therefore
the equations of quasi-static equilibrium acquire the form

dp o, Oog cp oy, &p 6, Coy
— e — O ik = © o e = I;
0¢ ' pgH ©¢ on tn o pgH ¢ (55)

the equation of the heat-conduction—heat-transfer-heat-generation becomes

oT 0T v, dT orT I

et e e M T RAPHAE A 2 i S

?T+v§ P§+85 7 Se¢ F§2+"\f(6)6 exp[ K(T 1)], (56)
whereas the equation of continuity and of the components of the strain-rate tensor should be
taken in a general form.

So far as the ratio between the longitudinal and vertical normal stresses is now determined
by Equation (52) instead of (12), the extending force arising at the marginal cliff is now equal

to
<= B
' | = RS o P
FE ==y J‘5§§( —y g) d( == 2(2+tan w) o (I PW) ZEZ’ (57)
instead of Fz = .z, &.; being given by Equation (20).

Since the tangential stresses are absent, at some distance from the marginal cliff the longi-
tudinal extending stress should be distributed, for the present case as well, in such a way that
the velocity of the glacier longitudinal extension would not change along { (¢, = (£, 7)).
By integrating the first and the third Equations (55) over {, and differentiating the last one

-~

over £, and eliminating the value f (¢p/c€) d, we obtain

0
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F (tog . pgH [ 2% [\ _ peH 2
fE f rE dgi{l-{-lanw)co STET P§d€ _{2+tanw)cruzF§'

The integration of this equation over & with the boundary condition (57) yields the following
equation:

_LH i _ peH P
F(¢) - 2(2 -} tan w) o, (L2 —Le) +Fz - 2(2 ftanw) a, (z: o zsl)- (58)

According to the general equation of kinematics for shifting the boundaries, the vertical
velocity component for the two-dimensional case under consideration is expressed in terms of

the vertical rate of the compression €; = —&;(14tan w) ¢, and the accumulation rate on
the surface by the equations

v = § (;;fJF”_E %)7[92+51('€* 0)] = a,+e€;¢. (59)

Excluding ;, €;, 6 and o, from Equations (10), (53), (56), (58) and (59), in a power
approximation we obtain the following integro-differential equation for the temperature field

&
T ol ¢
ot |+ [nien df];—f+ =2y, [v £)+ fﬁ (£.7) d§] =
£u

_%_([-{-tanw)ﬁ(fa ) <

K I
2T : *PYN\T !

= 8¢ ;,—gﬁrfz(f T

2
|

[Tas
™)
~J

'\.:| )

HK pgH B p a
ey PR e o ot
b= e e P

HK H ntl bontn) Hilk
=5 J [( i )] (1+tan w+tan? w) (Qz—Piw Zzz) .

Sepev, T, [2(2+tan w

(61)

The method of solving this equation is analogous to the general method of solving equations
with a small parameter at a higher derivative.

After the function 7(&, n, 7) is found, the strain-rate is determined from the equations

€, €;

3

©1 = 8, tan w _S_E(I-Hanw)

z

T [ TR

O

the stress is found from the equations

. G, B o4 3500 /n ]I,fn o kf1
' tane I +tanw \HK 6, P

=
2
\,1 -
\
o
——

(63)
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the velocity is determined from Equations (59) and from

3
(@) = ula+ [ o) d, (64
£
and the velocity of bottom-melting is found from the equation
0 i
a, = & (E*“”g '5&')—“3—535- (65)

The boundary zones of ice shelves adjacent to the ice-free land are distinguished by the
fact, that the shear stresses o, are markedly predominant in them in the vertical surface
parallel to the sea-shore. The velocities rapidly increase with distance from the shore due to
this stress. The boundary zones are characterized by the following relations:

& €1, 8, €1, 8, €1, kif = o, Oip = 0. (66)
Therefore for them the first equation of quasi-static equilibrium acquires the form
B, % o B0y
Bt 8, 5 — o, (67)
and together with the third equation it gives
dog,  pgH
= ; 68
R,’? 8,_,0’0 tan e ( )

The intensity of the tangential stresses in the first approximation is equal to

6 = |agl. (69)
Since the horizontal tangential stresses are absent, the stress a¢, is so distributed that the dis-
placement velocity is the same along the vertical;

- l‘f = ﬂ KRe n i i n — i dé‘ ( 0)
€, = ?"] = 5,,6‘0 (s PN Z ag," exp K T—I ; &
]

The velocity is thus described by the equation
h

£ m
HK‘ H n n
) = S ()" [ 2 [( [ tan ) ew [ (3-1)] atan

n Mo
in which 7, and & are the ordinates of the inner and outer boundaries of the sea-shore zone of
displacement. In order to find the temperature distribution it is necessary to solve the equation
similar to (60). The values of the normal components of the deviator stress and of the strain-
rate tensor are outside the limits of accuracy of the given approximation.

MS., received 14 April 1975
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