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Michurinskiy Prospekt , Moscow V-234, U.S.S.R. ) 

!\ nSTRACT. For Aat external ice sheh·cs. expanding freely in a ll direc tions. the problem of thermodynamics 
is one-dimensional. In the affine dimensionless system of coordina tes , equations of the dynamics together 
with the rheological eq u ation lead to the non-linear integro-diffe rentia l equation involving the reduced 
temperature. In the quasi-steady case the boundary problem fo r this equation is solved by means of the 
method of combining asymptotic expansions. I t is shown tha t if ice is coming from the upper and lower 
surfaces in the opposite direc tions the regime is u nsteady because of the internal hea t accumulation. 

The integro-differential equation for the temperature in the case o f thinning internal ice shelves is more 
complica ted , but it can be solved by a method analogous to the one mentioned above. 

R ESUME. Modi/es mathi l1latiqlles de plateformes de glace. Pour d es plateformes d e glace externes pla tes. 
s'e tendant librement dans toutes les direc tions le probleme thermodynamique es t uni-dimensionnel. Da ns un 
sys tem e de coordonnees affine sa ns dimensions, les eq uations de la dynamiquc com binees avec I'equation 
rheologiquc conduisent it une equation integro-diffe renti elle non-linea ire concerna nt la tempera ture reduite . 
Dans le cas d'un e tat quas i-stationnaire. le pro bleme des limites pour ce u e equa tion es t resolu en associant d es 
developpements asympto tiques. On mon trc que si la glace arrivan t a u voisinage d es surfaces inferieures e t 
superieures provient de direc tions opposees , le regime es t insta ble it ca use de I'accumulation interne de chaleur. 

L'equation integro-differentielle pour la tempera ture d a ns le cas de pla teform es de glace internes 
a mincissa ntes est plus compliquee. mais la m a rche de la solution es t a na logue it cell e m entionnee ci-dessus. 

ZUSAMMENFASSUNG. Mathematische Modelle VO Il Scheifeisen. Fur Aach e, aussere Schelfe ise, die sich allsei ts 
fr ei ausdehnen konnen, genugt ein eindimensionales thermodynamisch es Modell. Im affinen , dimensions­
losen System der Koordinaten fuhren die d ynamischen G leichungen zusammen mit der rheologischen 
G leichung zur nichtlinearen Integro-Diffe renti a lgleichung fur die reduzierte Temperatur. Im quasi­
stationaren Falllasst sich das Randwertproblem fur diese G leichung mit Hilfe der Nahtme thode. verbunde n 
mit asymptotischer Fortsetzung losen. Es wird gezeigt, dass fur den Fa ll des Eiszustromes von der Ober- und 
Unterseite in entgegengese tzte r Richtung d as System infolge d e r Ansammlung innerer Warme instationiir 
wird . 

Die Integro-Differentia lgle ichung fur die Tempera tur im Fa ll e von ausdunnenden. inneren Schelfeisen 
ist verwickelter, doch lasst sie sich mit ahn lich en Methoden losen wir die oben genannte. 

INTRODUCTION 

Floating glaciers are Aat slabs which become gradually thinner near the edge, but they 
combine a horizontal surface, like that of ice divides, with a high velocity, a fact that sharply 
distinguishes them from the latter. Both these peculiariti es result from the absence of tangen­
tial stresses on the free lower surface. Except for the internal edges adjacent to the land, all 
the remaining surfaces of the Aoating glaciers are free . Therefore, in the three-dimensional 
orthogonal coordinate system with the axis 0, normal to the upper and lower surfaces, no 
tangential stresses are present at all, since the normal stresses coincide with the coordinate 
axes . But the curvatures of the upper and lower surfaces kt' and kt' are negligibly small due 
to the Aat shape of floating glaciers, so conditions are very favourable for applying the method 
of a thin boundary layer , and the model is simplified by the absence of horizontal tangential 
stresses (crt, = 0). Nevertheless, the other four components of the stress tensor may have 
values of the same order in the general case, so that the dynamics is described by a statically 
undeterminate system of eq uations. On the other hand , the conditions are , as a rule, compli­
cated by an essential non-isothermality. Therefore , one should distinguish various types of 
floating glaciers according to their dynamics, described by different models . In this paper the 
symbols are mainly as in the previous paper (Grigoryan and others, 1976) so no list of symbols 
is provided here. 

• This paper was accep ted fo r the In ternat iona l Symposium on the Thermal R egime of Glaciers and I ce 
Shee ts, Burnaby, Canada, April 1975, but was not presented because of the absence of the a uthors . 
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Fig. I . Coordill (f/t' ,~r\lI'lII. 

Let us direct the horizontal axis Ot of the affine system of dimensionless coordinates 
along sea-l evel from the internal to the exte rnal boundary of the glacier (in the direction of the 
ice motion ), and direct the vertical axi s 0 ~ upward (Fig. I) . The characteristic linear 
horizontal dimension L exceeds considerably the average thi ckness H, so that 

H ' 
o = L ~ I. 

The glacier is bounded by the upper and 10\\'er surfaces, ~ = <I (T) and ~ = <,( T) respectively 
(T being the dimensionless time), The d ensity of ice is p, the density of water is pw. 

Due to the relatively small thickness of the glacier given b y Equation ( I ), the fl oating layer 
of ice must be in a local equilibrium along the verti cal 

External ice shelves are ones which border upon the shore along one edgc only, and at 
some distance from the shore can expand freely in all directions like drifting tabular icebergs. 
In these cases the slopes of both upper and lower surfaces as well as the horizontal variations 
of temperature and of accumulation and ablation ra tes are as a rule so small that they can 
be considered with sufficient accuracy as flat plates without any physical differences between 
the directions in the horizontal plane, with the exception that strains lead to motion relative 
to the fixed edge. 

1. EXTERNAL ICE SHELVE S 

I. Fundamental equations. Formulation of the problem 

The sys tem of equilibr'ium equations fo r the case In which there IS a negligibly small 
contribution from the inerti a l terms is of the form : 

eji eaik 
- -::;- +-~ --pgi = 0 , (3) 

("X i CXk 

where ji is the pressure, aik are the stress d eviator components, gi is the ith component of the 
acceleration due to gravity , The boundary conditions of the problem are: 

~ = ,(1: 

0"0 pw 
- P+ -H O" rc = - - <" pg " p 

O"i(; = O" ~!; = 0 , T = T , (T), (5) 

where T is the reduced tempera ture. Equations (4) represent the conditions on the free 
surface bordering the air; Equa tions (5) are the conditions at the contac t with the water 
when the viscous coupling forces of water are neglected. 
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The second boundary conditions in each of Equations (4) and (5) under the condition 
given by the inequality in ( I) lead to the fact that the horizontal tangential stress in a floating 
glacier is absent to an accuracy of the terms of a higher order of small quantities , whereas thc 
horizontal stresses are equivalent to 

ag = a ~~ = 0 , aH = CI ~~ . (6 ) 
As a result, taking into account the horizontality of the ice surfaces, the following two equations 
are alone retained from the system of Equations (3) : 

o ( ao ) 2 ( CI
O

) ?g - p+ pgHa;; = 0, ? ~ - p + pgHa" = 1. 

The incompressibility equation should be also added ; taking account of Equations (6) it 
acquires the form 

2IlE" + E,, = 0, (8) 
and also the heat-transfer eq uation (GI'igoryan and others, in press) (n eglecting the horizontal 
variation in temperature) 

and the rheology relations (the power flow law), which in dimensional form may be written as 

Eik = Kun- luik eXP[ - K(+- I)]. ( 10) 

We also write the expressions for the components of the strain-rate tensor 

Eik = 0 , 

av, } E ~~ = ~ ' 

k -# i . 

So far as ice is incom pressible, owing to the Equation (6) we have 

a" = - 2a;; . 

The kinematic conditions of the boundary displacements are: 

'0,(1 
( 13) 

~ = ,(2, 

where a l and az are the accumulation rates at the upper and lower boundaries respec tivel y. 
The combination of equations and the boundary conditions (7)-( 14) d efin es comple tely the 
problem of the thermodynamics of a floating ice shelf. 

2. So lution rif the dynamical problem 

Integration of Equations (7) , taking into account the first equations of the conditions (4) 
and (5), results in the relations: 

CIo 
- p + pgH CI;; = fW , 

a o 
- p+ - Ha(, = -( ,(- ~) , pg .• 

whence due to Equation (12 ) we obtain 

2 pgH 
a" = - 3 ~ [ (,(1 - {) +fW] , 

wherefis an unknown fun ction of the argument {. 
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The expression for the intensity of the shear stresses, taking account of Equation (12), is 

(1= V3 au. ( 16) 

Consider now the conditions at the contact of the glacier with water (Grigoryan and others, 
in press) : 

I: _ -= 
~ - - , (1i~ = 0 , 

{

a, ao 
P- Hau = 

pg - - Pw~ / p , 

where Tt and Tl are the temperatures of air and water, respectively. From the second 
equation in (6) taking into consideration Equation ( 12), we get 

g = - , 

Consequently, at the marginal ice cliff there arises a horizontal tensile stress which reaches 
the maximum value pgH( I - p/ pw ) <:'/3(10 at the water level (where <:, = ..(t - <:'2)' and which 
decreases linearly down to zero at the upper and lower edges of the ice cliff. Therefore, at 
the ice cliff there arises the torque of moment : 

~ 

i f (1~~m ~ d~ , 
o 

which is equilibrated by a complicated stress in the marginal part of the glacier. However, 
at some distance from the ice cliff the stress in the ice layer is distributed so that a uniform 
rate of the horizontal extension of the ice slab in the vertical cross-section is provided 
(Weertman, 1957) 

These are constant in the whole slab and change in time only with the variation of <:,. The 
average value of the extending stress in the vertical cross-section is 

_ pgH ( p) 
GH = -6- 1 - - ..(. .. (10 pw 

It follows from the conditions ( 13) and ( 14) that , provided the ice layer is in equilibrium, 
Equation (2), the vertical velocity v~ depends on the vertical coordinate and the accumulation 
rates as 

From the rheology , Equation ( 10), we get 

E l (1oHK 
Et = - -'- = EH = -- 3n / 2(1E(" exp ( - KO ), 28 .. Vo .. 

where (J = 1 - T , 0 :(; (J < I . SO far as Et and E .1 are independent of the coordinate ~ , then 

(1\~ = C exp (KO). 

The constant C can be readily determined if we know the expression for the average value of 
the vertical stress from Equation (20). Thus 
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3· Temperature regime of a glacier 

The substitution of Equations (2 I ), (22 ) and (23) into the hea t-transfer equation (9) 
results in the integro-differential equation for the steady case : 

( 
pw - p p) d8 dzO . 

_ r 1- nY+-- a - - a - = S - - 11- 1"+11 cxp (KOln) 
J 1 ., pw 2 pw 1 d ~ e d ~z 2 • , 

where 
.(, 

1 = J exp (KOln) d~ , k 
S - --

e - pcvoH' 
.(, 

KH (pgH)n ( p)n zn l 1,=2 X 3In- ll!z- -- 1- -,(, 
SVo 6 pw 

JHK ()"+I zln+11 J 12 = 2- ln+'13-1n+II !Z (pgH)n+1 I _ ..E... ,( . 
pcvo T oS pw 

Equation (24) describes the quasi-stationary temperature field T( ~ , -r ) = 1 - 8 ( ~ , T) in the 
glacier (inasmuch as the dimensionless time -r is inserted in the equation pa rametricall y) . 

The boundary temperature conditions foll ow from the conditions (4) and (5) 

~ = ,(,(T), 8 = I-T, (T) = 8, (-r); 

~ = ,(,(-r), 8 = I - T z( T) = 8z(T). 

The method of solving the bou~dary problem (24), (26), (27) is based on the fact that the 
value Se is small for ice shelves 

whilef, = 0 (1) . 
As a result , this problem falls into the class of singular boundary problems, for which the 

methods of solution are fairly well studied (Cole, (968). We shall search for a solution of 
Equation (24) for the main bulk of ice, proceeding from the expansion of the solution in a 
power series of the small parameter Se 

8 = 8o+Sc8, + Scz8z+ .. . , (28) 

with the boundary condition (26), and with the boundary condition (27 ) for the boundary 
layer. It is necessary to match the solutions at the contac t of the boundary layer and the 
internal region . The evolution of the solution is as follows . 

It should be first noted, that the distribution of temperature with depth d epends essentially 
on the pattern of flow lines in the glacier- in other words, the solution of Equations (24) , 
(26), (27) depends on the ratio of the va lues occurring in the expression for the velocity, 
Equation (21 ). There are two ways the vertical velocity can change with depth: 

v~ < 0, ,(2 ~ ~ ~ ,(" (29) 
or 
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If we first consider (A) the case of (29), i.e. when melting occurs at the lower surface of the 
glacier (a2 < 0, £,1Z2 < pa, / pw ). The substitution of the expansion (28) into Equation (24), 
after reducing the similar terms at the same powers of oe, results in a sequence of differential 
equations 

d6
0 

} 
(1 df = fzf - 'n + ,) exp (K6o/n), 

d6 i d 2 8i _, 
- U dI = ~ , i = 1,2,3, . . . , 

where U = i,I- n~ + pa, /pw - (pw-p) a2 /pw; it follows from the condition (29) that U > o. 
The boundary conditions for the system (31) are: 

~ = Z,; 6o = 6, (T) , 8i =0, (i=I,2,3,···,) 
The solution for the zero approximation is, thus, of the form: 

r 
j f.I-n~+~ a,_Pw-p a1l-' 

60 = ~ln exp (- K6, / n)- ~ /1 In pw pw 
K nJ' P pw-P 

r;I- nZ,+- a,--- az 
pw pw 

Since ~ ~ Z" it is clear that with a decrease of ~ the value 80 increases, i.e. the temperature 
decreases from the lower surface to the upper one. 

The totality of solutions of differential equations (31), which, when they are summed, 
gives the expansion (28), does not satisfy the boundary condition (27). Consequently near 
the boundary , = Z2 there inevitably arises a boundary layer with a large temperature 
gradient so that on its lower boundary the temperature satisfies the condition (27). 

In order to retain the "governing terms", i.e . the summands with derivatives, we introduce 
the boundary layer in the following way : 

Consider the inner expansion in this layer : 

8 = go(x.) + oeg, (x.) + oe'g2(X.) + 
Due to Equation (29) the following relations hold true 

d d d 2 I d 2 

d~ = Oe dx. ' d~z = Oe2 dx. 2 • 

The insertion of the expansion (35) into Equation (24), after the similar terms are reduced, 
leads to a sequence of differential equations 

-U dgo _ d1go 

• dx. - dx. 2
' 

dg· d 2gi dg· 
U* -' +-- =.f,I-nx ~ I = 1,2, .. . , 

dx. dx. 2 
' • dx. ' 

where U. = i,I- nZ2 + pa, /pw- (pw-p) az / pw > o. The boundary conditions for this 
sequence of equations follow directly from the condition (27), taking (34) into consideration: 

x. = 0; gO (T) = 62(T) = I-T2(T) , gi = 0, I = 1,2, .... (37) 

https://doi.org/10.3189/S002214300001371X Published online by Cambridge University Press

https://doi.org/10.3189/S002214300001371X


MATHEMATICAL MODEL S OF ICE SHELVES 

The solution for the zero approximation of the inne r expansion is given by the formula : 

go = C, exp ( - U".x".) + C2 , 

The constants C, and C, are obtained from the boundary condition at x'" = 0 , and also from 
the condition of " matching" the solutions (28) and (35); the last operation may be carried 
out most simply by "matching" the terms of the same order separately at the internal limit. 
The matching of the zero-order terms of the expansion is: 

go( co) = 80 (.Z,) . (38) 

The conditions (37) and (38) give the final form of the solution of the problem (24)- (27) in 
t he first approximation : 

(a ) in the region of the boundary layer of the order of Sc (of the thickness O( Sc)): 

go = [8,(-T) - 80 (Z2' 7)] exp ( -U", X", ) + 80(,(" 7); (39) 

(b ) in the main region the solution is given by Equation (33). The solution, Equations 
(33) and (39), is obtained to an accuracy of the terms of the order of Se. and of a higher 
order. 

This solution may be specified from the corresponding systems of Equations (3 I) and (38) . 
The temperature curve corresponding to Equations (33 ) and (39) is shown in Figure 2. 

1. T 

Fi.It .:2. TPlllperalllrt' pro/tit' i t'll I' ll 1Ilf' llill,1!. o((lIr.\ af lite bollOIll . 

~ext let us consider (B) the case (30), i.e. when freezing occurs on the lower surface of the 
glacier (a, > 0, pa, / pw < EJZ,), Inside the ice layer there is a line, where the vertical velocity 
changes its sign. In this case two regions of the expansion (28) are distinguished; in the upper 
one '''' < , ~ ,(, the solution 80 has the form of Equation (33) , whereas in the lower one we 
have, respectively : 

r 
P pw - p 1-' j,I-n,+- a , - --- a z n K8, K j2 pw pw 80 = -In exp (--)+--In , 

K n nj,J p pw - p 
j,I- n,(z+ - a,- --- a z 

pw pw 

Thus, the temperature increases from the lower surface to , ... and d ecreases from ,,,. to Z" 
The matching of the branches (33 ) and (40) can be performed with the help of the boundary 
layer 
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Since inside this boundary layer func tion U has the expansion 

U = ( ' - , ... ) V, +( , - , .. .)2 V 2 + ... , V , > 0 , 

the substitution of an expansion like Equation (35) into Equation (24), taking into considera­
tion Equation (41 ) and the differential relations d id, = diSc! dx, d 2/d,2 = d2/Sc dX 2 with 
regard to Equation (21 ), results in the system of eq uations 

d2ho _ dho 
dX 2 -

Xf
3 dx = 0 , 

d2ht _ _ dh i _ trf2I- tn+'1 exp (; ha) , 

d - XE3 d- -
X3 X 

0 , 

1 = I , 

The solution for the zero approximation * is 

ho(Sc, x ) = B , erf (I- 'It /2lj l x)+ B2 • 

Constants B, and B , are determined from the conditions of matching with the branches of 
Equations (33 ) and (40) at the inner limit (Cole, 1968) . The curve of the temperature 
distribution in d epth is shown in Figure 3. When the temperature function has been deter­
mined, the value I can be found from the transcendental equation , which is obtained by 
substituting Equation (33) or (40) into the first equation of (25): 

,(, 

I = J exp (KO /n) d,. 
,(, 

4. Conditions of the thermal stability of a glacier 

It may be seen, when comparing the results presented in Figures 2 and 3 with the data 
available, that the majority of external ice shelves have temperature distributions which fall 
into the case (A) of the preceding section. This means , that the vertical velocity of the ice 
motion according to Equation (29) displaces ice particles from the upper surface through the 
whole layer to its lower surface. The dissipative heat generated in this case is transferred 

.. Here, as well as in Equations (36). in the zero approxima tion we neglect the heat-generation effect in the 
boundary layer itself. 
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from the upper to the lower layers by this advection velocity. Since the dissipative heat­
generation coefficient is rather small (at K = 0.15 cm In /year kgfn , Vo = I m /year, p/Pw = 
0.92, 0"0 = 0·5 to I kgf/cm2, ] = 42.7 kgf cm /cal, H = 500 m (Shumskiy, 1969), we obtain 

12 :::: 10- 4 to 10- 3), the temperature gradient in the main bulk of the ice layer is also small. 
I t increases essentially in the bottom part , where almost all the heal generated is accumulated 
due to advection, reducing the heat flow into the glacie r* . Such a regime of the glacier is 
stable, as it does not cause any fluctuations with increased temperature. 

To be more precise, the method of transportation of the dissipative heat is determined by 
flow lines, for which according to Equations (19) and (2 I ) we have the following relation: 

pw - P P 
EJ~ +-- a2 - - a, 

pw pw 

Whence we get the equation of flow lines 

I (PW - p a -~a) 
1 " EJ pw pw 

where A is a constant, and E J is determined according to (23 )' The pattem of the flow lines 
having regard to (29) is shown in Figure 4. 

Fi.E:. -/. Flow-lillf polio 11 WIt,.1I "'IIIIII.!!. 11(( 111\ 01 11i,. hnlfolll. 

In those parts of the glacier where there is a horizontal temperature gradient late ral 
temperature fluctuations may appear due to the advective hea t transfer. 

The case (B) of the previous section, which is in agreement with the conditions (30), 
shows the unstable regime of the shelf glacier. Indeed , the generated heat is transferred to the 
inner surface ~ = ~. with the zero vertical velocity (the corresponding pic ture of the flow lines 
is shown in Figure 5). Th us, the surface ~ = ~. of the change of sign of vi: is the surface of 
the accumulation of the hea t generated in the whole bulk of ice. Though the dissipative hea t­
generation coefficient is rather small , as has been noted above, the total e ffect of the hea t 
"collec tion" during a large period throughout the whole thickness of ice may happen to be 
considerable for a relatively narrow zone in the neighbourhood of ~ = ~ •. Indeed, with the 
parameter values given' in this section , the heat generation pe r cubic centimetre of ice on the 
average has a value of the order of 10- 3 to 10- ' cal/year (4 X IO - J to 4 X 10- 2 J /year). In a 
narrow zone of accumulation of several tens of centimetres in thickness o. I to I cal /year cm '> 

• Strictly speaking, one should distinguish relatively thin ice laye rs a t the glacier boundaries. where the main 
seasonal variations in temperature occur and phase transitions take place . 
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(0.4 to 4 J /year cm .1 ) will con verge from a n ice layer of, for insta nce , [00 m . A t the volumetric 
heat capacity of ice equal to oA cal/cm l (1.7 J /cm l ) this value is suffic ient for the temperature 
in the zone of heat accum ulation to increase up to the melting point and fo r the ice- water 
phase tra nsition to begin over a period o f" sl'\Tra l \Ta r~. Th t' role of the conductive heat 

Fi.1!. . . ). F /ou,' -lillt' / )(I lfl 'n l , ('/t t'1I JUt ::. i ll,!: 0((/ 11 \ at till O() lIolll . 

outflow from the accumulation zone is compa ra tively sm a ll : when the hea t conduction 
coeffi cient of ice is A = 5 y 10 .1 cal /cm s, the specific heat ca pacity is c ~ 0. 45 cal/g, and 
the density is p = (o.go to 0.g2 ) g/cm J • then the effec ti ve ra dius of the conducti ve hea t 
outflow pf:r a year will be: 

re = ( At/pep = (k t ) J ~ ( [ to 2) rn . 

H owever , the advec tion direc ted aga inst the conductive heat outflow " locks" the heat in the 
limi ts of the accumulation zone; the effec t of the conducti ve heat remova l almost va nishes, 
since the radius of the advec tive transport of heat is: 

ra = vt , 

and a t v ~ ( I to 2) m/year, re ~ ' a. 
The thi ckness of the accumulation zone is d etermined from the condition of equivalence 

of the conduc tive and convec tive transport of hea t and comprises some ten s of centimetres, 
as has been already mentioned above. 

T he tempera ture regime of ice shelves was considered b y Zotikov ( lg64 ) . However , 
he only analysed the temperature distribu tion in depth , without considering the dynamics 
of ice (the vertical velocity in the hea t-transfe r eq ua tion was g iven param etri cally) and the 
heat-generation effec t. 

In that paper a somewhat unexpected conclusion was rea ched on the possibility of ice 
motion in the opposite direction from the glacier surface (the so-called S-type fi eld of tempera­
ture). This, as has been m entioned above, contradicts the physical nature of the heat accumu­
lation process. The cause of this erroneous conclusion by Zot ikov ( I g64) consists first of all in 
neglec ting the heat-generation effec t, that is impermissible in analysing the quasi-stationary 
field . As a result , on the graph of the S-typ e tempera ture cu rve the necessary maximum is 
absent in the neighbourhood of the point corresponding to the neutral surface. Indeed, for 
the temperature gradient in the presence of inner sources of hea t q, uniformly distributed 
through the whole thickness of the glacier, from equation (80) of Zotikov ( lg64) considering 
the expressions for the mass-transfer velocity in case (B) 

W(z) = -wu[ (n+ I )z- n] , z = z/H, 
(wu and w \ are absolute values of the velocities on the upper and lower glacier surfaces 
respectively, n = W[/wu) we obtain the following expression 
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J 

WuHpc 
pu = -­

.\ 

I(y) = J exp (Z2) dz, 
o 

_ qH2 
q = T ' 

,. 

E(y) = J exp (-Z2) I (z) dz. 

o 

4'29 

With the values of the parameters given above inserted we get pu = 5 to '25 , ii = 2.5 to '20, 
so that iilpu = 0.5 to 1.'2 °. Since at Z > I the function I(z) increases extremely rapidly, 
for glaciers of a sufficiently large thi ckness (several tens of metres) we have large values of 
pu, and then the sign of the derivative d Tfdz is d e termined by the last term in Equation (49). 
At n ~ I (the verti cal velocity turns to zero in the middle part of the ice layer) we have, on 
the glacier surfaces, 

(a ) {(Pu 11 2 r} dT 
f. = 0 , I --- :p I , i.e. d z > 0; '2 11 • 1 / 

(b) i = I , J{eU

_

I r}:p '2 rz + I 

dT 
1 . i.e . dt < o. 

Consequently, the curve of the temperature distribution with depth is similar to that shown 
in Figure 3; it has a maximum in the neighbourhood of the plane z = rz /( lI + I) at which the 
sign of the verti cal velocity changes. 

Ice melting is inevitable in the zone of hea t accumula ti on during a large lifetime (the 
duration of the ice passing through the glacier). Since wat er discharge is impossible, a layer 
of water should appear in this zon e, whieh is incompatible with th e stability of the glacier, 
subjected, for instance, to the bending stress due to long waves, and so on. Therefore the 
conclusion must b e drawn, that the existence of g laciers wi th an opposi te motion of ice from 
the glacier surfaces, which in their shape are similar to flat-pa rall e l slabs, is impossible. Ice 
formation on the bo ttom near the inner boundary of the ice ~helf is a lways connec ted with a 
considerable variation in thi ckness and of the boundary conditions in the longitudinal 
direc tion , fa cts that essentially change the regime of the glacier. 

I I. I NNER ICE SHELVES 

Ice shelves in bays and internal seas partly bord er the grounded ice sheet, or land free of 
ice, and partly the water. The ice m otion, as a rule , sta rts from the grounded ice shee t and is 
direc ted towards the' marginal cliff, from which icebe rgs break off. The ice-free sho res in the 
bo undary" zone produce a retarding effect, and o utside it they prevent sideways extension . 
The direction of motion coincides with the direc tion of the steepes t surface slope. I n the S;ime 
direction the variation in temperature and in the accumulation- ablation on the upper and 
lower surfaces of the glacier are observed. The lin es of the slope and of motion in the plan 
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present arcs with a n egligibly small curvature; provided the axis og is oriented along these 
arcs, we shall get 

k,,'1 = k} = 0, Ai = I . (50 ) 

In this section the lower surface of the glacier will be ta ken as the surface ~ = o. 
The ratio of the longitudinal and transverse horizontal stresses is d efin ed by the sha pe of 

shores: 

cr~~ = a"" tan w , (5 I) 
where w is the angle b etween the ice-free shores of the bay, or between the directions of the ice 
discharge from the shores covered by the grounded ice sheet; w > 0 when these lines diverge 
approaching the m outh . Usually, the angle w varies within the range 

- 45
0 
~ w -< 45

0
• 

At w > 450 there appear conditions for a free spreading, which are typical of external shelf 
glaciers. On the other hand, at w < - 45 0 the discharge of ice is so hampered , that the bay 
usually has a grounded ice sheet. From Equation (5 1) it follows that 

cr" = - a;; ( 1 + tan w). (52 ) 
Outside the sea-shore zone the retardation effec t produced by shores is absent, ther efore 

crtk = 0 , i "# k; a;; = a" cr~ ~ = a2 , 

(53 ) 

The Equations (4), (5), (50 ) and (5 I ) also remain valid for the case under consideration, 
with the only difference that 

Neglecting the curvatures of the upper and lower surfaces of the glacier (k; s = k "" = 0), 
we assume the coordinate axes og, OT} to be horizontal , and the axis 0 ~ vertical. Therefore 
the equations of quasi-static equilibrium acquire the form 

op cro oa;; op (a'l'l 2p cro 2cr(; I: 
-og+ pgH a[ = o, OT} = cYJ = 0 -2 ~+ pgH2f = I; (55 ) 

the equation of the heat-conduction- hea t-transfer- heat-generation becomes 

o T oT v(; d T '027 [ ( 1 )] a;+v; aT+~ o ~ = .se 2~2 + NJ( cr ) cr
2 exp -K T - 1 , (56) 

whereas the equation of continuity and of the components of the strain-rate tensor should be 
taken in a general form . 

So far as the ratio between the longitudina l and vertical normal stresses is now determined 
by Equation (52) instead of (12 ), the ex tending force arising at the marginal cliff is now equal 
to 

° 
instead of F=. = azz, a zz being given by Equation (20). 

Since the tangential stresses are absent, at some distance from the marginal cliff the longi­
tudinal extending stress should be distributed , for the present case as well , in such a way .that 
the velocity of the glacier longitudinal extension would not change along ~ (E, = E, (g, T» . 
By integrating the first and the third Equations (55 ) over ~ , and differen tiating the last one 

z 
over g, and eliminating the value f (cp /2g) dC we obtain 

o 
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T h e integrat ion of this equat ion over ~ with the boundary condition (57 ) yields the following 
equation: 

F( ~) = pgH ( 7Z _ 7_Z) + F_ = pgH (72_L7_Z) (58) 
2 (2 + tanw) aD "" """ " 2 (2 + tanw) a o "" pw""" . 

According to the general equation of kinematics for shifting the boundaries, the vertical 
velocity component for the two-dimensiona l case under consideration is expressed in terms of 
the verti cal rate of the compression E .1 = - 0, ( I + tan w) E I and the accumulation rate on 
the surface by the eq uations . 

( 2Z 2Z) 
v, = 0, (I T + V; ?~ - [az + EJ(Z - m = ao+ E3 ~ ' (59) 

Excluding v~, EJ , a and cri from Equations (10), (53), (56), (58) and (59), in a p ower 
a pproximation we obtain the following integro-differentia l equation for the tempera ture fi eld 

t f t 

~~ + ["M.) I) J, (I , . ) cl l ] ;~ +1 ~~ 1 ["Mo) + J ],(I, . ) d l ] ~i 

- ~Z -( I + tanw ) JI ( ~ ' T ) ,( Z- I; } ~~ 
, [ J exp { ; ( +-I) d ~ r 

exp {; (~- I)} 
(60) 

JHK [ pgH ] n + 1 !In+ll( p )nl-I J2 = 2 0 T ( ) ( I + tan w+ tan 2 w) ,('2 _ - Z=: 2 . 
Q, PCVo 0 2 2 + tan w pw 

The method of solving this equation is analogous to the general me thod of solving equa tions 
with a small parame ter at a higher derivative . 

After the fun ction T( ~, ,,/ , T) is found , the strain-rate is determined from the eq uations 

o 

the stress is found from the equations 

cr i = ~ = a 3 = (O'V~)I / Il EII/
n 

exp [~(~_ I)] 
tanw I + tanw Hit aD n T 
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the velocity is d e termined from Equations (59) and from 
~ 

v;W = v; (go) + J E, (g) dg, 
~" 

and the velocity of bottom-melting is found from the equation 

ao = 8; ( ~~+ V; ~~) -az - E3Z' (65) 

The boundary zones of ice shelves adjacent to the ice-free land are distinguished by the 
fact, that the shear stresses er;~ are markedly predominant in them in the vertical surface 
parallel to the sea-shore. The velocities rapidly increase with distance from the shore due to 
this stress. The boundary zones are characterized by the following relations : 

8;~ I , 8~~ I, 80~ 1, ki1 = 0, eri~= o . (66) 
Therefore for them the first equation of quasi-static equilibrium acquires the form 

op ero oer;n 
- 8; 071 + pgH 8~ T.1 = 0 (67) 

and together with the third equation it gives 

oer;" pgH 
-,,- = -,,- tan y;. 
071 o~ero 

(68) 

The intensity of the tangential stresses in the first approximation is equal to 

(J = ler;nl. (69) 
Since the horizontal tangential stresses are absent, the stress er;" is so distributed that the dis­
placement velocity is the sam e a long the ver tical ; 

o 

The velocity is thus described by the equation 
" ,( n 

v; (7J ) = ~~~ (p!~r J ~ J (J tan y; d7J)" exp [-K (~- I)] d~ d17 , (71) 
71 U 17\! 

in which 170 and h are the ordinates of the inner and outer boundaries of the sea-shore zone of 
displacement. In order to find the temperature distribution it is necessary to solve the equation 
similar to (60). The values of the normal components of the deviator stress and of the strain­
rate tensor are outside the limits of accuracy of the given approximation. 

MS. received 14 April 1975 
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