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CONCENTRATED LOADS ON A FLOATING ICE SHEET

By D. E. NEVEL

(U.S. Army Cold Regions Research and Engineering Laboratory, Hanover,
New Hampshire 03755, U.S.A.)

AspstrACT. The safe bearing capacity of a floating ice sheet is usually determined by limiting the maximum
tensile stress which occurs under the load at the bottom of the ice sheet. If the size of the load distribution is
large compared to the ice thickness, the thin plate theory predicts these stresses correctly. However, if the
size of the load distribution becomes small compared to the ice thickness, the plate theory overestimates the
stresses. In this case the ice sheet should be treated as a three-dimensional elastic layer.

Previous investigators have solved the elastic-layer problem for loads distributed over a circular area,
and have limited the results to the stress at the bottom of the ice sheet directly under the center of the load.
In the present paper the stresses are evaluated at any radial position, and it is shown how these stresses
approach those for the plate theory as the radial position becomes large. The solutions for the stresses are
presented in integral form, as well as graphs from the numerical integration. These new results are significant
for the superposition of stresses when two concentrated loads act near each other.

Similarly for loads distributed over a rectangular area, the plate theory will overestimate the stresses if
the dimensions of the load becomes small compared to the ice thickness. For this case integral solutions are
presented for the stresses, and are evaluated directly under the center of the load.

ResuME, Charges concentrées sur un radeau de glace flottante. La capacité maximum de charge en sécurité d’un
radeau de glace flottante est d’ordinaire déterminée en limitant I'effort maximum de traction qui se produit
sous la charge a la face inférieure du radeau de glace. SiI'étendue de la zone chargée est grande par rapport
3 I’épaisseur de la neige, la théorie des plaques minces prévoit correctement ces efforts. Cependant si I'étendue
de la zone chargée devient petite par rapport  I’épaisseur de la glace la théorie des plaques minces surestime
les contraintes. Dans ce cas le radeau de glace devrait étre traité comme une couche élastique a trois dimen-
sions.

Les précédents chercheurs ont résolu le probléme de la couche élastique pour des charges distribuées sur
une surface circulaire et ont limité leurs résultats a effort du fond du radeau de glace directement en dessous
du centre de la charge. Dans la présente étude les contraintes sont estimées & n'importe quelle position sur
le rayon, et on montre comment ces efforts se rapprochent de ceux prévus par la théorie des plaques minces
lorsque le rayon devient grand. On présente les solutions sous le forme d’intégrale pour les efforts ainsi que
des graphiques pour une intégration numérique. Ces nouveaux résultats sont significatifs pour la super-
position des efforts lorsque deux charges concentrées agissent 4 c6té 'une de P'autre.

De la méme maniére, pour des charges distribuées sur une surface rectangulaire la théorie des plaques
minces va surestimer les contraintes si les dimensions de la charge deviennent petits a coté de épaisseur dela
glace. Pour ce cas les solutions en intégrales sont présentées pour les efforts et sont estimés directement au
dessous du centre de la charge.

ZUSAMMENFASSUNG. Konzentrierte Lasten auf einer schwimmenden Eisplatte. Die sichere Tragfiahigkeit einer
schwimmenden Eisplatte wird gewohnlich durch Begrenzung der maximalen Zugkraft, die unter der Last
am Grunde der Eisplatte auftritt, festgelegt. Sind die Dimensionen der belasteten Fliche gross im Vergleich
zur Eisdicke, so liefert die Theorie diinner Platten korrekte Werte fiir diese Spannungen. Andernfalls aber
fithrt die Plattentheorie zu iibertrieben grossen Spannungen. Die Eisplatte sollte in solchen Fillen als drei-
dimensionale elastische Schicht behandelt werden.

Frithere Untersuchungen losten das Problem der elastischen Schicht fiir kreisformig verteilte Lasten,
wobei die Ergebnisse auf die Spannung an jener Stelle der Eistafel beschriinkt blieben, die unmittelbar unter
dem Zentrum der Last liegt. Die vorliegende Arbeit ermittelt die Spannungen fiir beliebige radiale
Positionen; dabei wird gezeigt, dass diese Spannungen sich denen der Plattentheorie nihern, wenn der
Radialabstand gross wird. Die Losungen fiir die Spannungen werden in der Form von Integralen dargestellt,
zusammen mit Graphiken fiir die numerische Integration. Diese neuen Ergebnisse sind wesentlich fiir die

berlagerung von Spannungen, wenn zwei konzentrierte Lasten dicht nebeneinander wirken.
hnlich, ergibt sich aus der Plattentheorie eine Uberschiitzung der Spannungen fiir Lasten, die iiber ein
Rechteck verteilt sind, wenn die Dimensionen der Last im Vergleich zur Eisdicke klein werden. Integral-
l6sungen fiir die Spannungen werden auch fiir diesen Fall angegeben und fiir das Zentrum unter der Last
direkt ausgewertet.

InTRODUCTION

For predicting the safe bearing capacity of a floating ice sheet, the ice sheet is usually
represented by the mathematical theory of a thin plate floating on the surface of the water.
This theory predicts the stresses correctly when the load is distributed over a sufficiently large
area, but when the load distribution becomes small, the thin-plate theory over-estimates the
stresses in the vicinity of the load.
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The first person to recognize this problem of incorrect stresses in the vicinity of a load
distributed over a small area was Hertz (1884). He recommended that the smallest diameter
of load distribution used for stress calculations should be equal to the ice thickness.

When the load is distributed over a circular area, Westergaard (1926) presented a formula
for the maximum stress which occurs at the bottom of the plate directly under the center of
the load. His formula was based on the solution of a three-dimensional elastic layer which
was developed by Nadai (1920, see also Nadai 1925, p. 308). Nadai considered a finite,
axially-symmetrical, elastic layer whose bottom surface was free of stresses and whose top
surface had a normal load, uniformly distributed over a circular area. The circumferential
boundary corresponded closely to that of a simple support in thin-plate theory. Westergaard
evaluated this solution for the maximum stress when the radius of the load was five times
the thickness of the layer. When the radius of the load was greater than 1.724 times the layer
thickness, he found that the thin-plate theory gave the same stress as the three-dimensional
theory. When the radius of the load was less than 1.724 times the layer thickness, he found a
difference between the two theories. He then stated that the thin-plate theory could still be
used provided a fictitious load radius is used. The fictitious radius @ was given by

a = (1.662+h2)0-5—0.675h, (1)

where b is the true load radius and £ is the ice thickness. Approximately the same results
were obtained with layers whose radius-to-thickness ratios were other than five. Westergaard
then stated, “The results may be applied generally to slabs of proportions such as are found
In concrete pavements, with any kind of support which is not concentrated within a small area
close to the load”.

Woinowsky-Krieger (1933) developed the three-dimensional elastic-layer solutions in
rectangular and radial coordinates for loads distributed over rectangular and circular areas
respectively. He presented numerical results for the maximum tensile stresses in a simply-
supported and a clamped-supported axially symmetrical elastic layer without an elastic
foundation. Woinowsky-Krieger also developed equations for the deflection of plates on an
elastic foundation, but he did not discuss the stresses.

Nevel (1970) considered the stresses at the bottom of the ice sheet directly under the center
of a load uniformly distributed over a circular area. He used elastic-layer theory and this
theory gave the same numerical results as Westergaard’s “fictitious” radius method. How-
ever, the stresses when the radial coordinate r was not zero were not evaluated.

It is the purpose of this paper to develop and evaluate these stresses when the radial
coordinate is non-zero as well as zero. These results are important for the superposition of
stresses when two concentrated loads act near each other. In addition, the equations for a
rectangular load will be developed and evaluated.

CIRCULAR LOADS

Consider an ice sheet of uniform thickness floating on the surface of the water. Assume
that the horizontal extent of the ice sheet is sufficiently large that we may assume the ice sheet
extends to infinity in any horizontal direction. Let a load which is uniformly distributed over a
circular area be applied vertically to the top surface. The increase in vertical pressure on the
bottom surface due to the applied load will be equal to the unit weight of water times the
vertical deflection of the bottom surface. The shearing stresses on both the top and bottom
surfaces are zero.

Nevel (1970) has solved this problem when the ice sheet is considered as a three-
dimensional elastic layer. His method of solution for this axially symmetrical problem
consisted of using a Hankel transform with respect to the radial coordinate. This method
corresponds to using a Fourier transform with respect to x and y coordinates when axial
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symmetry occurs. From his results the stresses in the ice at the bottom surface of the ice are

o0

(sgtar) B2 1 F.(tB)
W=;IF+JUUR) o (2)
and
a—ar) 2 1 Ju(tR) Ju(tB)
2P(1—v) am F_ [ iRz _]o(R)] iB2 tde, (3)
where

(1202—2H*) sinh t++H* (sinh {4-¢ cosh £)[(14v)

12f (sinh? t—12) + H* (sinh 2t {at) ' @
In these equations o, is the radial stress, oy is the tangential stress, P is the total load, v is
Poisson’s ratio for ice, 4 is the ice thickness, B is b/h, b is the radius of the load distribution,
R is r[h, r is the radial coordinate, H is /I, [* is ER3[[12k(1—v?)], E is Young’s modulus for
ice, k is the unit weight of water, and ¢ is the Hankel transform parameter for R.

Typical values of H are between 0.01 and o.1 for ice sheets floating on water. Hence it
can be shown that the A+ terms in the numerator of Fy, (Equation (4)) produce negligible
results when compared to results from the 12¢2sinh ¢ term. Hence, in place of Fy, we may
use F where

Fu, =

12£2sinh ¢
= Yot (sinh? {—t2) | H* (sinh 2t 2f) (5)
If thin-plate theory is used to represent the ice sheet, the formulas for the stresses are the same
as Equations (2) and (3) except that now the F function becomes

3t
t4H' (8)

Consider the stresses directly under a concentrated load, R = B = o. For the stress sum
6y+or, the integrand becomes F times ¢£. For plate theory, Fy times ¢ is approximately 3/t
for very large t. Hence, the oy+4o; integral diverges for plate theory when R =B = o.
For elastic layer theory, F' from Equation (5) is §¢2/(¢4#+H4) when ¢ is small, which is the
same as Fp,. If we factor g¢2/(t++H*) out of F, the remaining factor is the additional factor of
the elastic-layer solution which does not appear in the plate solution. This additional factor
is shown in Figure 1, and, for H < o.1, it is nearly independent of AH. This additional factor
becomes 2¢3 exp (—t)[g for large ¢, which provides convergence for the 65+ o, integral when
t goes to infinity.

In order to perform the integration for o;+a, in Equation (2) when R = B = o, the
integration is divided into regions. In the region from ¢ = o to t = 2, the convergence
factor is expanded into a series about ¢ = o and the integration performed. In the region
from ¢ = 2 to ¢ = o0, the integration can be performed after the integrand has been expanded
into an asymptotic series. The result is

(cg+01)° B2 3 H:
-m = 0.830 0—; log H—E a (7)
where the zero superscript designates R —= B = o.
Let us now subtract (oy+0,)° from oy+o,. Using a superscript star to designate this

difference, we have
% = —-f []n tR) —— 1] tdt. (8)

Fp=
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Fig. 1. Conuvergence factor.

The factor F in the integrand depends on H only near ¢t = o, while the factor 7,(tR) 7,(¢B)/
(tB[2) —1 is very small near ¢ = 0. Hence, one might suspect that the integral of the product
may be nearly independent of H. When H = o, F becomes
t/2 tf2
i sinh t--¢ ' sinh t—¢ "~ (9)

In order to estimate the error in using F, in Equation (8) rather than F, consider

G re® h? 3 (1B

o

where the subscript e represents the error of neglecting H. Since F—F, is zero except near
t = o, we can expand the Bessel function into a series about ¢ = 0. Retaining only the first
significant term we integrate to obtain
(ogtor)e* k2 gH? . i
TR (B*+2Rz?). (rr)

Let us now consider the stress difference o;—o, of Equation (3). The factor 7,(tR)/
(tR[2) —Jo(tR) of the integrand is small near ¢ = o, and hence, one might suspect again that
the integral is nearly independent of H. We can estimate the error of neglecting H by consider-
ing F—F,. Proceeding as before we get

(0p—or)e B2 —gHR? )
aP(1—v) 64

Equations (11) and (12) were compared with results obtained from numerical integration
and the error was less than 0.000 1 when H = 0.1, B = 2, and R = 3. The error is even
less when H, B, or R is less than the stated values.

Hence we can now consider the stresses of Equations (3) and (8) using F, rather than F,
which makes the integrals independent of H. The integrals were numerically integrated in
steps of 0.01 from ¢ = o to ¢ = 10 by means of Simpson’s quadrature. Results were obtained
when the radial coordinate R was varied in steps of 0.1 from o to 3 while the radius of the
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Fig. 2. Stress sum as a function of B and R.

load distribution was varied in steps of 0.1 from o to 2. The results for (sy40;)* are shown
in Figure 2. To this result must be added Equations (7) and (11) to obtain the total o4-|-oy.
The results for 6y—o, are shown in Figure 3. To this result must be added the solution of
Equation (12) to obtain the total a5—a;.

At a sufficiently large R, the elastic-layer theory and the thin-plate theory should predict
the same results. One would expect the greatest difference between these theories when
B = 0. Table I shows the difference between these two solutions as functions of R.
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Fig. 3. Stress difference as a function of B and R.
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TaBLE I. ELASTIC-LAYER THEORY MINUS PLATE THEORY

R (oot or)* (o0—or) h2
2P(1+4v) 2P(1—v»)
0.5 0.074 4 —0.075 7
1.0 0.014 8 0.014 0
1.5 0.001 g 0.013 9
2.0 0.001 3 0.008 1
2.5 0.001 § 0.005 2
3.0 0.001 3 0.003 6

RECTANGULAR LOADS

The solution for a load uniformly distributed over a rectangular area is obtained in a
similar manner as for a circular load. The difference being that now Fourier transforms with
respect to ¥ and y are utilized rather than a Hankel transform with respect to 7. Since the
general method of solution has been previously given by Woinowsky-Krieger (1933), it will
not be repeated here. The stresses at the bottom of the ice sheet are

(ozt+oy) B2 1 f J‘ sin «4 sin BB
ek As E P Lo Foy——

P oA BB cos aX cos BY de dB, (13)
s h2 2 A B
'21"(1% f J‘Fj, 28 su;: Sn;g cos X cos BY da df, (14)

and

2
_oxyh* J' f 2af sin «B sin BB sin «X sin 8% de dB. (15)

Pli—) = a4 BB

where all notations are the same as for the circular load except that now o is the stress in the
x direction, oy is the stress in the y direction, czy is the shear stress in the 1~ plane, X is x/h,
x is the x coordinate, ¥ is y/h, y is the y coordinate, A is a/h, a is the half-length of the load
distribution in the x direction, B is b/h, b is the half-length of the load distribution in the y
direction, « is the Fourier transform parameter for X, B is the Fourier transform parameter
for ¥, and 2 is o2+ B2. The solution for a rectangular load using thin- plate theory is given
by Equations (13), (14) and (15) prov1ded F,, is replaced with Fy. As in the circular load
case, we may neglect the H* terms in the numerator of F,, and replace Fy, with . For a
concentrated load at x = y = 0, 0,—0oy and gy are zero while 6, g, gives the same result
as g+ 0.

In order to reduce the effect of H on o;-gy, let us subtract the concentrated load solution
at x = y = o. Designating this difference with a superscript star, we have

(Gx+5y el 11’- sin a4 sin BB
“2P(1+4v) xd BB

cos aX cos o' — I] de df. (16)

As in the circular-load case, we suspect that the integrals of Equations (14), (15), and (16)
are relatively independent of H. An estimate of the error for neglecting H in F for these
integrals can be made by replacing F with F—F,. Expanding the sines and cosines into a
series and proceeding as before we obtain

(astoy)e* bt sHE[AitBr | Xiiys
Patg B B T 2 J°

(17)
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(ox—oy)eh* 3H2[A2—B* X217
P(1—v) 32 6 2 \ (18)
(ozy)e h? __=—3E
Bli—a B2 (x9)

Hence, we can now consider the stresses of Equations (14), (15), and (16) using F, rather
than F, which makes the integrals independent of H. However, the solutions are still a function
of the load distribution A and B as well as the coordinates X and 7. In order to reduce the
number of parameters to a manageable level, let us consider the stresses directly under the
center of the load at X = ¥ = o. For this case ozy = 0. The other two integrals were

B
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Fig. 4. Stress sum at X = ¥ = o as a function of B and A[B.
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Fig. 5. Stress difference at X = ¥ = o0 as a function of B and A|B.
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numerically integrated in steps of 0.1 from « = 0 to « = 10 and in steps of 0.1 from g = o
to B = 10 by means of Simpson’s quadrature in two variables. The load distribution
distance B was varied in steps of 0.1 from o to 3 while the ratio 4/B was varied in steps of
0.2 from o to 1. The result for (c;-+ay)* is shown in Figure 4. Interchanging 4 and B does
not change the value of (sy+0y)*. The result for 6;—ay is shown in Figure 5. Inter-
changing 4 and B changes the sign of 6;—ay.

CONCLUSIONS AND RECOMMENDATIONS

The stresses in the vicinity of a relatively concentrated load have been determined for
loads distributed over both circular and rectangular areas by using elastic-layer theory.
This corrects the deficiency of overestimating these stresses created by thin-plate theory.

Although the problem has been solved, it still would be desirable to develop a more
convenient algorithm of computation than straight numerical integration. One approach
would be to use approximation functions. For example, the approximation

(06+5r) h?
2P(1-+7)
seems to work reasonably well if B and R are not too large.

Another more rational approach would be to develop the integrand into a series and
integrate. However a power series development does not work. More hopeful is to develop
the integrand into a Bessel-function series and integrate cach term by means of contour
integration. This method, although rather complicated may produce a better computation
algorithm.

= (1+B) 7 (1+R?) B2 —1, (20)
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DISCUSSION

L. Lusoutry: All your calculations assume perfect elasticity. Have you done any calcula-
tions taking creep (especially transient creep) into account?

D. E. Never: Yes. This work has been described in another recent report of mine (Nevel,
1976).
E. VirToraTos: One practical problem with Bessel-function expansions would be that these

functions are not available in pre-programmed form in calculators or MICro-processors; one
pre=prog 2/ 5
generally needs a rather large computer.

NeveL: Usually in bearing-capacity problems the arguments of the Bessel functions are not
too large. Hence a series expansion is an efficient method of computation. In the case of the
modified Bessel functions (ber, bei, ker, kei), the computational method of using a recurrence
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relation between the different functions and their derivatives (Nevel, 1959) is efficient in
terms of computer space and time. The “‘safe” bearing capacity program of CRREL utilizes
this method in a subroutine. The computation is done on a desk-top calculator, the Hewlett-
Packard g820. There are some new hand-held calculators, such as the HP-67, in which 1
believe this computer program can be made to work. The real computational problem appears
to be with the Fourier-series solutions which occur when rectangular coordinates are used.
The series are slowly convergent when the arguments are small. The method of expanding the
sines and cosines into a Bessel series and integrating by contour methods may provide a more
convergent series which would solve this problem.
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